
Example Specifications of Non-functional
Properties of a Simple Counter Application

Technical Report COMP-006-2008, Computing Department, Lancaster University

Steffen Zschaler
Computing Department

Lancaster University
Lancaster, United Kingdom

szschaler@acm.org

November 3, 2008

1 Introduction
This document lists the complete TLA+ specifications for the main example from [3].
It is meant to serve as an external appendix to that paper in order to improve under-
standing and provide additional detail that could not be included in the journal-paper
version for space reasons. We begin by giving some more TLA+ background before
discussing the individual specification modules one after the other.

2 Background
This section provides additional TLA+ background beyond what has been given in
[3]. Of course, we cannot go into all detail of TLA+; for this, the interested reader is
referred to [1], which is an excellent textbook on the language and logics. Here, we
focus on the things necessary for understanding our specifications.
TLA+ specifications are divided into modules. Each module starts with a line con-
taining the MODULE keyword and the name of the module. Modules may contain
arbitrarily many horizontal divider lines. These are only used for visual structuring and
have no formal semantics. Modules may extend other modules (using the EXTENDS
keyword on the first line), importing all definitions of all extended modules. Modules
may also instantiate other modules, by using the INSTANCE keyword and mapping all
variables and constants of the instantiated module to variables and constants of the in-
stantiating module. Modules may also contain inner modules. These are only available
within their containing module and cannot be instantiated from anywhere else. Inner
modules can use all definitions of the outer module directly. The outer module can only
make use of the definitions within an inner module by instantiating the inner module.
In such an instantiation, only the variables and constants defined in the inner module
must be mapped. In the specifications below we will use inner modules to allow us
to hide helper variables from users of the outer module. The basic pattern is to define
all externally visible variables as variables of the outer module and all helper variables

1

mailto:szschaler@acm.org

as variables of the inner module. The inner module is then instantiated in the outer
module, using existential quantification to provide values for the helper variables.
Understanding a TLA+ module is best done beginning from the end. Typically, the last
formulas in a TLA+ module are the ones that are really of interest. Everything before
is often defined to help with the definition of these interesting formulas.
Often, a TLA+ module defines a state machine. Such a definition looks like this:

Spec ∆= ∧ Init
∧ 2[Next]vars

Spec is the name of the state-machine specification defined. Init and Next refer to a
previously defined predicate and a previously defined action. Init describes the pos-
sible initial states of the state machine and Next describes what can happen in a step,
using a disjunction of individual actions describing individual step alternatives. vars is
a collection of all variables relevant for the state machine. Often, this is given directly
as a sequence of the relevant variables, written 〈a, b, c〉.
In definining measurements and other forms of specifications, we will use a form of
specification that is very close to aspect-oriented programming. The final formula looks
very similar to the definition of a state machine as described above. However, Next
is a conjunction of alternatives and each alternative is defined as an implication A ⇒
B , where A is an action describing an alternative step from some base state-machine
specification and B is an action that should be executed whenever A is executed. As
has been discussed in [3] and in more detail in [2], this form of specification effectively
adds B to the base state machine whenever A holds.

3 Specification of Time
The first module defines the notion of time. It has been taken and slightly modified
from [1]. The main modification is that we have separated safety and liveness parts
of the specification so that we can use the safety part of the definition independently.
Time is captured by the new variable now .

1 MODULE RealTime
This is based on the original RealTime specification from the TLA toolkit, but we removed the lifeness
part that is, NZ (v) from RTnow .

6 EXTENDS Reals

Variables:

now - the current system time.

13 VARIABLE now

15 A helper definition
16 LOCAL NowNext(v) ∆= ∧ now ′ ∈ {r ∈ Real : r > now}
17 ∧ UNCHANGED v

RTnow(v) asserts two things: a) time never runs backward, b) steps changing now do not change any other
variable in v , and vice versa

RTnow(v) is a safety property, that is, it allows systems in which time stops altogether. This is useful
for certain proofs. If one needs to explicitly exclude this possibility, one conjoins NZ (v), which adds the
required fairness constraints.

29 RTnow(v) ∆= ∧ now ∈ Real

2

Idle HandlingRequest

RequestArrival

FinishRequest

RequestAvailable

StartRequest

[unhandledRequest]

[¬unhandledRequest]

Figure 1: State-machine representation of the service-operation context model

30 ∧2[NowNext(v)]now

The so called NonZeno condition, which asserts that time will eventually exceed every bound. This liveness
constraint is only required under certain circumstances.

37 NZ (v) ∆= ∀ r ∈ Real :
38 WFnow (NowNext(v) ∧ (now ′ > r))
39

4 Context Model Definition
We define two context models: Service defines a service operation and will be the
basis for defining the response-time measurement, Component defines a component
operation and will be the basis for defining the execution-time measurement. These
context models have already been discussed in their state-machine form in the main
paper, but here we show the TLA+ specifications.

4.1 A Context Model for Service Operations
Figure 1 gives the state-machine view of this context model again. This has already
been shown in [3], but we show it here again to simplify understanding of the formal
specification. Notice that the TLA+ specification differs from the graphical rendering
in two respects:

1. State information has been divided into two parts: Variable inState captures
if the service is currently idle or is handling a request. Additionally, variable
unhandledRequest captures if a request is currently waiting to be handled.

2. The specification has been split into an environment specification and a service
specification. This has been done to simplify proofs of feasibility further down
the line. It can be shown, however, that this form of specification can be trans-
formed to a form that uses only one integrated state machine.

1 MODULE Service
Service Context Model

Variables:

inState – the current state of the service execution machinery.
unhandledRequest – TRUE indicates a fresh request has been placed in the system.

13 VARIABLES inState, unhandledRequest

15 vars ∆= 〈inState, unhandledRequest〉

3

17

18 The environment model

20 Initially there are no requests.
21 InitEnv ∆= unhandledRequest = FALSE

The environment sets the unhandledRequest flag at some arbitrary moment to indicate a new request.

27 RequestArrival ∆= ∧ unhandledRequest = FALSE
28 ∧ unhandledRequest ′ = TRUE
29 ∧ UNCHANGED inState

31 Somebody, but not the environment, will collect the request
32 Also, inState changes independently of the environment
33 ServAgent ∆= ∨ ∧ unhandledRequest = TRUE
34 ∧ unhandledRequest ′ = FALSE
35 ∨ ¬UNCHANGED inState

37 EnvSpec ∆= ∧ InitEnv
38 ∧2[RequestArrival ∨ ServAgent]vars

40

41 The actual service.

43 Initially we start out in the Idle state
44 InitServ ∆= inState = “Idle”

The transition from idle to handling request is triggered by an incoming request

50 StartRequest ∆= ∧ inState = “Idle”
51 ∧ unhandledRequest = TRUE
52 ∧ inState ′ = “HandlingRequest”
53 ∧ unhandledRequest ′ = FALSE

55 Request handling can finish any time
56 FinishRequest ∆= ∧ inState = “HandlingRequest”
57 ∧ inState ′ = “Idle”
58 ∧ UNCHANGED unhandledRequest

60 NextServ ∆= StartRequest ∨ FinishRequest

62 The environment occasionally provides new requests
63 EnvAgent ∆= ∧ unhandledRequest = FALSE
64 ∧ unhandledRequest ′ = TRUE

66 ServiceSpec ∆= ∧ InitServ
67 ∧2[∨NextServ
68 ∨ EnvAgent]vars

70

72 Service ∆= EnvSpec +−. ServiceSpec

74

4

Idle HandlingRequest

StartRequest

FinishRequest

Blocked
SwitchToOther

SwitchBackRequestAvailable

RequestArrival

Figure 2: State-machine representation of the component-operation context model

4.2 A Context Model for Component Operations
Figure 2 gives the state-machine view of this context model for comparison with the
specification. The same notes as in the previous subsection apply also for this context
model specification.

