Cross-Document Dependency Analysis for
System-of-System Integration

Syed Asad Naqvi'?, Ruzanna Chitchyan', Steffen Zschaler!, Awais Rashid!,
and Mario Siidholt?

! Lancaster University, Lancaster, UK
naqvis@comp.lancs.ac.uk, r.chitchyan@lancaster.ac.uk, szschaler@acm.org,
awais@comp.lancs.ac.uk
2 DCS, Ecole des Mines de Nantes, Nantes, France
Mario.Sudholt@emn.fr

Abstract. Systems-of-systems are formed through integration of indi-
vidual complex systems, often not designed to work together. A num-
ber of factors can make this integration very challenging which often
leads to catastrophic failures. In this paper, we focus on three ma-
jor classes of system-of-system integration problems: managerial inde-
pendence, interface incompatibility, and component-system complexity.
We then present an aspect-oriented requirements description language
(RDL) which uses natural language analysis capabilities to reason about
dependencies across the documentation of the constituent systems of a
system-of-systems. The aspect-oriented compositions in the RDL also
facilitate specification of cross-document constraints and inconsistency
resolution strategies, which can be used for deriving proof obligations
and test cases for verification and validation of the emergent behaviour
of a system-of-systems. We showcase the capabilities of our RDL through
a case study of a real-world emergency response system. Our analysis
shows that the querying and composition capabilities of the RDL pro-
vide valuable support for reasoning across documentation of multiple
systems and specifying suitable integration constraints.

1 Introduction

As software systems become increasingly pervasive in our daily lives, we are see-
ing the emergence of a new class of systems, that of, systems-of-systems (SoS)
[1]. These SoS are at least an order of magnitude greater in complexity than their
conventional counterparts. Examples of such systems are airport management
systems, airline alliances, healthcare systems, disaster response and recovery
systems, etc. However, for a SoS to function effectively, all the constituent sys-
tems need to work towards a common overall goal. This is not always the case
given that a SoS comes into being as a consequence of emergent rather than
pre-planned requirements. Even in case of pre-planned integration, unforeseen
problems can arise owing to the dichotomy between individual system goals and
those of the SoS. A recent example of such dichotomy can be observed in the

Heathrow Airport Terminal 5 problems, due to incompatibilities between the
baggage handling system and the check-in system. The problem was further
compounded by the fact that, as is usual in SoS, both constituent systems were
under the control of different organisations—the goals of a SoS have to be un-
derstood and maintained across such organisational and system administration
boundaries.

Reconciling the goals of a SoS with those of its constituent systems is non-
trivial—a SoS is an ultra large-scale system [2] that comes into being by the
collaboration of a number of systems that may belong to different domains.
This multi-domain characteristic of SoS is often referred to as heterogeneity (or
diversity) [3-7] and has been identified as one of the basic properties of SoS.
Another common characteristic in SoS is distribution [1, 4, 5, 8-10] which entails
geographical distribution of the collaborating systems forming part of a SoS.
Furthermore, because of its scale, a SoS affects and is also directly affected by
external forces such as political, economic, social, and legal factors.

The need for taking a holistic view of the SoS means that the stakeholders
from the constituent systems need to communicate with each other and under-
stand each other’s perspectives. The heterogeneity and distribution inherent to
a SoS make such communication extremely challenging. Furthermore, the influ-
ence of external factors needs to be understood when reasoning about the overall
behaviour of a SoS.

The key challenge for stakeholders in a SoS is, therefore, to understand or
learn about other systems (besides their own) and external influences [4,11]. A
large portion of this learning takes place by studying the various description and
specification documents of other systems as well as legal guidelines, operational
procedures, etc. Especially during the process of integrating different systems
to form a SoS the system specifications, operational procedures, user manuals,
business case documents, test reports, etc. of the different systems need to be
analysed, perhaps cross-examined, to find conflicts and also opportunities for
optimisation. The scale of this task, similar to the extreme complexity of a
SoS, is beyond what can reasonably be achieved by a team of engineers without
scalable automation support.

Substantial advances have been made in the field of natural language analysis
in the past two decades that can be exploited to study large document sets.
Similarly, with the recent emergence of aspect-oriented requirements engineering
(AORE) techniques [12,13], there are new reasoning mechanisms available to
both study and specify constraints that crosscut multiple system specifications.
In this paper, we present an aspect-oriented requirements description language
(RDL) [14] and show how we utilise the semantics of the natural language itself
to both explore and capture cross-document dependencies, as well as conflict
resolution strategies, in RDL-based aspect-oriented composition specifications.
Since the composition specifications are based on natural language semantics,
they facilitate intentional reasoning about cross-document dependencies; that
is, reasoning about the stakeholders’ intentions as expressed in the document
text. This allows us to better understand stakeholders’ requirements for SoS

and identify and resolve any discrepancies between the overall goals of the SoS
and those of its constituent systems.

The remainder of the paper is structured as follows. In Sect. 2 we discuss
three main classes of SoS integration problems. Section 3 presents the natu-
ral language analysis concepts pertinent to our RDL, its semantic queries and
semantics-based composition specifications which are, respectively, used to iden-
tify cross-document dependencies of interest and specify resolution policies. Sec-
tion 4 details a case study from the emergency-related communications domain
to show how the RDL can be used to tackle the three classes of integration
problems highlighted in Section 2. We discuss some of the open research prob-
lems in Sect. 5 and how the RDL’s capabilities may be extended to tackle these.
Section 6 reviews related work and Sect. 7 concludes the paper.

2 Integration Challenges in Systems-of-Systems

The key factors underpinning the integration problems in SoS fall intro three
main classes:

1. The collaborating systems in a SoS are managerially independent;

2. The evolution trajectory of the processes and interfaces of individual systems
does not account for potential future collaboration or communication with
other systems in a SoS context;

3. The individual systems are often, themselves, extremely complex and there-
fore difficult to understand and integrate with other systems.

We next discuss each of these classes in detail, with the help of some well-
known examples of SoS integration failures.

2.1 Managerial Independence

Our notion of Managerial Independence is that different systems in a SoS are
being managed as well as operated by different groups of people. Though man-
agerial independence is a key characteristic of SoS [15], it also poses two major
integration challenges:

— Decision-making and maintenance of an overall vision at the SoS level: The
managers of individual systems are often unaware of the protocols and pro-
cedures of other systems so there is a lack of overall vision and control.
Furthermore, the decisions required for integration and co-working have to
be made by the cooperation and agreement of all the concerned parties. Ob-
taining this agreement can often be non-trivial even impossible. An example
of this is the European Union. In June 2008 the people of the Republic of
Ireland (which represent only one percent of the EU population) voted to
reject the Treaty of Lisbon. For the treaty to come in to force, it requires
ratification from all 27 countries in the EU. Even though 25 countries had
ratified the treaty, rejection from just one country meant that the treaty
could not come into effect. Such problems faced by decision-makers in the
SoS context have also been highlighted in [4].

— Managing a large-scale socio-technical system: A SoS is inherently a socio-
technical system that encompasses the activities of the humans as well as
the hardware and software systems in its boundary. The individual systems
that collaborate in a SoS will often continue to operate independently in
order to provide some functionality independent of the SoS. Participating in
a SoS puts additional stress on the human part of the individual systems.
People may have to concentrate on two different lines of work. Concerns
about errors arising from excessive workload and the interactions of various
human roles in a SoS have also been put forward as a major issue [16].

An example of SoS integration failure due to Managerial Independence is
the failure of Heathrow Terminal 5 (T5) on its opening day. T5 was built at a
cost of 4.3 billion pounds. The period from project commencement to terminal
opening day was approximately five and a half years. The last six months were an
operations readiness period in which the final preparations before opening—staff
training and terminal systems and process testing—were to take place [17].

