
Transformation Reuse: What is the Intent?

Rick Salay

Department of Computer Science, University of Toronto,

Toronto, Ontario, Canada M5S 3G4,

rsalay@cs.toronto.edu

Ste�en Zschaler

Department of Informatics, King's College London,

London, UK, WC2R 2LS,

szschaler@acm.org

Marsha Chechik

Department of Computer Science, University of Toronto,

Toronto, Ontario, Canada M5S 3G4,

chechik@cs.toronto.edu

Abstract

The ability to reuse transformations across a range of related meta-
models is highly desired for many model-driven approaches. For ex-
ample, it would be useful to be able to reuse standard transformations
like state-machine �attening across models instantiating di�erent meta-
models of hierarchical state-machines, instead of having to reimplement
the same fundamental algorithm just because of small syntactic (or
semantic) variations. Typing typically captures the question of iden-
tifying models for which a given transformation can be successfully
applied. Type compatibility between meta-models (or the related notion
of sub-typing), is intended to ensure that a transformation de�ned over
one type can be successfully executed over any model instantiating a
compatible meta-model. However, compatibility mechanisms have not
explicitly addressed the question of what it makes for a transformation
to be �successfully applied�. In this paper, we argue that answering
this question is central to a meaningful notion of transformation reuse
and must take into account the intent of a transformation and seek to
preserve it in reuse. We describe how current de�nitions of type com-
patibility fail to satisfy this criterion and propose a research agenda for
addressing it.

1 Introduction

Model transformations are complex artifacts that require careful engineering. To reduce development e�ort and
increase reliability, transformation reuse is an important tool for transformation developers. Consequently, there
has been a good bit of research focus on supporting transformation reuse [1].

A substantial amount of work has focused on notions of model typing. Speci�c notions of type compatibility
such as subtyping [2] or type matching [3] have been proposed to determine if a given model M2 of type T2 (an
instance of a meta-model MM2) can be provided as an input to a given transformation F accepting models of
type T1 (instances of a meta-model MM1). In each case, type compatibility is de�ned by a number of syntactical
constraints at the meta-model level. For example, typically, for every meta-class c1 in MM1 there must be a

corresponding meta-class c2 in MM2 such that all attributes and associations of c1 have a corresponding match
in c2.

Interestingly, there are small variations between the speci�c constraint sets proposed, but it is not clear which
of the variations works better for a given situation. We believe this is in no small part due to a lack of clarity of
what it means to �successfully reuse� a model transformation. Clearly, transformation reuse requires preservation
of at least some properties of the original transformation F , yet the existing literature does not discuss the goal
of transformation reuse at all.

In this paper, we explore the meaning of �successful transformation reuse� and how such a de�nition would
in�uence the requirements on our notion of type compatibility. After a brief overview of some of the key existing
work on transformation reuse and model typing in Sect. 2, in Sect. 3, we �rst show through an example what
problems are caused if a clear notion of successful transformation reuse is missing. We then provide, in Sect. 4,
a tentative de�nition based on a notion of transformation intent [4] and explore its implications. We describe
one way of constructing valid type-compatibility relations in Sect. 5. It turns out that a completely formal and
(potentially) automatable treatment is non-trivial and will require substantial further research. In Sect. 6, we
outline the principal shape of any such solution and discuss key research challenges on the way.

2 Existing approaches

Typing has been an important aspect of model-driven engineering (MDE) from the very start. Models are
typed by meta-models which de�ne the set of modelling concepts available as well as their relationships and
valid combinations. More speci�c notions of typing have initially been introduced in relation to transformation
composition, in particular, to external composition or chaining where transformation signatures were used to
decide whether two given transformations could be composed safely, as we discuss below.

Initial work on external composition [5, 6] de�ned transformation signatures by two sets of metamodels: one
typing the models that the transformation consumed and another typing the models produced by the transfor-
mation. Later research [7] found that this information is not always su�cient information for safely composing
transformations. In particular, endogenous transformations transform between models of the same metamodel,
but may well address only particular elements within this metamodel. Information about the metamodel thus
becomes useless when composing a set of endogenous transformations. In addition, some endogenous transfor-
mations may be intended to be used with a �xpoint semantics (invoking them until no more changes occur),
which makes composing them even more complex. It was concluded in [7] that the metamodel needs to be aug-
mented with the particular subset of model elements that are used or a�ected by the transformation. In parallel
to this work, [8] also identi�ed a need to include information about the technological space [9] of models (e.g.,
MOF or XML) into the transformation signature. Alternatively, some of this information has been encapsulated
by wrapping models as components themselves, providing interfaces for accessing and manipulating the model
independently of its technical representation [5].