1 MODULE Component
Context Model of a component implementation.

6

Variables:

unhandledRequest – set to TRUE by the environment to indicate that a new request has arrived and should
be handled.

inState – the state in which the component is.

15 VARIABLE inState
16 VARIABLE unhandledRequest

18 vars ∆= 〈inState, unhandledRequest〉

20

The environment specification.

The environment in particular influences the unhandledRequest variable by entering new requests into the
system.

29 Initially there are no requests in the system
30 InitEnv ∆= unhandledRequest = FALSE

The environment sets the unhandledRequest flag at some arbitrary moment to indicate a new request.

36 RequestArrival ∆= ∧ unhandledRequest = FALSE
37 ∧ unhandledRequest ′ = TRUE
38 ∧ UNCHANGED inState

40 Somebody, but not the environment, will collect the request
41 Also, inState changes independently of the environment
42 CompAgent ∆= ∨ ∧ unhandledRequest = TRUE
43 ∧ unhandledRequest ′ = FALSE
44 ∨ ¬UNCHANGED inState

46 EnvSpec ∆= ∧ InitEnv

5

47 ∧2[RequestArrival ∨ CompAgent]vars

49

The actual component.

It mainly specifies changes to the inState variable, however it communicates with the environment via the
unhandledRequest variable.

58 Initially we start out in the idle state
59 InitComponent ∆= inState = “Idle”

61 The transition from idle to handling request is triggered by an
62 incoming request
63 StartRequest ∆= ∧ inState = “Idle”
64 ∧ unhandledRequest = TRUE
65 ∧ ∨ inState ′ = “HandlingRequest”
66 ∨ inState ′ = “Blocked”
67 ∧ unhandledRequest ′ = FALSE

69 Request handling can finish any time
70 FinishRequest ∆= ∧ inState = “HandlingRequest”
71 ∧ inState ′ = “Idle”
72 ∧ UNCHANGED unhandledRequest

74 Also, the runtime environment may at any time take away the
75 CPU from us and assign it to someone else.
76 SwitchToOther ∆= ∧ inState = “HandlingRequest”
77 ∧ inState ′ = “Blocked”
78 ∧ UNCHANGED unhandledRequest

80 But, it may also at any time give back the CPU to us
81 SwitchBack ∆= ∧ inState = “Blocked”
82 ∧ inState ′ = “HandlingRequest”
83 ∧ UNCHANGED unhandledRequest

85 NextComponent ∆= ∨ StartRequest ∨ FinishRequest
86 ∨ SwitchToOther ∨ SwitchBack

88 The environment occasionally provides new requests
89 EnvAgent ∆= ∧ unhandledRequest = FALSE
90 ∧ unhandledRequest ′ = TRUE

92 ComponentSpec ∆= ∧ InitComponent
93 ∧2[∨NextComponent
94 ∨ EnvAgent]vars

96

The complete specification

102 Component ∆= EnvSpec +−. ComponentSpec

104

6

StartRequest
SegStart = now
AccExec = 0

FinishRequest
LastExecutionTime = AccExec + now – SegStart

AccExec = 0

LastExecutionTime = 0
SegStart = 0

AccExec += now – SegStart
SwitchToOther

SwitchBack
SegStart = nowIdle HandlingRequest

Blocked

RequestAvailable

RequestArrival

Figure 3: Definition of the execution-time measurement

5 Measurement Definition
Based on the context models defined in the previous section, we can now define mea-
surements. In this section, we will define three different measurements:

1. Execution time: This intrinsic measurement is based on the component context
model from Sect. 4.2 and represents the execution time of the last invocation of
a component operation.

2. Response time: This extrinsic measurement is based on the service context model
from Sect. 4.1 and represents the response time of the last invocation of a service
operation.

3. Inter-request time: This extrinsic measurement is based on the service context
model from Sect. 4.1 and represents the time between the two last invocations of
a service operation.

The following subsections present these measurement specifications in full detail. Ad-
ditionally, each module will also predefine a parametrised property based on the mea-
surement.

5.1 Execution Time
Based on the Component context model, we define the execution-time measurement.
This specification uses the Component module (Line 47) and attaches actions measur-
ing the time the component spends actually computing (this is specified on Lines 55–
78). The execution time of the last completed invocation of the operation is stored in
variable LastExecutionTime. In addition to defining the measurement, Line 106 adds
a constraint on execution time. This is parametrised by an upper-bound value passed
in through the ExecutionTime parameter defined on Line 14.
Figure 3 shows the corresponding state-machine representation. The new variables and
actions introduced by the measurement definition are high-lighted in red.

7

1 MODULE ExecTimeConstrainedComponent
Specification of a component which offers one operation the execution time of which can be constrained.

6 EXTENDS RealTime

Parameters:

ExecutionTime – an upper bound for the execution time of the component’s operation.

14 CONSTANT ExecutionTime
15 ASSUME
16 (ExecutionTime ∈ Real) ∧ (ExecutionTime > 0)

Variables:

inState – the state in which the component currently is.
unhandledRequest – TRUE if the environment put another request into the system.
LastExecutionTime – the execution time of the last service execution.

26 VARIABLES inState, unhandledRequest
27 VARIABLE LastExecutionTime

29

31 MODULE Inner
Internal module containing the actual specification.

Variables:

AccExec – The accumulated execution time of the current service execution.
SegStart – The start time of the current service execution.

43 VARIABLE AccExec
44 VARIABLE SegStart

46 Based on the component context model
47 BasicComponent ∆= INSTANCE Component

49

51 Init ∆= ∧AccExec = 0
52 ∧ SegStart = 0
53 ∧ LastExecutionTime = 0

55 StartNext reacts to a StartRequest step
56 StartNext ∆= BasicComponent !StartRequest ⇒
57 ∧ SegStart ′ = now
58 ∧AccExec′ = 0
59 ∧ UNCHANGED LastExecutionTime

61 RespNext reacts to a FinishRequest step
62 RespNext ∆= BasicComponent !FinishRequest ⇒
63 ∧ LastExecutionTime ′ =
64 AccExec + now − SegStart
65 ∧ UNCHANGED 〈SegStart , AccExec〉

67 STONext reacts to a SwitchToOther step
68 STONext ∆= BasicComponent !SwitchToOther ⇒
69 ∧AccExec′ =

8

70 AccExec + now − SegStart
71 ∧ UNCHANGED 〈LastExecutionTime,
72 SegStart〉

74 SBNext reacts to a SwitchBack step
75 SBNext ∆= BasicComponent !SwitchBack ⇒
76 ∧ SegStart ′ = now
77 ∧ UNCHANGED 〈LastExecutionTime,
78 AccExec〉