The terminal fell seriously short of expectations on its opening day. Thou-
sands of people faced a chaotic situation when the terminal’s baggage handling
system stopped working. Sixty eight flights were cancelled [17] and thousands of
people were deprived of their luggage.

The examination of what went wrong on the opening day reveals that the
cause of the problems was a systems integration and coordination problem be-
tween the two main agencies responsible for operating T5: the British Airport
Authority (BAA), which is the agency that built the terminal, and British Air-
ways (BA), the (only) airline operating from the terminal. Both of these agencies
were working together and were responsible for the operations of the terminal.
The lack of communication, coordination, and integration between BAA and BA
prior to and on the opening day was the root cause of the following problems:

— Many amongst the BA staff were not familiar with the equipment that they
were supposed to operate. This equipment had been provided by BAA [17,
18].

— BI]X claimed that they were unable to completely test the software systems
under their control because BAA did not finish construction of the building
in time [19].

— The baggage system failed because BAA had responsibility for the system at
baggage check-in while BA had responsibility for the baggage loading part
of the system [17]. The system finally shutdown because the rate of baggage
check-in was higher than the rate of baggage loading [17].

— There was no crisis management system setup between BA and BAA at the
terminal level [17].

Colin Matthews (chief executive of BAA) noted the lack of cooperation be-
tween the management of BA and BAA as the main cause of the problems at
Terminal 5. In a statement [17] he said:

“However well the airport operator and the airline operator, BA, are
working it is also vital that the two are absolutely integrated and to-
gether. I think that during the construction of Terminal 5 that appeared

to be the case. Around about or just prior to the opening of T5 it seems
that that togetherness deteriorated. It is that togetherness that allows
you to cope with the issues that arise on the day.”

2.2 Incompatible Interfaces

Systems evolve over the course of their lifetime to meet new demands. Often
this evolution takes place in a stove-pipe-like narrow domain. The protocols
and interfaces that the system defines are often not meant for communication,
collaboration, or evolution beyond this specific domain. This lack of foresight in
the systems’ architecture places extra strain [20] when these systems are required
to collaborate with other systems. There is also the principle of encapsulation
[21] in systems engineering to consider. This principle calls for systems to be
closed off from the outside and to hide their implementation and inner working.
In order for individual systems in a SoS to collaborate, they may need to break
the principle of encapsulation and allow invasive access [22] to their inner working
from other systems [3].

The interoperability challenge [23] facing the various emergency response
agencies in the US is an example of this class of problems. The emergency-
response communication systems of various agencies and jurisdictions often evolve
without taking into consideration the need to communicate with other agencies
and jurisdictions.

An example of SoS integration failure, due to Incompatible Interfaces, is the
chaotic rescue operation that took place after the Air Florida Flight 90 disaster
in Washington DC [24]. On 13 January 1982 the Air Florida Flight 90 crashed
into the Potomac River shortly after takeoff. A number of federal, state, and
local emergency response agencies took part in the rescue effort. The rescue
effort was greatly hampered due to the lack of compatibility between the com-
munication systems of the different agencies. The different emergency-response
agencies had evolved their communication systems independently without tak-
ing into consideration the requirements of integrated rescue efforts with other
agencies. Consequently, the rescue personnel from different agencies could not
communicate with each other [24].

2.3 Complexity of the Collaborating Systems

The complexity of a system has a direct impact on its understandability. Given
that the constituent systems in a SoS are often highly complex themselves, inte-
gration problems arise because of one’s inability to fully comprehend the work-
ings of the individual systems. As a result, it is often not possible to predict
the behaviour of the participating systems within the context of the SoS. As the
participating systems in a SoS are often interdependent on each other, it may
take only one system to malfunction for the entire SoS to break down. Such
reliability problems in highly complex systems have been discussed in [4].

An example of SoS integration failure due to the complexity of collaborating
systems is the loss of the Mars Climate Orbiter. The Mars Climate Orbiter

(MCO) started its journey to Mars on December 11, 1998 from Cape Canaveral,
Florida. Its mission was to gather information about the Martian atmosphere
and to act as a relay station for the Mars Polar Lander Mission. On September
23, 1999 it was lost while trying to setup an orbit around Mars. The MCO was
designed, developed, and operated by the collaboration of two agencies—NASA
and Lockheed Martin Astronautics (LMA) [25]. The cause of the crash was in a
piece of software that was producing its results in English units instead of metric
units. But according to Dr. Edward Weiler, NASA’s Associate Administrator for
Space Science:

“The problem here was not the error, it was the failure of NASA’s sys-
tems engineering, and the checks and balances in our processes to detect
the error. That’s why we lost the spacecraft.” [26]

The review panel that conducted the analysis of the failure found that the
best processes and standards for software development had been followed. As
noted in [27], the problem was not that of methodology. The failure instead arose
from the “sheer complexity” of the system . The different consituent systems of
the space craft were so complex that errors within them could not be detected
despite the use of rigorous means and best practices.

Of course, the above three classes of problem are not orthogonal. As shown
in Table 1, all three SoS integration failure cases: T5, Air Florida Flight 90 and
MCO, exhibit multiple classes of failures.

Class of Failure Managerial Incompatible = Complexity of
SoS Independence Interfaces Collaborating Systems
Heathrow T5
Air Florida Flight 90 \ \
Mars Climate Orbiter N N N

Table 1. Multiple causes of SoS integration failures

In this paper, we propose natural-language document-processing techniques
to help uncover the above classes of problems. Any such cross-document analysis
must provide three capabilities:

— Querying over multiple documents in a fashion that accounts for diverse
writing styles and usage of different terms to refer to the same concepts;

— Specification of constraints across multiple documents in order to explic-
itly capture conflict resolution strategies and, subsequently impose them,
through derivation of proof obligations or suitable test cases for the SoS;

— Automation support to aid the engineers and stakeholders in such querying
and constraint specification during SoS integration.

In the next section, we discuss RDL—our natural-language based require-
ments description language—and its support for these capabilities.

3 Requirements Description Language (RDL)

Our RDL, detailed in [14], is based on the observation that the natural language
used in systems’ documentation already reveals semantics that can be used as
a basis for both analysis of dependencies and specification of compositions that
relate process specifications that span multiple documents or specify constraints
that resolve inconsistencies. For this, we utilise the vast body of work on natural
language grammar, semantics, and natural language processing (NLP) [28-30].
The RDL is based on scalable tool support from the WMatrix NLP engine [31],
which has been shown to provide high accuracy: up to 97% for part-of-speech
analysis and 93% for semantic analysis of English language texts [32].

Any document to be analysed using the RDL capabilities needs to be an-
notated with suitable grammatical and semantic information. This annotation
is fully automated via WMatrix as the relevant information can be extracted
directly from the document text. The composition specifications use these an-
notations as a basis of semantic queries which can be used both for uncovering
dependencies across documents as well as specifying points of interest to specify
crosscutting constraints and resolution strategies across documents. Naturally,
this requires human input to encode relevant domain knowledge. The RDL is,
therefore, not a substitute for a human analyst but instead a tool that can aid
the complex task of studying reams of documentation and specifying constraints,
resolution strategies or operational procedures that crosscut multiple documents.

The RDL was conceived as an aspect-oriented mechanism [33] to provide
support for more modular representation and analysis of natural language-based
requirements texts. It lends itself to analysis of SoS integration problems (and
subsequent encoding of resolution strategies) as it uses:

— natural-language grammar to identify the grammatical elements that are
prominent in conveying the semantics of the natural-language sentences,
and, thus, are relevant for studying cross-document dependencies;

— natural-language semantics for expressing the meaning of the identified gram-
matical elements, and various ways of referencing them when querying the
various documents under consideration;

— aspect-oriented composition mechanisms to specify crosscutting constraints
and conflict resolution strategies. These constraints and strategies can be
subsequently used as a basis for proof obligations or test cases for verification
and validation of overall SoS behaviour.