Typing of models has also been studied in relation to transformation reuse. Here, sub-typing or type matching
are used to determine if a given model M1 (an instance of a meta-model MM1) can be provided as an input to
a given transformation T (typed over a meta-model MM2). Two notable approaches have been studied in this
area: model (sub-)typing and model concepts.

In his thesis and in [10], Steel introduces the notion of model typing to specify generic types for model
transformations. In this work, a model type is just another meta-model, without any distinguishing properties.
Steel then provides a set of type-checking rules de�ning a `matching' relationship [11] between meta-models. If
a meta-model MM1 matches a meta-model MM2, Steel allows instances of MM1 to be passed as parameters to
transformations expecting instances of MM2. The matches relationship is de�ned through a number of syntactic
rules over meta-models.

At a later stage, [2] identi�ed some problems with Steel's matching rules, proposing a slightly more restrictive
set of rules instead as well as de�ning a number of variants of the strict matching relationship, called isomorphic
model subtyping : non-isomorphic sub-typing allows the de�nition of an explicit model adaptation function to
translate instances of MM1 into instances of MM2. Of particular interest are bi-directional model adaptations.
The paper further distinguishes (on a separate dimension) total and partial sub-typing, where partial sub-typing
establishes a sub-typing relationship between two meta-models only for the context of speci�c transformations
which are to be applied to the models. This allows matching with a generalized model type that is constructed
by keeping only those elements that are explicitly required for the execution of a model-management operation
or for access to a particular feature. Partial sub-typing is realized by providing an e�ective model type which is

a sub-set of the elements of a given model type and, thus, a super-type of that type. The de�nition of partial
sub-typing is somewhat vague in [2]. In particular, no conditions are given constraining what can or cannot be
generalized in an e�ective model type. Sen et al. [12, 13] present an algorithm for deriving e�ective model types
through static analysis of a model transformation's code. However, it is not clear what level of transformation
reuse is supported by partial sub-typing base on their algorithm.

De Lara et al. [3] and Rose et al. [14] have proposed an alternative to model typing, which they call model
concepts, consisting of the following:

1. Explicit binding model. In model typing [10], mapping a meta-model to a model type is automatic and
based on name identity. Model concepts require an explicit binding model to express which elements in
a meta-model match which elements in a model concept. This is similar to the notions of non-isomorphic
sub-typing and adaptation transformations from [2], but provides a more constructive description of the
rules governing such an adaptation.

2. Usage decorations / OCL constraints. [14] allows elements in model concepts to be decorated as either
`create' or `delete' to indicate that a model-management operation will create or delete instances of this
model element. Usage decorations imply constraints on valid bindings to ensure that multiplicity constraints
are not violated. [3] does not propose usage decorations, but instead allows model concepts to be annotated
with arbitrary OCL constraints. It remains somewhat unclear whether these constraints could be used to
address the same problem.

These ideas are usually discussed only for the input models of a model-management operation, but Cuadrado
et al. [15] also brie�y discuss an extension to input and output models. Cuadrado et al. [16] present a simple
component model for chaining-based reuse of model transformations based on the notion of model concepts.

In previous work [17], one of the authors has argued that typing of model transformations should explicitly
include the syntactic constraints that a transformation expects to hold rather than providing a �xed meta-model.

Kuehne [18, 19] gives a theoretical discussion of sub-typing�like relationships between meta-models. Most
importantly, he notes that the validity of such relationships is often relative to context and introduces two
notions to describe such contexts: (i) observers (called referees in [19]) which provide syntactic rules, and
(ii) contexts which de�ne more general semantic conditions. The exact construction, in particular, of contexts,
is left somewhat open by this work.