80 ExcludeOtherChange ∆=
81 (¬ ∨ BasicComponent !StartRequest
82 ∨ BasicComponent !FinishRequest
83 ∨ BasicComponent !SwitchToOther
84 ∨ BasicComponent !SwitchBack)
85 ⇒ UNCHANGED 〈AccExec, SegStart , LastExecutionTime〉

88 Next ∆= ∧ StartNext
89 ∧ RespNext
90 ∧ STONext
91 ∧ SBNext
92 ∧ ExcludeOtherChange

94 ctxvars ∆= 〈inState, unhandledRequest〉
95 vars ∆= 〈AccExec, SegStart , LastExecutionTime,
96 inState, unhandledRequest〉

98 Spec ∆= ∧ Init
99 ∧2[Next ∧ ¬UNCHANGED ctxvars]vars

101 Compose the various partial specifications
102 Component ∆=
103 ∧ BasicComponent !Component
104 ∧ RTnow(vars)
105 ∧ Spec
106 ∧2(LastExecutionTime ≤ ExecutionTime)

108

110

112 Component(AccExec, SegStart) ∆= INSTANCE Inner
113 Component ∆=
114 ∃∃∃∃∃∃ ae, ss : Component(ae, ss)!Component

116

5.2 Response Time
Based on the Service context model, we define the response-time measurement, in
a similar fashion to execution time. Here, too we already added the definition of a
constraint on response time on Line 70.

9

Idle HandlingRequest

RequestArrival

FinishRequest

RequestAvailable

StartRequest

[unhandledRequest]

[¬unhandledRequest]

Start’ = now

ResponseTime’ = now - Start

Figure 4: Definition of the response-time measurement

Figure 4 shows the corresponding state-machine representation. The new variables and
actions introduced by the measurement definition are high-lighted in red.

1 MODULE ResponseTimeConstrainedService
2 EXTENDS RealTime

Parameter:

ResponseTime – Maximum response time a request should exhibit.

9 CONSTANT ResponseTime
10 ASSUME (ResponseTime ∈ Real) ∧ (ResponseTime > 0)

Variables:

inState – the current state of the service machinery.
unhandledRequest – TRUE indicates the arrival of a new request.
LastResponseTime – the response time of the last request serviced.

19 VARIABLES inState, unhandledRequest
20 VARIABLE LastResponseTime

22

24 MODULE Inner
The actual specification.

Variables:

Start – the start of the last request.

34 VARIABLE Start

36 Based on the Service context model
37 Serv ∆= INSTANCE Service

39

41 Init ∆= ∧ Start = 0
42 ∧ LastResponseTime = 0

44 StartNext reacts to a StartRequest step
45 StartNext ∆= Serv !StartRequest ⇒
46 ∧ Start ′ = now
47 ∧ UNCHANGED LastResponseTime

49 RespNext reacts to a FinishRequest step
50 RespNext ∆= Serv !FinishRequest ⇒

10

51 ∧ LastResponseTime ′ = now − Start
52 ∧ UNCHANGED Start

54 ExcludeOtherChange ∆=
55 ¬(Serv !StartRequest ∨ Serv !FinishRequest)
56 ⇒ UNCHANGED 〈Start , LastResponseTime〉

58 Next ∆= StartNext ∧ RespNext ∧ ExcludeOtherChange

60 ctxvars ∆= 〈inState, unhandledRequest〉
61 vars ∆= 〈Start , LastResponseTime, inState,
62 unhandledRequest〉

64 RespSpec ∆= ∧ Init
65 ∧2[Next ∧ ¬UNCHANGED ctxvars]vars

67 Service ∆= ∧ Serv !Service
68 ∧ RTnow(vars)
69 ∧ RespSpec
70 ∧2(LastResponseTime ≤ ResponseTime)

72

74

76 Service(Start) ∆= INSTANCE Inner
77 Service ∆= ∃∃∃∃∃∃ s : Service(s)!Service

79

5.3 Inter-Request Time
The following module describes an additional measurement, that we will use to de-
scribe environment behaviour in later modules. It measures the time between indi-
vidual requests for a service sent by the environment. This is later used to define a
constraint on the frequency with which the environment sends request for an opera-
tion to a given service (see Line 65). The specification is parametrised: The desired
minimum time between requests should be passed to the constant RequestPeriod . The
actual specification is encapsulated in module Inner on Lines 63–65. It makes use of
the specification of a service from above.
Figure 5 shows the corresponding state-machine representation. The new variables
and actions introduced by the measurement definition are high-lighted in red. There is
a subtle difference between the simplified state-machine diagram and the actual specifi-
cation: Because we have separated environment specification and service specification
in the service context model (see Sect. 4.1), the TLA+ specification actually measures
all incoming requests including those arriving during request handling.

1 MODULE MaxRequPeriodEnv
Specification of a system environment which sends service request with a certain minimum time between
individual requests.

Note that this is not a specification of what we expect from an environment but actually a description of a
behaviour of one specific system environment. It only becomes a specification of an expectation the way it
is used in the system specification.

11

Idle HandlingRequest

RequestArrival

FinishRequest

RequestAvailable

StartRequest

[unhandledRequest][¬unhandledRequest]StartDelta = now
LastDeltaTime = RequestPeriod

StartDelta’ = now
LastDeltaTime’ = now – StartDelta

Figure 5: Definition of the inter-request–time measurement

11 EXTENDS RealTime

Parameters:

RequestPeriod – the lower limit for the time between individual requests that should be observed by the
environment.

19 CONSTANT RequestPeriod
20 ASSUME (RequestPeriod ∈ Real) ∧ (RequestPeriod > 0)

Variables:

LastDeltaTime – The amount of time between the last two requests.
inState – Current state of the service invoked.
unhandledRequest – TRUE signals that a new request has been put into the system.

30 VARIABLES LastDeltaTime
31 VARIABLES inState, unhandledRequest

33

34 MODULE Inner
The actual specification.

Variables:

StartDelta – Start time of the last request.

44 VARIABLE StartDelta

46 TheService ∆= INSTANCE Service

48

50 vars ∆= 〈inState, unhandledRequest , LastDeltaTime, StartDelta〉

52 Init ∆= ∧ LastDeltaTime = RequestPeriod
53 ∧ StartDelta = now

55 NewRequest ∆= TheService!RequestArrival
56 ⇒ ∧ LastDeltaTime ′

57 = now − StartDelta
58 ∧ StartDelta ′ = now

60 ReqPeriod ∆= ∧ Init
61 ∧2[NewRequest]vars

63 Service ∆= ∧ TheService!Service

12

64 ∧ ReqPeriod
65 ∧2(LastDeltaTime ≥ RequestPeriod)

67

69

70 Environment(StartDelta) ∆= INSTANCE Inner
71 Environment ∆= ∃∃∃∃∃∃ sd : Environment(sd)!Service

73

6 Resource specification
The following three specifications deal with the resource CPU. Each of the modules
specifies one of the layers of a resource specification (see [3, p. 13]):

1. The resource-service layer models the service provided by the resource. Here,
the corresponding module models the essential service provided by a CPU: to be
available to tasks for a certain time and to be assigned from one task to another,
eventually serving all tasks.

2. The resource-measurement layer provides measurement definitions that allow
quantitative statements to be made about a resource.