In the following sub-sections, we first present the NLP fundamentals un-
derpinning the RDL. We then present how this semantic and grammatical in-
formation is used as a basis for the semantic queries. Finally, we discuss how
aspect-oriented composition mechanisms are utilised to specify cross-document
constraints and conflict resolution strategies.

3.1 Fundamentals of the RDL

The RDL is build upon two main pillars: semantic and grammatical fundamen-
tals. Each of these is further discussed below.

Semantics Foundations In this work, semantics refers to the meaning ex-
pressed in text. In particular, we draw on the:

— principles of similarity of meaning (i.e., synonymy) for main parts of speech
groups (i.e., nouns, verbs, adjectives, and adverbs) since mostly these are
the groups undertaking the main grammatical functions in a clause.

— We also use some properties of word formation (i.e., word morphology) that
allow reduction of word forms.

— We propose to utilise the domain specific knowledge of entities and their
dependencies captured in ontology building.

— Finally, we propose to utilise a number of semantic categories, i.e., group-
ings of words in accordance with their relevance to a particular classifica-
tion scheme, e.g., per domain, such as words describing human activities, or
Animal-related words, etc.

Each of these concepts is briefly presented below.

Synonyms are different morphological forms (i.e., words) with same sense
(i.e., used with a similar or same meaning) [34, pp 70-71]. Synonymous words
are generally interchangeable. For instance, in an online auction system, “to
place a bid” means the same as “to make a bid”, or “to bid”; or “concurrently”
is the same as “in parallel” and “goods” is the same as “products”. Synonymy is
widely used in natural language, thus synonyms must be recognised and regarded
as the carriers of the same semantics for successful natural language text analysis
and understanding. For the RDL this implies that a reference to an element via
its synonyms is supported.

Word Form Reduction (Lemmatisation): A given word normally has a num-
ber of possible forms, for instance “to bid”, “bidding”, “bids” are all about
bidding and are all formed by modifications of the basic word form “bid”. This
most basic form of a word is called lemma. Lemmatisation (or reduction of the
word to its most basic form) is widely used in natural language processing in
order to simplify natural language text analysis. For the RDL, we take the view
that a lemma is representative of a single part of speech only. For instance, if
the text contains “bidder” as well as “to bid” we will have two lemmas, one for
“to bid” as a verb and another for “bid” as a noun. Consequently, in the RDL
compositions a reference to the verb’s lemma will not be confused with that of
the noun’s [35].

From the perspective of RDL design, using lemma-based referencing allows
a narrower scoping of the reference (i.e., only to all forms of the specific word),
while synonym-based referencing allows for a wide scoping—to all words with a
given meaning.

Ontology: an ontology is a schematisation of knowledge of a domain, repre-
senting the concepts of the domain, properties of each concept, and the relation-
ships between the concepts. Ontologies have a number of uses, including building
common understanding of information, representation, analysis, and reuse of do-
main knowledge, etc. However, each ontology is built to answer a specific set of
questions, and, for this reason, the same domain can be represented via a number
of differing ontologies [36].

For the RDL, the ontologies can be used for retrieving ontology-supported
information from the requirements documents (as is done in such disciplines as
information management, semantic web [37]). For instance, if the “is-a” hierar-
chy is represented, it could be used to identify all classes and subclasses of a
given concept relevant to a given composition specification; if “part-of” relation-
ship is provided, the ontology can help in identifying all constituents of a given
stakeholder concern, etc.

Semantic Categories for Nouns and Verbs: a number of categorisations for
major grammatical categories have been developed. For instance, in accordance
with Quirk [34] nouns can be grouped into 5 main categories for concrete nouns
denoting physical world entities (e.g., grass, hill, etc.), abstract which refer to
abstract notions (e.g., happiness, friendship, etc.); states and properties reflecting
mental and corporeal states and properties (e.g., hunger, pleasure, etc.); activities
which are nouns describing activities (e.g., sale, decision, etc.). Each of these can
be sub-categorised into smaller, more specialised groups.

Similarly, verbs can be categorised in accordance with their specific proper-
ties. We use one of such verb groupings for RDL, as discussed below.

Verb classifications and Role-based Interaction Patterns Several promi-
nent results in linguistics [29, 30, 38] have shown that there is a clear link between
the meaning of the words and their grammatical behaviour. Such a link can be
illustrated via a simple experiment presented in [38]: two English speakers were
asked about the correct use of an archaic English verb gally which was used in
whaling. They were presented with a sentence “Sailors gallied the whales.” Then
they were asked if use of gally in the sentence “Whales gally easily.” is appro-
priate. The speaker who thought that gally meant “see”, believed that it was
incorrect, as we don’t say “Sailors saw the whales. Whales see easily.” On the
other hand, the speaker who thought gally to mean “frighten”, believed that it
was correct to say “Whales gally easily”, as it is correct to say “Whales frighten
easily”.

In line with the above experiment, Dixon [29] suggests that the varying gram-
matical behaviour of verbs is the result of the differences in their meaning. Thus,
using this principle, he groups verbs into several semantic categories. The verbs
in each semantic category require the same type of participating roles. For in-
stance, all Giving type verbs require a Donor, Gift, and Recipient roles, as in
“Allan (Donor) gave the keys (Gift) to Peter (Recipient)”; all Attention verbs
require a Perceiver and an Impression role, as in “The instructor (Perceiver)
witnessed the accident (Impression)”, etc. In some cases certain roles can be
omitted, or understood from the context or from the most common use of the
verb.

In our work we use the semantic categories of [29] as basis for identifying the
types of relationships between concerns and, deriving composition operators.

We observe, that generally in natural language, the semantics of action-type
dependencies (denoted by action-operators, or actions as per [13,39]) are ex-
pressed by verbs or verb phrases. But, in accordance with Dixon’s verb classi-

Relationship Types

Create & ‘ ' Damaging & @
Transform Destroying

@ @ Mental Actions
Like/Dislike

@ Transfer @ @ A
Possession @ Decide @

Fig. 1. Requirements analysis specific rearrangement of Dixon’s verb classes

fication [29] there is only a limited set of broad meanings of verbs, thus, there
must only be a limited set of broad dependency types (and, correspondingly,
operators of action type) that correspond to the verb categories. There are 63
verb classes suggested by Dixon [29]. Having reviewed these categories for suit-
ability from the perspective of composition semantics for requirements [40], we
have identified the set of verb categories presented in Figurel for use in RDL.

Grammar Foundations In natural language, a sentence is considered the
highest-ranking unit of grammar [34]. Thus, we utilise a sentence and its main
constituents—subject, verb, and object—to form RDL elements. One or more
sentences make up a Requirement.

A Requirement is a description of a service the stakeholders expect of the
system, the system behaviour, and constraints and standards that it should meet
[41]. The requirements specified using the RDL are annotated natural language
sentences. Each requirement may contain one or several clauses [34]. Each clause
contains sub-elements for subject, relationship and optionally for object(s).

One or more requirement elements are encapsulated within a concern which
is a module for encapsulating requirements pertaining to a specific matter of
interest (e.g., selling and account management). A concern can be simple (con-
taining only requirements), or composite (containing other concerns as well as
requirements). Each concern is identified by its name.