3. The resource-property layer defines constraints over the measurements defined
in the resource-measurement layer. Here, we define a RMS-scheduled CPU and
its schedulability criterion.

6.1 Resource-Service Layer
The first module defines what a CPU is: It is a resource that is allocated to tasks one at a
time in some fashion. Constant TaskCount is used to identify the number of tasks to be
scheduled, variable AssignedTo indicates the task to which the resource has currently
been assigned.

1 MODULE CPUScheduler
A CPU Scheduler allocates the resource CPU to various tasks. We model this through a variable
AssignedTo holding in each state the number of the task which has currently been allocated the resource.

7 EXTENDS Naturals

Parameters:

TaskCount – the number of tasks which need to share the resource.

14 CONSTANT TaskCount
15 ASSUME (TaskCount ∈ Nat) ∧ (TaskCount > 0)

Variables:

AssignedTo – holds the number of the task currently assigned the resource

22 VARIABLE AssignedTo

24 AssignedToType ∆= {1 . . TaskCount}

26

13

28 Initially, an arbitrary task has been assigned the CPU .
29 Init ∆= AssignedTo ∈ AssignedToType

31 The Switch action reassigns the resource from from to to.
32 Switch(from, to) ∆= ∧AssignedTo = from
33 ∧AssignedTo′ = to

35 The CPU can be switched from any task to any other task.
36 Next ∆= ∃ i ∈ AssignedToType :
37 ∃ j ∈ AssignedToType :
38 Switch(i , j)

40 CPUScheduler ∆= ∧ Init
41 ∧2[Next]AssignedTo

43

6.2 Resource-Measurement Layer
The next specification adds some history-determined variables (quite similar to mea-
surements) that allow to determine for what amount of time each task has been allo-
cated the resource. It is based on the previous specificatio, which it imports on Line 38.
In addition to the TaskCount parameter, it introduces the parameter Periods stor-
ing the requested period length per task, so that times can be determined per period.
Lines 175–177, finally, provide a boolean measurement formalising the situation where
all tasks get a sufficiently large share of the resource. To this end, an additional param-
eter Wcets is introduced. This parameter captures the requested amount of time per
period for each task.
The newly defined variables are all array variables. We, therefore, need to use TLA+’s
syntax for array definition and update:

• [k ∈ K 7→ e(k)] represents an array that is defined for all k ∈ K . The value
associated to a specific k is defined by e(k).

• A[k] represents the value associated with k in array A.

• [A EXCEPT ![k] = e] represents an array that is identical to array A except that
value k is mapped to the result of expression e . e may use the special identifier
@, which stands for A[k].

1 MODULE TimedCPUScheduler
A CPU scheduler for which the time each task is assigned can be measured.

The corresponding formulae are derived by conjoining history variables to the CPU scheduler specification.

8 EXTENDS RealTime

Parameters:

TaskCount – the number of tasks which need to share the resource.
Periods – the periods of each task This is an array with one entry per task.
Wcets – the worst case execution times of the tasks to be scheduled. This is an array with one entry per

task.

19 CONSTANT TaskCount
20 ASSUME (TaskCount ∈ Nat) ∧ (TaskCount > 0)

14

22 CONSTANT Periods
23 ASSUME Periods ∈ [{1 . . TaskCount} → Real]

25 CONSTANT Wcets
26 ASSUME Wcets ∈ [{1 . . TaskCount} → Real]

Variables:

MinExecTime – records for each task the minimum amount of execution time per period it has been allo-
cated over all periods so far.

AssignedTo – holds the number of the task currently assigned the resource

35 VARIABLE MinExecTime
36 VARIABLE AssignedTo

38 CPUSched ∆= INSTANCE CPUScheduler
39

41 MODULE Inner
Inner module with the actual specification. This is done so that we can hide some of the helper variables.

Variables:

ExecTimeStart – Records for each task the time when it last started executing
LastExecTime – Records the last accumulated execution time for each task.
LastPeriodStart – Records for each task when it last started a period.

58 VARIABLES ExecTimeStart , LastExecTime
59 VARIABLE LastPeriodStart

61

63 A little helper function
64 Min(a, b) ∆= CASE a ≤ b → a
65 2a > b → b
66

67 Init ∆= ∧ ExecTimeStart =
68 [k ∈ CPUSched !AssignedToType 7→ 0]
69 ∧ LastExecTime =
70 [k ∈ CPUSched !AssignedToType 7→ 0]
71 ∧ IF (TaskCount > 1) THEN
72 We start out with infinity, so that any real
73 execution time will definitely be smaller
74 MinExecTime =
75 [k ∈ CPUSched !AssignedToType
76 7→ Infinity]
77 ELSE
78 We need to handle this case specially for
79 technical reasons
80 MinExecTime =
81 [k ∈ CPUSched !AssignedToType
82 7→ Periods[k]]
83 ∧ LastPeriodStart =
84 [k ∈ CPUSched !AssignedToType 7→ 0]

15

Next we define what happens when a CPUSched !Switch occurs

89 OnSwitch(from, to) ∆=
90 Cumulate the time the CPU was allocated to Task from
91 ∧ LastExecTime ′ = [LastExecTime EXCEPT
92 ![from] = @ + now
93 − ExecTimeStart [from]]
94 Remember when Task to received the CPU

95 ∧ ExecTimeStart ′ = [ExecTimeStart EXCEPT
96 ![to] = now]
97 ∧ UNCHANGED 〈MinExecTime, LastPeriodStart〉

The OSNext action binds OnSwitch to corresponding Switch actions

102 OSNext ∆= ∀ i ∈ CPUSched !AssignedToType :
103 ∀ j ∈ CPUSched !AssignedToType :
104 CPUSched !Switch(i , j)
105 ⇒ OnSwitch(i , j)

The ExecTime action determines the accumulated execution time for task i in the next state, but at most
to the end of its current period. A helper action used by action PeriodEnd below.

112 ExecTime(i) ∆= LastExecTime[i] +
113 IF (AssignedTo = i) THEN
114 Min(now ′,
115 LastPeriodStart [i] +
116 Periods[i])−
117 ExecTimeStart [i]
118 ELSE 0

The PeriodEnd action reacts to the end of a period for task i

123 PeriodEnd(i) ∆=
124 ∧ A period is going to end
125 (now ′ − LastPeriodStart [i]) ≥ Periods[i]
126 ∧ The following is the measurement we are really
127 interested in
128 MinExecTime ′ = [MinExecTime EXCEPT
129 ![i] = Min(@, ExecTime(i))]
130 ∧ But we also need to perform some cleanup to prepare for
131 the next period
132 LastPeriodStart ′ = [LastPeriodStart EXCEPT
133 ![i] = @ + Periods[i]]
134 ∧ ExecTimeStart ′ = [ExecTimeStart EXCEPT
135 ![i] = LastPeriodStart ′[i]]
136 ∧ LastExecTime ′ = [LastExecTime EXCEPT ![i] = 0]

CheckPeriods catches all period ends of all tasks

141 CheckPeriods ∆=
142 IF (TaskCount > 1) THEN
143 ∀ k ∈ CPUSched !AssignedToType : PeriodEnd(k)
144 ELSE
145 If there’s only one process it will be allowed to run
146 for the whole period

16

147 MinExecTime ′[1] = Periods[1]

149 Next ∆= OSNext

151 vars ∆= 〈AssignedTo, ExecTimeStart , LastExecTime〉

153 timeVars ∆= 〈LastPeriodStart , MinExecTime, now〉

155 TimingSpecification ∆= ∧ RTnow(vars)
156 ∧ Init
157 ∧2[Next]vars
158 ∧2[CheckPeriods]timeVars

160 TimedCPUScheduler ∆= ∧ CPUSched !CPUScheduler
161 ∧ TimingSpecification

163

165

167 TimedCPUScheduler(ExecTimeStart , LastExecTime,
168 LastPeriodStart)
169

∆= INSTANCE Inner
170 TimedCPUScheduler
171

∆= ∃∃∃∃∃∃ ets, let , lps :
172 TimedCPUScheduler(ets, let , lps)
173 !TimedCPUScheduler

175 ExecutionTimesOk ∆=
176 ∀ k ∈ CPUSched !AssignedToType :
177 (MinExecTime[k] ≥Wcets[k])

179

6.3 Resource-Property Layer
Finally, RMSScheduler below defines an actual CPU which is scheduled using RMS.
The main contribution of this specification is the schedulability criterion defined on
Lines 59–64. This is the standard RMS schedulability criterion.

1 MODULE RMSScheduler
A CPU Scheduler using RMS .

5 EXTENDS Reals

Parameters:

TaskCount – the number of tasks to be scheduled on the CPU .
Periods – the periods to be scheduled for these tasks. This is an array with one entry per task.
Wcets – the worst case execution times of the tasks to be scheduled. This is an array with one entry per

task.

16 CONSTANT TaskCount
17 ASSUME (TaskCount ∈ Nat) ∧ (TaskCount > 0)

19 CONSTANT Periods
20 ASSUME Periods ∈ [{1 . . TaskCount} → Real]

17

22 CONSTANT Wcets
23 ASSUME Wcets ∈ [{1 . . TaskCount} → Real]

Variables:

MinExecTime – records for each task the minimum amount of execution time it has been allocated over
all periods so far.

AssignedTo – holds the number of the task currently assigned the resource
now – the current time.

33 VARIABLE MinExecTime
34 VARIABLE AssignedTo
35 VARIABLE now

37 TimedCPUSched ∆= INSTANCE TimedCPUScheduler

39

40 A few helpers

42 bth root of a
43 sqrt(b, a) ∆= a(1/b)

45 Sum of all the elements in an array (function)
46 Copied from Bags.tla

47 Sum(f) ∆=
48 LET DSum[S ∈ SUBSET DOMAIN f] ∆=
49 LET elt ∆= CHOOSE e ∈ S : TRUE
50 IN IF S = {}
51 THEN 0
52 ELSE f [elt] + DSum[S \ {elt}]
53 IN DSum[DOMAIN f]

55

Schedulable is TRUE if the given task load can be scheduled using RMS .

59 Schedulable ∆=
60 LET usage ∆= [k ∈ {1 . . TaskCount}
61 7→ (Wcets[k]/Periods[k])]
62 IN
63 Sum(usage) ≤ (TaskCount ∗ (sqrt(TaskCount , 2)
64 − 1))

The actual specification: A TimedCPUScheduler which will meet all deadlines provided the RMS
schedulability is met by the tasks to be scheduled.

70 RMSScheduler ∆=
71 ∧ TimedCPUSched !TimedCPUScheduler
72 ∧2Schedulable
73

+−. 2TimedCPUSched !ExecutionTimesOk

75

7 Container Strategy Specification
Resource allocations, intrinsic component properties, and extrinsic service properties
must be related by a container strategy. The following module defines such a container

18

strategy. It is structured into four major parts:

1. Import of measurements and abstract resource specifications required. This is on
Lines 49–176.

2. Definition of container expectations. This is on Lines 179–198.

3. Definition of services guaranteed by the container. This is on Lines 201–215.

4. The actual container strategy specification. This is on Lines 217–218.

The container strategy is parametrised by the response time it should provide and the
worst-case execution time it can expect. To ensure that only sensible parameter values
are provided, a sanity check is performed on Line 180.
We require container strategies to be functionality preserving; that is, the functionality
offered by the service should be the same as the functionality provided by the under-
lying component. This if formally expressed on Line 194. Notice, that the predicates
used to express component and service behaviour are left open as parameters to the
specification by defining them as abstrract predicates on Lines 102–110 and 168–176.
This way, the specification will be applicable to arbitrary concrete components and ser-
vices. All that needs to be done is to associate these abstract predicates with concrete
predicates when instantiating the container-strategy module.

1 MODULE SimpleContainer
A container specification for a very simple container. This container manages just one component instance
and tries to achieve a certain response time with it.

7 EXTENDS RealTime

Parameters:

ResponseTime – the response time the container should achieve.
ExecutionTime – the execution time of the component available.

15 CONSTANT ResponseTime
16 ASSUME (ResponseTime ∈ Real) ∧ (ResponseTime > 0)

18 CONSTANT ExecutionTime
19 ASSUME
20 (ExecutionTime ∈ Real) ∧ (ExecutionTime > 0)

Variables:

TaskCount – the number of tasks the container would want to execute on the CPU .
Periods – the periods the container associates with these tasks.
Wcets – the worst case execution times the container associates with these tasks.

31 VARIABLES TaskCount , Periods, Wcets

33

Specification of required CPU scheduling behaviour. Note that this does not make any statement about the
actual scheduling regime, but only states what tasks need to be scheduled.

Variables:

CPUMinExecTime – records for each task the minimum amount of execution time it has been allocated
over all periods so far.

CPUAssignedTo – holds the number of the task currently assigned the resource.

19

49 VARIABLES CPUMinExecTime, CPUAssignedTo

51 SomeCPUScheduler(TaskCountConstraint ,
52 PeriodsConstraint ,
53 WcetsConstraint)
54

∆= INSTANCE TimedCPUScheduler
55 WITH MinExecTime ← CPUMinExecTime,
56 AssignedTo ← CPUAssignedTo,
57 TaskCount ← TaskCountConstraint ,
58 Periods ← PeriodsConstraint ,
59 Wcets ←WcetsConstraint
60 CPUCanSchedule(TaskCountConstraint ,
61 PeriodsConstraint ,
62 WcetsConstraint)
63

∆= ∧ SomeCPUScheduler(TaskCount ,
64 Periods,
65 Wcets)
66 !TimedCPUScheduler
67 ∧2 SomeCPUScheduler(TaskCount ,
68 Periods,
69 Wcets)
70 !ExecutionTimesOk

72

Specification of required component behaviour.

Variables:

CmpInState – the state in which the component currently is.
CmpUnhandledRequest – TRUE if the environment put another request into the system.
CmpLastExecutionTime – the execution time of the last service execution.

85 VARIABLES CmpInState, CmpUnhandledRequest
86 VARIABLE CmpLastExecutionTime

88 Component(ExecutionTimeConstraint)
89

∆= INSTANCE ExecTimeConstrainedComponent
90 WITH
91 ExecutionTime ← ExecutionTimeConstraint ,
92 inState ← CmpInState,
93 unhandledRequest ← CmpUnhandledRequest ,
94 LastExecutionTime ← CmpLastExecutionTime
95 ComponentMaxExecTime(ExecutionTimeConstraint)
96

∆= Component(ExecutionTimeConstraint)
97 !Component

This predicate represents the functionality of the component.