A subject is the entity that undertakes actions described within the require-
ment clause. Subject in our RDL corresponds to the grammatical subject in the
clause. In order to support interaction (i.e., composition) specifications involving
a subject denoted with different words representing the same semantics, a set of
synonymous definitions must be provided. These synonyms could be provided
either through a standard synonym dictionary or per project through project
specific dictionaries.

An object is the entity which is being affected by the actions undertaken by
the subject of the requirement sentence, or in respect with which the actions
are undertaken. Object in our RDL corresponds to the grammatical object in
the clause. Usage and properties of an Object are very similar to those of the
Subject. However, in a requirement there could be several objects associated
with (affected by) a single subject.

Relationship depicts the action performed (state expressed) by the subject
on or with regards to its object(s). Relationships can be expressed by any of the
verbs or verb phrases in natural language. Using Dixon’s verb categories [29], we
classify relationships into a set of types (the second level nodes in Fig. 1, such as
Move, etc.) and their more specific sub-types (the 3rd level nodes in Fig. 1, Set
in Motion, etc.). The various relationship categories derived from Dixon’s verb
classification are detailed in [14,40].

It must be noted, that we do not suggest that ALL semantics of a requirement
are reduced to Subject-Relationship-Object constructs (SRO). Indeed, elsewhere
we are looking at such element of requirements as degree of importance (i.e.,
which requirements are more urgent compared to others) or quality satisfaction,
among others. However, we suggest that SROs are the main elements with re-
spect to which the rest of the requirement semantics are formulated. Thus, SROs
are the elements which participate in relations with other requirements, and are
qualified, constrained or otherwise defined by both single requirement semantics,
and the inter-requirements dependencies. Such semantics and dependencies can
be both queried and captured in the RDL compositions, as discussed below and
detailed in [14].

Tool Support for RDL The annotation of the subjects, relationships, and
objects is supported via a set of links on top of the tags assigned by the Wmatrix
part-of-speech (POS) tagger. The links are inserted by matching flexible patterns
of POS tags. These patterns have been identified by linguists using a combination
of linguistic knowledge and corpus evidence. For example, a simple rule to link
a verb to its object is as follows:

N*o[.] (RR*/RG*/XXn3) VVN*v[.]

This matches the sequence 'Noun’ (Nx), followed by between 0 and 3 possibly
negated ’adverbs’ (RR*/RG*/XX), followed by a past participle 'verb’ (VVN). In
the case of a match, the noun is marked as the object of the verb. The subjects,
verbs and objects are marked explicitly by Wmatrix along with the result of
lemmatisation.

The annotation of verb types is realised via a mapping from the Wmatrix
verb categories onto an RDL-specific tagset. In some cases the large classes of
Wmatrix words were directly compatible with the RDL verb classification, for
instance, the verbs of domain for Movement, Location, Travel and Transport
in Wmatrix largely correspond to the RDL verbs of Motion type. On the other
hand, there are semantic classes in the Wmatrix (e.g., Education, Time, etc.)
tagset which have no correspondence to that of the RDL verbs tagset and their

contents have been mapped to the RDL verb classes on an individual verb by
verb basis.

This annotation has been automated and is quite fast. In a recent test with a
file of 56,031 words (237 pages), it took about 20 minutes to complete the initial
annotation [42]. However, the quality of the annotation is significantly influenced
by the quality of the input document, since every sentence of the input document
is annotated with the RDL. Our POS-based patterns work rather well for well
structured sentences with clearly defined subjects, verb, and objects, achieving
roughly 80% of accuracy?3. These patterns perform poorer when very long, multi-
level nested sentences or grammatically incorrect sentences are used. Similarly,
the quality of verb class annotation suffers if the verbs used in the text have not
been covered in the RDL tagset.

3.2 Semantic Queries

The query expressions in the RDL are called semantic queries, since they select
concerns/requirements on the basis of the semantics of (parts of) these con-
cerns or requirements. The queries can use all kinds of annotations provided by
the RDL, including the SRO, verb types and semantics (e.g., relationship.type=
“Modify”), concern names, etc.* It should be noted that a requirement may
have several sentences, but if one clause of one of its sentences matches the spec-
ified semantics, the requirement will be relevant for this query. Benefits of the
semantic queries are twofold: firstly, we avoid syntactic matching (e.g., based
on specific labels) in the queries and associated composition specifications, thus
avoiding unintended element matching. Instead, queries and associated compo-
sitions are specified based on the semantics of the requirements. Secondly, it
ensures that any compositions specified are semantically justified, rather than
arbitrarily provided by an analyst. We provide examples of the semantic queries
when discussing the composition specifications next.

3.3 Semantics-based Composition of Concerns

A composition rule in the RDL comprises three elements: Constraint, Base and
Outcome. Each of these elements has an operator attribute and a semantic query
expression. The query expression can select whole concerns or individual require-
ments from within concerns. A concern is selected if the concern keyword is used
in the query, otherwise requirements are selected.

The Constraint element specifies what constraint/restriction will be placed
on some requirements and what action must be taken in imposing these con-
straints (e.g., a conflict resolution strategy to address mismatch across con-

3 This is an estimate based on our experiments, but is not formally validated yet.
Currently we cannot provide exact time measurement for automated and manually
corrected specification generations.

4 The RDL has an XML-based syntax, which is used to automatically annotate the
natural language text. For simplicity, in this paper, we omit the XMIL-based syntax.

stituent system specifications). The restriction that this element imposes is de-
fined in its query expression. The action that needs to be taken is defined by the
constraint operator.

An example of two Constraint elements are shown in Fig. 2 (note we omit
the XML-based RDL syntax for simplification):

— Here the first Constraint element has a query (relationship= “assign” and
object = “liaison station”) stating that all requirements where a something
is assigned to be a liaison station should be selected.

— The second Constraint element has a query (subject= “liaison station” and

relationship = “contact” and object= (“Assistant Section Manager” OR
“Section Manager”)) stating that all requirements where liaison stations
contact the Assistant Section Manager or Section Manager should be se-
lected.
Note, these queries do not specify where physically such requirements should
be located and do not refer to any additional characteristics of these require-
ments. They directly point to the relevant meaning of requirements: assigning
as a liaison station and the liaison station contacting the (Assistant) Section
Manager.

— The “create” operator in the first Constraint specification implies that the
roles of Agent, Manipulation Entity, and Target are relevant for this com-
position. From the Constraint query we can identify the “liaison station” as
the Target; that is, something will be made into such a station.

— The “correspond” operator in the second Constraint specification implies
that the roles of Speaker, Addressee, Medium and Message are relevant.
From this query we also know that the Speaker is the liaison station who
contacts the Addressee—here the (Assistant) Section Manager.

The Base element reveals the set of requirements that are affected by the
elements selected in the Constraint element’s query. The operator in the Base el-
ement depicts the temporal or conditional dependency between the requirements
selected by the Base element query and those of the Constraint query.

An example of a Base element is shown in Fig. 2:

— The base query (relationship=“activate” and object= “RACES net”) notes
that all requirements where activation of RACES net is mentioned are to be
selected.

— The base operator (meets) denotes that immediately upon realisation of Base
query, the relevant Constraint query requirement(s) must be applied. In this
case, as soon as RACES net is activated, a “liaison station” must be assigned
and the liaison station must contact the (Assistant) Section Manger. In
addition, we can see that the RACES net will act in the Manipulation role,
whereby some Actor will create a liaison station from a RACES net station
as per the operator of the first Constraint.

It is worth noting that since the RDL is based on a symmetric model, it is
possible to choose any set of concerns (using semantic queries) as Constraint and

any other set as Base. The same requirement may be selected by a Constraint
query in one composition, and by a Base query in another. We do not discuss
the automation of the actual composition process and its subsequent analysis in
this paper (details are available in [14,43] using ideas from [39]).