102 CONSTANT CompFun
103 ASSUME CompFun ∈ BOOLEAN

This predicate represents the mapping between functionality and context model of the component.

109 CONSTANT CompModelMapping
110 ASSUME CompModelMapping ∈ BOOLEAN

20

112

Specification of required request interarrival time.

Variables:

EnvLastDeltaTime – The amount of time between the last two requests.
EnvInState – Current state of the service invoked.
EnvUnhandledRequest – TRUE signals that a new request has been put into the system.

125 VARIABLES EnvLastDeltaTime, EnvInState
126 VARIABLE EnvUnhandledRequest

128 MinInterrequestTime(RequestPeriodConstraint)
129

∆= INSTANCE MaxRequPeriodEnv
130 WITH
131 RequestPeriod ← RequestPeriodConstraint ,
132 LastDeltaTime ← EnvLastDeltaTime,
133 inState ← EnvInState,
134 unhandledRequest ← EnvUnhandledRequest
135 MinInterrequestTime(RequestPeriodConstraint)
136

∆= MinInterrequestTime(RequestPeriodConstraint)
137 !Environment

139

Specification of guaranteed service behaviour.

Variables:

ServLastResponseTime – the response time of the last request serviced.
ServInState – the current state of the service machinery.
ServUnhandledRequest – TRUE indicates the arrival of a new request.

151 VARIABLES ServLastResponseTime, ServInState
152 VARIABLE ServUnhandledRequest

154 ServiceResponseTime(ResponseTimeConstraint)
155

∆= INSTANCE ResponseTimeConstrainedService
156 WITH
157 ResponseTime ← ResponseTimeConstraint ,
158 LastResponseTime ← ServLastResponseTime,
159 inState ← ServInState,
160 unhandledRequest ← ServUnhandledRequest
161 ServiceResponseTime(ResponseTimeConstraint)
162

∆= ServiceResponseTime(ResponseTimeConstraint)
163 !Service

This predicate represents the functionality of the service.

168 CONSTANT ServFun
169 ASSUME ServFun ∈ BOOLEAN

This predicate represents the mapping between functionality and context model of the service.

175 CONSTANT ServModelMapping
176 ASSUME ServModelMapping ∈ BOOLEAN

178

179 ContainerPreCond ∆=

21

180 ∧ ExecutionTime ≤ ResponseTime
181 ∧ The CPU must be able to schedule exactly one task with a
182 period equal to the requested response time and a wcet
183 equal to the specified execution time of the available
184 component.
185 ∧ CPUCanSchedule(1,
186 [n ∈ {1} 7→ ResponseTime],
187 [n ∈ {1} 7→ ExecutionTime])
188 ∧ A component with the required execution time is available.
189 ∧ ComponentMaxExecTime(ExecutionTime)
190 ∧ CompFun
191 ∧ CompModelMapping
192 ∧ The component functionality implements the service
193 functionality.
194 CompFun ⇒ ServFun
195 ∧ Requests arrive with a constant period, the length of
196 which is somehow related to the period length requested
197 from the CPU .
198 ∧MinInterrequestTime(ResponseTime)

201 ContainerPostCond ∆=
202 ∧ The promised response time can be guaranteed
203 ∧ ServiceResponseTime(ResponseTime)
204 ∧ ServFun
205 ∧ ServModelMapping
206 ∧ The container will allocate exactly one task for the
207 component.
208 2 ∧ TaskCount = 1
209 ∧ Periods = [n ∈ {1} 7→ ResponseTime]
210 ∧Wcets = [n ∈ {1} 7→ ExecutionTime]
211 ∧ State that the container will hand requests directly
212 to the component, without buffering them in any way. If
213 the container provides buffering, this would need to go
214 here
215 2(CmpUnhandledRequest = EnvUnhandledRequest)

217 Container ∆=
218 ContainerPreCond +−. ContainerPostCond
219

8 The Counter Application
So far, we have been discussing the non-functional properties in the abstract. In the
following specifications, we define a sample Counter application and provide model
mappings to apply our measurements to this application.

22

8.1 Application Model
The next two modules define the Counter application itself. We begin with the defini-
tion of its interface. Notice that this is just a helper module that we will later use to
hide the actual implementation of the Counter application. The interface module uses
abstract actions to define the interactions with the environment that can be observed
of a Counter application without defining how they are realised. An abstract action
is defined by a Boolean constant, possibly with open parameter slots (indicated by).
More details on abstract actions can be found in [1].

1 MODULE CounterInterface

A global representation of the counter’s state. We do not say anything about what this state looks like.

7 VARIABLE counterState

A DoInc (counterState , counterState’) step represents an incoming request to increment the internal
counter of the component

13 CONSTANT DoInc(,)

A GetData (counterState , counterState’) step represents an incoming request for the current value.

19 CONSTANT GetData(,)

A SendData (value, counterState , counterState’) step represents a response to a GetData step.

25 CONSTANT SendData(, ,)

27 CONSTANT InitialCounterStates

29 ASSUME ∀ v , csOld , csNew :
30 ∧DoInc (csOld , csNew) ∈ BOOLEAN
31 ∧GetData (csOld , csNew) ∈ BOOLEAN
32 ∧ SendData(v , csOld , csNew) ∈ BOOLEAN

34

The next module defines the actual Counter implementing this interface. This is the
application model of our example. It is a normal TLA+ specification. However, note
how it binds the Counter interface from the previous module by referencing the abstract
actions on Lines 14, 20, and 33.

1 MODULE CounterApp

3 EXTENDS CounterInterface, Naturals

5 Internal variables:
6 VARIABLE internalCounter
7 VARIABLE doHandle

9 Init ∆= ∧ internalCounter = 0
10 ∧ doHandle = 0
11 ∧ counterState ∈ InitialCounterStates

14 IncrementReq ∆= ∧DoInc(counterState, counterState ′)
15 ∧ doHandle = 0

23

16 ∧ internalCounter ′

17 = internalCounter + 1
18 ∧ UNCHANGED doHandle

20 ReceiveGetData ∆= ∧GetData(counterState,
21 counterState ′)
22 ∧ doHandle = 0
23 ∧ doHandle ′ = 1
24 ∧ UNCHANGED internalCounter

26 HandleGetData ∆= ∧ doHandle = 1
27 ∧ doHandle ′ = 2
28 ∧ UNCHANGED 〈internalCounter ,
29 counterState〉

31 ReplyStep ∆= ∧ doHandle = 2
32 ∧ doHandle ′ = 0
33 ∧ SendData(internalCounter ,
34 counterState,
35 counterState ′)
36 ∧ UNCHANGED internalCounter

38 Next ∆= ∨ IncrementReq
39 ∨ ReceiveGetData ∨HandleGetData
40 ∨ ReplyStep

42 vars ∆= 〈counterState, internalCounter , doHandle〉

44 Spec ∆= ∧ Init
45 ∧ [Next]vars

47

8.2 Model Mappings
The following two specifications define the model mappings for execution time of the
Counter component and for response time of the Counter service, resp. Both
specifications work in a similar manner: They extend the CounterApp specifica-
tion, so that all specifications and variables from that specification are directly avail-
able. Then, they import the measurement specification. Eventually, they define the
Model -Mapping formula, the actual model-mapping relation φCtx

App by relating states
of the Counter application to states of the context model. Lines 55–57 in Module
CounterAppExecTime and Lines 49–51 in Module CounterAppResponseTime fi-
nally encode the model mapping as given by Equation (2) in the main paper:

ΠApp
Ctx

∆= ΠApp ∧ΠCtx ∧2
(
〈vApp , vCtx 〉 ∈ φCtx

App

)
1 MODULE CounterAppExecTime

A module defining execution time of the GetData() operation.