Finally, the Outcome element defines how imposition of constraint require-
ments upon the base set of requirements should be treated. For instance, the
outcome element may specify a set of requirements that must be satisfied as
post-conditions upon application of the Constraint; in this case the respective
operator, such as satisfy will be used with that query. Unlike for Base and Con-
straint elements, the semantic query of the Outcome element can be empty, if no
additional requirements/concerns are affected due to the Base and Constraint
element interactions. In this case the ensure operator can be used to indicate
that though there is no additional Output query, the relationships between Con-
straint and Base must be ensured.

4 Case Study: Reasoning about System-of-System
Integration

Having discussed the three classes of SoS integration problems in Sect. 2 and
presented the main elements of the RDL in Sect. 3, we now illustrate how the
RDL can facilitate handling of the integration problems.

RDL works on requirements documents. Therefore, to show how RDL can be
used for SoS, we would ideally possess some requirements documents where real
issues of SoS integration have arisen. Unfortunately, such requirements docu-
ments are typically not available in the public domain. In the absence of require-
ments documents from known cases of SoS integration problems, we sampled and
analysed arbitrary documents from a domain in which cases of such integration
problems exist. For this paper, we selected the domain of emergency-related
communications-based on the Air Florida disaster. This domain is attractive
since a large number of related documents on this subject are freely available
at a dedicated portal®. From this domain we randomly selected two: one detail-
ing the radio communication procedures for the Virginia Emergency Net (VEN)
that supports emergency communications for the state of Virginia, USA®, and
the other detailing the same for the Radio Amateur Civil Emergency Service
(RACES) for the counties of Carroll, Grayson and the City of Galax in Virginia
and California”. We treated these documents as prototypes of requirements doc-
uments as they may be used for SoS in the domain of emergency communication.
We then applied the RDL to these documents analysing them for examples of
managerial independence, interface incompatibility, and complexity issues. In
the following, we discuss one such example for each of these integration problem
classes. In the following examples, while discussing the RDL, we leave out the
XML annotations for better readability.

® http://www.safecomprogram.gov/SAFECOM/
5 http://www.w4ghs.org/vensop2.pdf
7 http:/ /www.w4ghs.org/Twin_County_SOP.pdf

It is interesting to note that for each case, our use of RDL essentially follows
the same three steps:

1. Using natural-language processing, we produce a formal encoding of the two
documents in RDL.

2. Using RDLs query mechanism, we search both documents for statements
that may indicate potential problems arising when the two systems need
to collaborate. We then check with experts and stakeholders to understand
whether these statements indeed represent problems and, if so, what should
be done about them.

3. We use the RDL’s composition mechanism to encode any resolutions to the
problems we found or to explicitly encode any conflict-resolution schemes
that are already implicitly present in the documents.

4.1 Resolving Managerial Issues for SoS Integration

Since the VEN and RACES will need to cooperate to handle emergency-related
communications, we need to understand who will activate the emergency proce-
dures and how these two organisations will interact. In order to identify informa-
tion related to activating these organisations, we can query the RDL-annotated
document texts for the relevant information. Thus, we:

1. Find where the activation topics are treated in the documents by finding
the activation related verbs, such as activate and its synonyms make active,
set in motion, set off, turn on, trigger, get going, trigger, prompt, initiate.
Activate is a verb of Set in Motion type which has defined roles for the
Causer (normally taking the subject function) who sets into motion a Moving
Object (normally taking the object function) with the optional noun phrase
to specify the Locus (i.e., where?) role.

2. Identify what actors are filling in the appropriate roles with these action

verbs:

(a) Roles in RACES:

i.

ii.

iii.

iv.

Upon notification from the OEM or E-911 Director (Causer, though
not directly defined) the plan (Moving Object) will be set in mo-
tion.

EOC locations (Moving Object) may be activated and covered with
Amateur Radio (Causer) but net control should be posted outside
this busy area.

An Amateur Radio Hospital Volunteer (Causer) will activate this
station (Moving Object).

The Twin County RACES Emergency net (Causer) operates as the
Virginia/Carolina Training and Information Net and meets every
Sunday at 3:00 pm (1500 hrs) on the Fishers Peak repeater (145.130
- 600 with a tone of 103.5).

(b) Roles in VEN:

i.

Either the SM or SEC (Causer) shall activate The Virginia Emer-
gency Nets (Moving Object).

3. Check if there are any parallels in the activation procedure and the involved
actors. In the above example:

— The Causers are: OEM, E-911, Amateur Radio, Amateur Radio Hospital
Volunteer, Twin County RACES Emergency Net, SM, SEC.

— The Moving Objects are: plan, EOC locations, station, Virginia/Carolina
Training and Information Net, Virginia Emergency Nets.

— In points (2a: i and iv) we find that OEM, E-911 and Twin County
RACES Emergency net may have some common responsibilities in acti-
vating the RACES net in an emergency. From 2b: i, we can see that the
SM (Section Manager) or SEC (Section Emergency Coordinator) will
activate the Virginia Emergency Net. Thus, there needs to be a protocol
of interaction between these bodies to coordinate emergency handling in
Virginia.

4. Since there is a need to unify the activation of these emergency bodies,
there needs to be a managerial procedure to coordinate these bodies. We
check if such a procedure already exists by looking at cross-references and/or
collocations of the above-identified bodies in our two different documents.
In Virginia Emergency Net document we find:

— “VEN/D 3620 kHz (7105 & 14103.3 kHz alt) Packet, Pactor; Digital
Operations - NON-RACES OPS ASM/ASEC/D”

— “VEN/D RACES 3543 kHz (7105 & 14103.3 kHz alt) Packet, Pactor,
Digital Operations - ONLY REAL RACES OPS ASM/ASEC/D”

Here we also find that ASM/ASEC/D corresponds to Assistant Section Man-
ager/Assistant Section Emergency Coordinator for Digital Operations. Thus,
from this document we have identified that the Assistant Section Manager
is assigned to the communications involving RACES operations.

In RACES document we find:

— “Liaison stations to the following National Traffic System nets will be as-
signed (Old Dominion Emergency Net-3947) (Old Dominion Emergency
Net 7240) (Virginia Emergency Net 3910).”

Here we have identified that a liaison station will be assigned to communicate
with the Virginia Emergency Net.

Thus a procedure of communication between these two systems has become
clearer: it transpires that the Assistant Section Manager or Section Man-
ager will be responsible for managing the communication between VEN and
RACES via a RACES liaison station.

5. Finally, we assert this communication procedure by defining a specific com-
position (Fig. 2).

Thus, by using the synonym-based querying of the RDL we were able to
identify the areas in the input documents where issues related to activation were
discussed. We then identified entities that carry out same roles for the activation
process in different documents and were able to consider their relations to each
other in the management of the two systems and their co-working. Based on these
considerations, we then defined a composition to assert a managerial process for
the interaction of the two systems.

Composition: VEN_RACES_Communication
Constraint: create
operator: enable

query: (relationship= "assign" and object = "liaison station")
Constraint:

operator: correspond

query: (subject= "liaison station" and relationship = "contact" and

object= (Assistant Section Manager" OR "Section Manager"))
Base:

operator: meets

query: (relationship="activate" and object= "RACES net")
Outcome:

operator: ensure

Fig. 2. Composition for Communication Procedure between VEN and RACES

4.2 Addressing Incompatible Interfaces in SoS Integration

The second problem in SoS integration, discussed in Sect. 2.2 of this paper,
relates to the incompatibility of interfaces between systems. We will now consider
how such incompatibility requirements can be identified and resolved with our
RDL-based approach.

The previously discussed integration failure in the case of Air Florida Flight
90 was caused due to the use of different communication frequencies by different
emergency teams. Let us now check if such a problem may arise in integration
of the VEN and RACES systems. To do this, we need to:

1. Verify that the frequencies listed against each of the nets are consistent
across documents. Here we use domain knowledge about the format of de-
scribing nets and their frequencies by listing the frequency immediately be-
fore/after the name of the net—for example, “Old Dominion Emergency Net
7240” —without explicitly using the term “frequency” or its synonyms in the
description.

2. Look up where use of frequencies is explicitly mentioned by looking up the
term frequency and its synonyms, such as Hz and checking with stakehold-
ers/managers that these are correct for each net.

In these two example documents we have a number of references to nets and
tier respective frequencies, such as:

— In the RACES document there are references to:
e Old Dominion Emergency Net 7240
e Virginia Emergency Net 3910
— In Virginia Emergency Net document there are references to:
e 3543 kHz (7105 & 14103.3 kHz alt) RACES
e 7240 kHz Alt ... ODEN (i.e., Old Dominion Emergency Net)

Thus the reference from the RACES document to ODEN frequencies is consistent
with that from the Virginia Emergency Net.

The next reference from RACES document is to Virginia Emergency Net
3910. However, in the document on Virginia Emergency Net there is no mention
of a frequency of 3910. Instead, it refers to 3548 kHz (7105 & 14103.3 kHz
alt) frequencies for RACES. This obviously is an area that needs clarification
with the stakeholders:

— do the documents have the correct different frequencies listed, or

— is there an incompatibility in the specification and these documents must use
the same frequency? If there is an incompatibility here, what is the correct
frequency to be used?

For this example we assume that the communication protocols used require
that the stations use the same frequency to communicate. In which case, we have
identified an integration problem for which a resolution decision must be made.
Let us assume that the specification in the document for the Virginia Emergency
Net is chosen as the correct one. We can now define a composition specification,
as shown in Fig. 3, asserting that the values of frequencies for VEN listed in the
VEN document (frequency.value=doc.VEN and object=“VEN") will dominate
over those listed in the RACES document (frequency.value=(doc.RACES and
object= “VEN”)). This composition will ensure harmonised resolution of this
issue in future requirements.

Composition: VEN_RACES_Frequency_Harmonisation
Constraint:

operator: modify

query: frequency.value=doc.VEN and object="VEN"
Base:

Operator: concurrent

Query: frequency.value=(doc.RACES and object= "VEN")
Outcome: ensure

Fig. 3. Composition for Interface Harmonisation between VEN and RACES

4.3 Support for Handling Complexity in Systems’ Documentation

We have previously discussed the issue of complexity in understanding behaviours
of the systems to be integrated. From the perspective of requirements analysis,
this complexity manifests in the need to identify and understand the behaviours
of interest from a large volume of written documentation (since our discussion
relates to the documents written in natural language). Thus, here the complexity
mainly manifests itself in the need to treat large volumes of information.

The utility of our approach lies in the ability to:

1. identify and separate concerns of interest from the rest of the documentation
and

2. define localised compositions to assert a particular set of rules/interaction
resolutions that crosscut multiple documents and/or concerns within these
documents.

This aspect-oriented basis of the RDL provides inherent support for modular
(studying a particular concern of interest in isolation from other concerns in
a system, in this case a SoS) and compositional reasoning (reasoning about
the interdependencies and relationships amongst concerns to understand the
emergent behaviour, in this case the behaviour of the SoS) [44].

An example of such modular and compositional reasoning was illustrated
in Sect. 4.1, whereby a particular behaviour related to activation was studied
independently from the rest of the documents’ contents. This behaviour was
considered in tandem with the set of entities required to carry out the given
behaviour in different documents and the relationships of these entities were
also considered. In Sect. 4.2, we also presented an example composition definition
which was used to harmonise differences between the two input documents.

The example documents in this case study are largely unstructured natural
language texts. The RDL compositions can also be used to define crosscutting
behaviour across sets of more structured requirements artifacts, such as use
case specifications. For instance, a behaviour related to sending message will be
discussed in a number of use cases detailing the RACES and VEN systems. A
single localised composition may be used to specify that an encryption protocol
should be employed at any point when a message is sent. Such a composition
specification will not require any change/rewriting of the existing use cases.
Yet, when the relevant use cases are viewed/analysed in an appropriately tooled
environment, the additional detail on encryption use will be incorporated across
the relevant use case steps. Further details on the crosscutting nature of the
RDL compositions is provided in [14, 45].

5 Discussion

In Sect. 4, we have discussed how our RDL can be used to study the three major
classes of integration failures in SoS: managerial independence, incompatible
interfaces and complexity of constituent systems. Significant benefit can also be
derived from our RDL-based approach when we consider a set of documents
containing natural language requirements for which a large number of economic,
social, political factors of heterogeneity must be observed, constraints enforced
and priorities maintained. In these cases the semantics-based queries of the RDL
can assist in direct identification of relevant points in the documents where, for
instance, a particular policy is discussed, etc. Moreover, when needed, a locally
defined composition specification can be used, for instance, to enforce a new
policy, or introduce the behaviour of new system into a broad set of existing
operations specification documents.

However, there are a number of other SoS-characteristic problems that can
occur during the analysis and cross-examination of specification documents. Be-
low we discuss some of them as well as some potential extensions of our RDL
approach to address them:

1. Different languages: Because of the geographic distribution of collaborating
systems in a SoS, their specification documents may be written in different
languages e.g. one set of specification documents may be in English and the
other in German.

To handle such differences the RDL approach can be furnished with a cross-

language analysis support. Such a cross-language support is indeed feasible,

since all the grammatical and semantic features of the RDL are manifest in
the vast majority (if not all) human languages whereby an entity (subject)
carries out some activity (verb) on or in respect with other entities (objects).

Moreover, the verb classes identified by Dixon, and used in the RDL, are also

largely language-independent, as discussed in [29].

2. Regional syntaz: It is a well known fact that the same language may have

regional dialects. These dialects can become so well rooted as to make their
way in to the written word and thus establish themselves as different versions
of the same language. A well-known example is the difference between the US
and UK versions of the English language. For example two different words—
soccer and football—refer to the same sport in the US and UK respectively.
However, the same word football refers to two different sports in the US and
UK.
The RDL approach can be furnished with support to identify the dialects
and automatically establish correspondences between relevant entities. For
this we will need to build a language corpus for each relevant dialect and pro-
vide a set of algorithms which would identify the dialect used in each docu-
ment from the natural language clues. Clues such as use of words/expressions
unique to a given dialect (e.g., “fall semester” in US English); spelling and /or
grammar peculiarities (e.g., “behavior vs. behaviour”), frequencies of partic-
ular word use, etc. can be utilised for the purpose.

3. Domain specific syntax: This problem can be further divided into two sub-
categories.

(a) Domain specific jargon in specifications of the collaborating systems:
certain words like “Tympanum” from the “Anatomy” domain may not
be understandable to non-experts.

(b) Different domain specific meaning of the same word: for example, the
word “Delta” means different things in Geology and Mathematics.

The first of these problems can be resolved by providing domain specific
lexicons and/or ontologies, where required. However, building these can be a
substantial effort in itself. This can be facilitated (or substituted) with a set
of algorithms which could use the previously discussed techniques (i.e., most
frequently used concepts, unique words, and combinations etc.) to identify
the general domain of the document and to provide a summation of relevant
term occurrences and/or definition from a set of sample documents of that
domain (e.g., by obtaining these from the Web).

The resolution of the second of these problem can already be supported via
word sense disambiguation techniques used in NLP, such as realised in the
Wmatrix [31] tool.