5 EXTENDS CounterApp, Realtime

24

Variables:

inState – the state in which the component currently is.
unhandledRequest – TRUE if the environment put another request into the system.
LastExecutionTime – the execution time of the last service execution.

15 VARIABLE inState

17 VARIABLE unhandledRequest
18 VARIABLE ExecutionTime

20 ExecTimeSpec(ExecutionTimeConstr)
21

∆= INSTANCE ExecTimeConstrainedComponent
22 WITH LastExecutionTime ← ExecutionTime,
23 ExecutionTime ← ExecutionTimeConstr

25 CompSpec ∆= ExecTimeSpec(20)!Component

27

Definition of the context-model–application-model mapping

Note how this maps the GetData/SendData operation, but not DoInc.

34 ModelMapping ∆=
35 ∧ doHandle = 0⇒
36 ∧ inState = “Idle”
37 ∧ unhandledRequest = FALSE
38 ∧ doHandle = 1⇒
39 ∧ inState = “Idle”
40 ∧ unhandledRequest = TRUE
41 ∧ doHandle = 2⇒
42 ∧ inState ∈ {“HandlingRequest”,
43 “Blocked”}
44 ∧ unhandledRequest = FALSE
45 Dummy mapping for completeness’ sake
46 ∧ (doHandle /∈ {0, 1, 2})⇒
47 ∧ inState = “Idle”
48 ∧ unhandledRequest = FALSE

50

Final model of the counter component.

55 CounterComponent ∆= ∧ Spec
56 ∧ CompSpec
57 ∧2ModelMapping

59

25

1 MODULE CounterAppResponseTime
A module defining response time of the GetData() operation.

5 EXTENDS CounterApp, Realtime

Variables:

ResponseTime – the response time of the last request serviced.
inState – the current state of the service machinery.
unhandledRequest – TRUE indicates the arrival of a new request.

14 VARIABLES ResponseTime, inState, unhandledRequest

16 ResponseTimeSpec(ResponseTimeConstr)
17

∆= INSTANCE ResponseTimeConstrainedService
18 WITH LastResponseTime ← ResponseTime,
19 ResponseTime ← ResponseTimeConstr

21 ServSpec ∆= ResponseTimeSpec(50)!Service

23

Definition of the context-model–application-model mapping

Note how this maps the GetData/SendData operation, but not DoInc.

30 ModelMapping ∆=
31 ∧ doHandle = 0⇒
32 ∧ inState = “Idle”
33 ∧ unhandledRequest = FALSE
34 ∧ doHandle = 1⇒
35 ∧ inState = “Idle”
36 ∧ unhandledRequest = TRUE
37 ∧ doHandle = 2⇒
38 ∧ inState = “HandlingRequest”
39 ∧ unhandledRequest = FALSE
40 ∧ (doHandle /∈ {0, 1, 2})⇒
41 ∧ inState = “Idle”
42 ∧ unhandledRequest = FALSE

44

Final model of the counter service .

49 CounterService ∆= ∧ Spec
50 ∧ ServSpec
51 ∧2ModelMapping

53

9 System Specification
Finally, we are ready to pull everything together. This we do in the system specifica-
tion. The important bit is on Lines 237–264, where the system specification is com-
posed from the individual elementary specifications. Everything before that is mainly
of technical relevance, importing the previous specifications.

26

The actual connections between the component, the resource, the container, and the
service are expressed by means of shared flexible variables. This can be seen in two
ways in the specification: 1) on Lines 239–245 we explicitly pass parameters that per-
form part of the connection between container and resource and between component
and resource; 2) on Lines 246–264 we use explicit constraints to relate other variables,
relating the rest of the system parts to each other.
The complete system composition is then defined by formula System on Lines 237–
264. Formula ExternalService on Lines 269–270 defines the service we expect the
system to provide. Notice that this is conditional based on environment behaviour.
Lines 278 and 279, finally, define what it means for the system to be feasible. This is
the property we need to prove to show that we have indeed specified a feasible system.
As explained in the main paper, we can make use of Abadi/Lamport’s composition
theorem for this proof.

1 MODULE SystemSpecification
A sample system specification.

The system contains one counter with an execution time of 20 milliseconds, a RMS scheduled CPU , and a
simple container.

8 EXTENDS Reals, CounterInterface

Parameters:

RequestPeriod – Part of an environment assertion: The environment promises to send requests with a
minimum distance of RequestPeriod milliseconds.

17 CONSTANT RequestPeriod
18 ASSUME (RequestPeriod ∈ Real) ∧ (RequestPeriod > 0)

Variables:

now – the current time.

25 VARIABLE now

27

The counter component. The only intrinsic property offered by this component is its execution time, which
is always less than 20ms .

Variables:

MyCompExec – The last execution time of a service request handled by MyComponent .
MyCompInState – The current state of component MyComponent
MyCompUnhandledRequest – Set to TRUE to send a request to MyComponent .

41 VARIABLES MyCompExec, MyCompInState
42 VARIABLE MyCompUnhandledRequest
43 VARIABLES MyInternalCounter , MyDoHandle

45 MyComponent ∆= INSTANCE CounterAppExecTime
46 WITH
47 ExecutionTime ← MyCompExec,
48 inState ← MyCompInState,
49 unhandledRequest ← MyCompUnhandledRequest ,
50 internalCounter ← MyInternalCounter ,
51 doHandle ← MyDoHandle

53 The actual component specification.
54 MyComponent ∆= MyComponent !CounterComponent

27

55 CompMap ∆= 2 MyComponent !ModelMapping

57 MyCompFunc ∆= INSTANCE CounterApp WITH
58 internalCounter ← MyInternalCounter ,
59 doHandle ← MyDoHandle
60 MyCompFunc ∆= MyCompFunc!Spec

62

A CPU . The parameters of the specification can be used to indicate the number of tasks to be scheduled,
their respective periods as well as their respective worst case execution times.

Variables:

MYCPU MinExecTime – records for each task the minimum amount of execution time it has been allo-
cated over all periods so far.

MYCPU AssignedTo – holds the number of the task currently assigned the resource

78 VARIABLE MYCPU MinExecTime
79 VARIABLE MYCPU AssignedTo

81 MyCPU (TaskCount , Periods, Wcets)
82

∆= INSTANCE RMSScheduler WITH
83 MinExecTime ← MYCPU MinExecTime,
84 AssignedTo ← MYCPU AssignedTo
85 MyCPU (TaskCount , Periods, Wcets)
86

∆= MyCPU (TaskCount , Periods, Wcets)
87 !RMSScheduler

89

Environment specification.