A number of other problems, such as varying formats of specification doc-
uments (e.g., some written using use case specifications, some using viewpoint-
based templates); inconsistent detail (e.g., some systems may be specified in
great detail while others may have almost no documentation); misinterpretation
of data (e.g., in one specification a mean value is used as representative, while in
the other system a mode), etc. will also arise in distributed heterogeneous SoS.
While these require further research and development effort, it could be rele-
vant to note that the RDL would be well positioned in supporting such problem
resolutions since:

— The RDL is based on natural language characteristics and does not require
any other specific format or restrictions;

— It has been shown that the RDL approach is amenable to automation [14],
and already has automated support for a number of processing activities [14,
43;

— The RDL uses the semantics of natural language to identify relevant portions
in the different system specification documents, allowing domain experts to
focus only on details relevant to their work;

— The RDL compositions are able to support localised specifications of cross-
document dependencies/constraints.

6 Related Work

Ultra large scale (ULS) systems have been defined in [2] as “A system at least
one of whose dimensions is of such a large scale that constructing the system
using development processes and techniques prevailing at the start of the 21st
century is problematic.” These futuristic systems will exhibit characteristics not
unlike SoS today. These characteristics include decentralized control, conflicting
requirements, heterogeneity, evolution, failures of parts of the system, and ero-
sion of the people/system boundary etc. [2] Problems similar to the ones facing
the requirements analysis of SoS have also been raised for ULS systems. These
include finding compatibility, redundancy, inconsistency, emergent properties, in
requirements and reasoning about requirements in the presence of uncertainty
and ambiguity [2]. Therefore, the approach presented in this paper, may also be
relevant for ULS systems.

A number of approaches have been proposed in recent years focusing on
the use natural language processing and information retrieval techniques for
analysis of crosscutting concerns. The EA-Miner tool [45,46] uses the WMa-
trix toolset to mine for crosscutting concerns in natural language requirements
specifications. EA-Miner is a tool that provides integrated support for the RDL,
generating RDL specifications from the mined (and, subsequently edited) re-
quirements model.

Other relevant works include Theme/Doc LSA [47] and Repertory Grid [48].
Theme/Doc LSA uses the Latent Semantic Analysis technique [49] to build a
concern-requirement matrix. In the matrix concerns correspond to terms while
requirements correspond to documents used in the analysis. The LSA algorithm
is then used to identify relevant concern-requirements associations. Threshold
values can be set to filter out associations that are less pertinent or not of inter-
est. However, too low a threshold value can lead to cluttered concern-requirement
association graphs while too high a value can lead to more sparsely populated
graphs. We have found that a hybrid approach, combining LSA with NLP, yields
better results as the NLP-based analysis can be used to identify elements of in-
terest which can then be subject to an LSA analysis for identifying relationships
[50].

The work of Niu and Easterbrook [48] is based on the Repertory Grid tech-
nique from Psychology which aims at capturing how people construct mental
models of objects in their environment. Using this technique, one can study how
two constructs may be similar or different in a particular document set, hence
identifying the contributions of specific tasks to high-level system goals. However,
in contrast to our approach, this technique requires structured requirements as
input and the construction of the grid is not automated. However, its integra-
tion with the RDL can yield fruitful results by allowing one to study the mental
model of a SoS (for instance, based on observations from ethnographic studies)
from the perspective of the various stakeholders of the constituent systems. This
can facilitate a more top-down analysis of SoS integration challenges compared
to the bottom-up documentation-based analysis supported by our approach.

7 Conclusion and Future Work

The conception and development of a SoS poses a number of challenges, not
least due to the fact that SoS are created opportunistically owing to some social
or business need. Since the constituent systems are often not designed to work
together in the first place or, when they are they remain under the control of dif-
ferent autonomous organisations, incompatibilities are almost inevitable owing
to the inherent complexity of the individual systems, their managerial indepen-
dence, and past (often divergent) evolution trajectories. Reasoning about the
overall behaviour of a SoS is, therefore, non-trivial in the presence of such diver-
sity and heterogeneity. We cannot escape the fact that mostly such reasoning is
based on reading reams of documentation about the individual systems-almost
80% of system specifications remain in natural language. The simple search facil-
ities in word processing or file rendering systems are not able to relate concepts
that may have been referred to using different terms. Furthermore, it is not
possible, without specialist tools that create vendor lock-ins and require use of
specific specification notations, to specify constraints across the documentation.

Our RDL presents a solution to these challenges. It is based on well-estab-
lished natural language processing concepts and can be deployed across domains.
The semantic queries in the RDL work on rich information clues already inherent

in natural language specifications hence making it possible to relate concepts as
well as specify composition rules that work on this natural language semantic
basis. This, in turn, means that the composition rules are resilient to changes in
documentation structure. Most significantly, the RDL approach can be utilised
with any documentation written in natural language. Our case study has shown
that the approach can uncover integration issues in real-world SoS and can be
used to specify suitable resolution strategies.

We do not consider the RDL to be the final solution to these challenges.
Instead we see it as a stepping-stone towards scalable mechanisms for reasoning
about SoS integration issues. In Sect. 5 we have identified a number of future
work paths for this work. They will be our focus in the long-term. In the short-
term, we aim to apply the RDL to further case studies of real-world SoS to
gather more empirical data about its efficacy based on a larger corpus of SoS
examples.

We are also currently working to develop a more detailed, hierarchical tax-
onomy of expected SoS integration problems and faults. Such a taxonomy may
help to focus the attention of the SoS engineer towards finer grained problems.
These problems include, but are not limited to, technical incompatibilities, qual-
ity of service issues, and regulatory compliance problems. Once developed, this
taxonomy can be used as the basis of a library of RDL query templates. These
templates can assist the SoS engineer by lessening the work of writing queries
for expected SoS problems. The SoS engineer will of course have to customise
or instantiate the templates for the particular problem at hand. For example,
a query template can be written to help the SoS engineer query the system’s
documentation to find out what kind of communication protocols are used or
supported by the system. The template method is expected to be useful in per-
forming quick, cursory comparisons of different requirement and specification
documents. Detailed analysis of requirement documents is still expected to re-
quire writing unique, standalone queries in RDL.

Acknowledgements

This work is supported by EC FP6 project, AMPLE: Aspect-Oriented Model-
Driven Product Line Engineering and the EC FP7 project DiVA: Dynamic Vari-
ability in Adaptive Systems. Awais Rashid is also supported by a Chair Regionale
by the Pays de la Loire Regional Government in France.

References

1. Sage, A.P., Cuppan, C.D.: On the systems engineering and management of sys-
tems of systems and federations of systems. Information, Knowledge, Systems
Management 2(1) (2001) 325-345

2. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T.,
Kazman, R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale
Systems: The Software Challenge of the Future. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (July 2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Boardman, J., Sauser, B.: System of systems: The meaning of of. In: IEEE Int’l
System of Systems Conf. (April 2006) 118-123

DeLaurentis, D., Callaway, R.: A system-of-systems perspective for public policy
decisions. Review of Policy Research 21(6) (2004) 829-837

DeLaurentis, D.: Role of humans in complexity of a system-of-systems. In Duffy,
V.G., ed.: Digital Human Modeling, HCII 2007. Volume 4561 of LNCS. (2007)
363-371

Jamshidi, M.: System of Systems Engineering: Innovations for the 21st Century.
John Wiley & Sons, Inc. (November 2008)

Keating, C., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A., Safford, R., Peterson,
W., Rabadi, G.: System of systems engineering. EMJ — Engineering Management
Journal 15 (2003) 36

Sage, A.P.: Conflict and risk management in complex system of systems issues. In:
IEEE Int’l Conf. on Systems, Man and Cybernetics. (2003)

Eisner, H.: RCASSE: rapid computer-aided systems of systems engineering. In:
3rd Int’l Symposium of the National Council of System Engineering (NCOSE).
(1993) 267273

Kotov, V.: Systems of systems as communicating structures. Technical report,
Hewlett Packard Computer Systems Laboratory Paper HPL-97-124 (1997)
Popper, S.W., Bankes, S.C., Callaway, R., De-Laurentis, D.: System of systems
symposium: Report on a summer conversation. In: 1st System of Systems Sympo-
sium. (2004) Available from http://www.potomacinstitute.org/academiccen/SoS
Summer Conversation report.pdf.

Baniassad, E.L.A., Clements, P., Araujo, J., Moreira, A., Rashid, A., Tekinerdogan,
B.: Discovering early aspects. IEEE Software 23(1) (2006) 61-69

Rashid, A., Moreira, A., Araujo, J.: Modularisation and composition of aspectual
requirements. In: International Conference on Aspect-Oriented Software Develop-
ment (AOSD), ACM (2003) 11-20

Chitchyan, R., Rashid, A., Rayson, P., Waters, R.W.: Semantics-based composi-
tion for aspect-oriented requirements engineering. In: International Conference on
Aspect-Oriented Software Development (AOSD), ACM (2007) 3648

Maier, M.: Architecting principles for systems of systems. Systems Engineering
1(4) (1998) 26784

Madni, A.M., Sage, A.P., Madni, C.: Infusion of cognitive engineering into systems
engineering processes and practices. In: IEEE Int’l Conf. on Systems, Man and
Cybernetics. (October 2005) 960-965

House of Commons Transport Committee: The opening of Heathrow Terminal
5. Twelfth Report of Session 2007-08. HC 543, Published on 3 November
2008 by authority of the House of Commons London. Downloaded from:
http://www.publications.parliament.uk/pa/cm200708 /cmselect /cmtran /543 /
543.pdf on Dec. 16, 2008 (2008)

BBC News: What went wrong at heathrow’s T57? Downloaded from:
http://news.bbe.co.uk/1/hi/uk/7322453.stm on Dec. 16, 2008 (March 2008)
Thomson, R.: British airways reveals what went wrong with Terminal 5. Down-
loaded from: http://www.computerweekly.com/Articles/2008/05/14/230680/
british+airways+reveals+what+went+wrong+with4terminal.htm on Dec. 16,
2008 (May 2008)

Ellison, R.J., Goodenough, J., Weinstock, C., Woody, C.: Survivability assurance
for system of systems. Technical report, CMU Software Engineering Institute (May
2008) CMU/SEI-2008-TR-008, ESC-TR-2008-008.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Rechtin, E.: Systems Architecting. Prentice Hall, Upper Saddle River, NJ (1990)
Navarro, L.D.B., Stidholt, M., Douence, R., Menaud, J.M.: Invasive patterns for
distributed programs. In: Proc. 9th Int’l Symposium on Distributed Objects, Mid-
dleware, and Applications (DOA’07), Springer (November 2007) 772-789

Smith, B., Tolman, T.: Can we talk? Public safety and the interoperability chal-
lenge. National Institute of Justice Journal (April 2000) 17-21

The Office for Interoperability and Compatibility (OIC),The De-
partment of Homeland Security: The system of systems ap-
proach for interoperable communications. Obtained from
http://www.safecomprogram.gov/NR /rdonlyres/FD22B528-18B7-4CB1-AF49-
F9626C608290/0/SOSApproachforInteroperableCommunications_02.pdf, last
visited January 2008 (2008)

Mars Climate Orbiter Mishap Investigation Board: Phase 1 report.
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO _report.pdf (November 1999)
NASA: Mars climate orbiter official website.
http://mars.jpl.nasa.gov/msp98/news/mco990930.html (1998)

Marshall, S.: Software engineering;: Mars climate orbiter.
http://www.vuw.ac.nz/staff /stephen_marshall/SE/Failures/SE_MCO.html
UCREL: UCREL semantic analysis system (USAS).
http://www.comp.lancs.ac.uk/ucrel/usas/: Lancaster University, UK (2006)
Dixon, R.M.W.: A Semantic Approach to English Grammar. 2nd edn. Oxford
University Press (2005)

Levin, B.: English verb classes and alternations: a preliminary investigation. The
University of Chicago Press (1993)

Rayson, P. WMATRIX. Lancaster University, URL:
http://www.comp.lancs.ac.uk/ucrel/wmatrix/ (2007)

Sawyer, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understand-
ing in early phase requirements engineering. IEEE Trans. Software Eng. 31(11)
(2005) 969-981

Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley Professional (2004)

Quirk, R., et al.: A Comprehensive Grammar of the English Language. Longman,;
London; New York (1985)

Francis, W.N., Kucera, H.: Frequency Analysis of English Usage: Lexicon and
Grammar. Houghton Mifflin, Boston (1982)

Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating
your first ontology. Technical report, Stanford Knowledge Systems Laboratory
and Stanford Medical Informatics (2001) Technical Report KSL-01-05 and SMI-
2001-0880.

Fensel, D., Hendler, J.A., Lieberman, H., Wahlster, W.: Spinning the Semantic
Web. The MIT Press (2002)

Hale, K.L., Keyser, S.J.: A View from the Middle. MIT, Center for Cognitive
Science, Cambridge, MA (1987)

Moreira, A., Araujo, J., Rashid, A.: Multi-dimensional separation of concerns in
requirements engineering. In: 13th IEEE Int’l Conf. on Requirements Engineering
(RE 05). (2005) 285-296

Chitchyan, R., Rashid, A.: Tracing requirements interdependency semantics. In:
Workshop on Early Aspects (held with ASOD 06), Bonn, Germany. (2006)
Sommerville, I.: Software Engineering. 2nd edn. Addison-Wesley (2004)

42.

43.

44.

45.

46.

47.

48.

49.

50.

Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: EA-Miner: Towards automa-
tion in aspect-oriented requirements engineering. Transactions on Aspect-Oriented
Software Development 3 (2007) 4-39

Waters, R.W.: MRAT - the multidimensional requirements analysis tool. Master’s
thesis, Computing Department, Lancaster University (October 2006)

Rashid, A., Moreira, A.: Domain models are NOT aspect free. In: Model Driven
Engineering Languages and Systems. Volume 4199 of LNCS., Springer (2006) 155—
169

Chitchyan, R., Pinto, M., Rashid, A., Fuentes, L.: COMPASS: composition-
centric mapping of aspectual requirements to architecture. Transactions on Aspect-
Oriented Software Development 4 (2007) 3-53

Sampaio, A., Chitchyan, R., Rashid, A., Rayson, P.: EA-Miner: a tool for automat-
ing aspect-oriented requirements identification. In: 20th IEEE/ACM Int’l Conf.
on Automated Software Engineering (ASE’05), New York, NY, USA, ACM (2005)
352-355

Kit, L.K., Man, C.K., Baniassad, E.: Isolating and relating concerns in require-
ments using latent semantic analysis. SIGPLAN Not. 41(10) (2006) 383-396
Niu, N., Easterbrook, S.M.: Analysis of early aspects in requirements goal models:
A concept-driven approach. Transactions on Aspect-Oriented Software Develop-
ment 3 (2007) 40-72

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
(1999)

Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P., Pohl,
C., Rummler, A.: An exploratory study of information retrieval techniques in do-
main analysis. In: 12th Int’] Software Product Line Conf. (SPLC’08), Washington,
DC, USA, IEEE Computer Society (2008) 67-76