Variables:

EnvLastDeltaTime – The amount of time between the last two requests.
EnvInState – Current state of the service invoked.
EnvUnhandledRequest – TRUE signals that a new request has been put into the system.

103 VARIABLES EnvLastDeltaTime, EnvInState
104 VARIABLE EnvUnhandledRequest

106 Environment(RequestPeriodConstraint)
107

∆= INSTANCE MaxRequPeriodEnv WITH
108 RequestPeriod ← RequestPeriodConstraint ,
109 LastDeltaTime ← EnvLastDeltaTime,
110 inState ← EnvInState,
111 unhandledRequest ← EnvUnhandledRequest
112 Environment(RequestPeriodConstraint)
113

∆= Environment(RequestPeriodConstraint)
114 !Environment

116

The service the system is to perform.

28

Variables:

ServResponseTime – the response time of the last request serviced.
ServInState – the current state of the service machinery.
ServUnhandledRequest – TRUE indicates the arrival of a new request.

129 VARIABLES ServResponseTime, ServInState
130 VARIABLE ServUnhandledRequest
131 VARIABLES ServInternalCounter , ServDoHandle

133 Service
134

∆= INSTANCE CounterAppResponseTime WITH
135 ResponseTime ← ServResponseTime,
136 inState ← ServInState,
137 unhandledRequest ← ServUnhandledRequest ,
138 internalCounter ← ServInternalCounter ,
139 doHandle ← ServDoHandle
140 Service ∆= Service!CounterService
141 ServMap ∆= 2 Service!ModelMapping

143 MyServFunc
144

∆= INSTANCE CounterApp WITH
145 internalCounter ← ServInternalCounter ,
146 doHandle ← ServDoHandle
147 MyServFunc ∆= MyServFunc!Spec

149

Container specification.

Variables:

SCCPUMinExecTime – records for each task the minimum amount of execution time it has been allo-
cated over all periods so far.

SCCPUAssignedTo – holds the number of the task currently assigned the resource.

SCCmpInState – the state in which the component currently is.
SCCmpUnhandledRequest – TRUE if the environment put another request into the system.
SCCmpLastExecutionTime – the execution time of the last service execution.

SCEnvLastDeltaTime – The amount of time between the last two requests.
SCEnvInState – Current state of the service invoked.
SCEnvUnhandledRequest – TRUE signals that a new request has been put into the system.

SCServLastResponseTime – the response time of the last request serviced.
SCServInState – the current state of the service machinery.
SCServUnhandledRequest – TRUE indicates the arrival of a new request.

177 VARIABLES SCCPUMinExecTime, SCCPUAssignedTo
178 VARIABLES SCCmpInState, SCCmpUnhandledRequest
179 VARIABLES SCCmpLastExecutionTime, SCEnvInState,
180 VARIABLE SCEnvLastDeltaTime
181 VARIABLE SCEnvUnhandledRequest
182 VARIABLES SCServLastResponseTime, SCServInState,
183 VARIABLE SCServUnhandledRequest

185 MyContainer(ExecutionTimeConstr ,
186 ResponseTimeConstr ,
187 TaskCount , Periods,

29

188 Wcets) ∆=
189 INSTANCE SimpleContainer
190 WITH
191 ExecutionTime ← ExecutionTimeConstr ,
192 ResponseTime ← ResponseTimeConstr ,
193 CPUMinExecTime ← SCCPUMinExecTime,
194 CPUAssignedTo ← SCCPUAssignedTo,
195 CmpInState ← SCCmpInState,
196 CmpUnhandledRequest ← SCCmpUnhandledRequest ,
197 CmpLastExecutionTime ← SCCmpLastExecutionTime,
198 EnvLastDeltaTime ← SCEnvLastDeltaTime,
199 EnvInState ← SCEnvInState,
200 EnvUnhandledRequest ← SCEnvUnhandledRequest ,
201 ServLastResponseTime ← SCServLastResponseTime,
202 ServInState ← SCServInState,
203 ServUnhandledRequest ← SCServUnhandledRequest ,
204 CompFun ← MyCompFunc,
205 CompModelMapping ← CompMap,
206 ServFun ← MyServFunc,
207 ServModelMapping ← ServMap

209 MyContainer(ExecutionTimeConstr ,
210 ResponseTimeConstr ,
211 TaskCount , Periods,
212 Wcets)
213

∆= MyContainer(ExecutionTimeConstr ,
214 ResponseTimeConstr ,
215 TaskCount , Periods,
216 Wcets)!Container

218

The complete system.

Variables:

TaskCount – the number of tasks to be scheduled on the CPU as determined by the container.
Periods – the periods to be scheduled for those tasks as determined by container.
Wcets – the worst case execution times to be considered when scheduling. As determined by the con-

tainer.

234 VARIABLES CPUTaskCount , CPUPeriods, CPUWcets
235 VARIABLES SCTaskCount , SCPeriods, SCWcets

237 System ∆=
238 ∧MyComponent
239 ∧MyCPU (CPUTaskCount ,
240 CPUPeriods,
241 CPUWcets)
242 ∧MyContainer(20, 50,
243 SCTaskCount ,
244 SCPeriods,
245 SCWcets)

30

246 ∧2 ∧ ServResponseTime =
247 SCServLastResponseTime
248 ∧ ServInState = SCServInState
249 ∧ ServUnhandledRequest =
250 SCServUnhandledRequest
251 ∧2 ∧MYCPU MinExecTime =
252 SCCPUMinExecTime
253 ∧MYCPU AssignedTo = SCCPUAssignedTo
254 ∧ CPUTaskCount = SCTaskCount
255 ∧ CPUPeriods = SCPeriods
256 ∧ CPUWcets = SCWcets
257 ∧2 ∧ SCCmpLastExecutionTime = MyCompExec
258 ∧ SCCmpInState = MyCompInState
259 ∧ SCCmpUnhandledRequest =
260 MyCompUnhandledRequest
261 ∧2 ∧ SCEnvLastDeltaTime = EnvLastDeltaTime
262 ∧ SCEnvInState = EnvInState
263 ∧ SCEnvUnhandledRequest =
264 EnvUnhandledRequest

The external behaviour we require of the system.

269 ExternalService
270

∆= Environment(RequestPeriod) +−. Service

272

This is the property we need to prove to ensure that we have a feasible system.

278 IsFeasible
279

∆= System ⇒ ExternalService

281

References
[1] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2002.

[2] Steffen Zschaler. A Semantic Framework for Non-functional Specifications of
Component-Based Systems. PhD thesis, Technische Universität Dresden, Ger-
many, April 2007.

[3] Steffen Zschaler. Formal specification of non-functional properties of component-
based software systems: A semantic framework and some applications thereof.
Software and Systems Modelling (SoSyM), 2008. To appear.

31

	Introduction
	Background
	Specification of Time
	Context Model Definition
	A Context Model for Service Operations
	A Context Model for Component Operations

	Measurement Definition
	Execution Time
	Response Time
	Inter-Request Time

	Resource specification
	Resource-Service Layer
	Resource-Measurement Layer
	Resource-Property Layer

	Container Strategy Specification
	The Counter Application
	Application Model
	Model Mappings

	System Specification