To summarize, multiple model type compatibility relations have been proposed, di�ering in the degree of
automation (model sub-typing uses automated type inference, while concepts require explicit bindings to be
provided) and in the speci�c constraints they impose to distinguish compatible types from incompatible ones.
However, no attempts have been made to understand whether any of the approaches are valid and which ones
are �better than others�.

3 The validity of type compatibility

In this section, we attempt to develop criteria for checking the validity of a type compatibility relation by studying
its impact on transformation reuse. We begin by assuming that the purpose of a type compatibility relation is
reuse, i.e., types T1 and T2 are type compatible i� all transformations designed for T1 are reusable for T2. We
formalize this below:

De�nition 1 (Type compatibility relation) Given a set of model types T , a type compatibility relation S
over T consists of a pair 〈RS ,FS〉, where

• RS ⊆ T × T is the relation that identi�es compatible types;

• FS = {Γ(T2,T1)|T1, T2 ∈ T and RS(T2, T1)} is a family of higher order transformations where for every
transformation F : T1 → T ′, we get transformation Γ(T2,T1)(F) : T2 → T ′.

If RS(T2, T1), we say that type T2 is compatible with type T1. We write Γ(T2,T1) as Γ when the context is clear.

In this de�nition, the higher order transformations Γ provide the reuse mechanism that comes with type
compatibility. In this paper, we assume Γ only a�ects the source model type of a transformation and leave the
more general case where it can a�ect both source and target types for future work. Note that in order to reuse
any transformation F : T1 → T ′ for models typed over T2, we must �rst transform it because transformations

LTS

State
label : String

Transition
label : String

states * transitions*

src

1

tgt
1

out

*

in
*

(a) LTS model type

Graph

Node
name : String

Edge
name : String

nodes * edges*

src

1

tgt
1

out

*

in
*

(b) LGraph model type

Figure 1: Two di�erent model types.

are strongly typed. The literature [20] typically considers two ways of implementing Γ: (i) (conversion-based)
Γ may compose F with a transformation converting the input model from an instance of T2 into an instance of
T1; or (ii) (rewrite-based) Γ may rewrite the speci�cation of F so that it works directly on models typed by T2.
However, this de�nition of Γ is too simplistic as we illustrate below.

Example 1. Assume that the model type LGraph of labelled graphs is given as compatible with type LTS of
labeled transition systems by some compatibility relation S. The two types can be seen in Fig. 1. These types
are deemed compatible by the current state-of-the-art approaches:

1. Model Sub-typing [2]. There is no isomorphic sub-typing relationship between these two model types in
either direction. However, a simple bi-directional renaming model adapter can be provided (mapping LTS to
Graph, State to Node, Transition to Edge, and label to name, respectively). As a result, a non-isomorphic
sub-typing relationship could be established in either direction.

2. Model concepts [3]. Concepts are bound by providing a morphism between the meta-model MM2 and
the concept MM1. Given that LTS and LGraph are structurally identical, such a morphism can easily be
established and is identical to the model adapter provided for the model sub-typing case.

Since S gives us the reuse transformation Γ, we can convert any transformation F : LTS → T ′ into Γ(F) :
LGraph→ T ′.

Assume that we are given the LTS transformation camelCase that changes all transition labels to camel
case (i.e., every word starts with capital letter). Aiming to apply this transformation to labeled graphs, we get
Γ(camelCase) : LGraph→ LTS. Yet this is not what we wanted: camelCase was an endogeneous transformation
that manipulates LTSs while Γ(camelCase) is an exogeneous transformation that converts labeled graphs into
LTSs! Thus, clearly applying Γ to a transformation should preserve its endogeneous/exogeneous character. We
formalize this observation as a rule:

Rule 1 (�Character� preservation) Let types T1, T2 ∈ T where RS(T2, T1) holds be given. RS is character
preserving i� for any transformation f : T1 → T ′

• (exo) If T ′ 6= T1 then Γ(f) has type T2 → T ′.

• (endo1)If T ′ = T1 then Γ(f) has type T2 → T2.

• (endo2) If T ′ = T2 then Γ(f) is unde�ned.

By adjusting the de�nition of Γ to conform to Rule 1, the problem with camelCase is �xed since we now get
Γ(camelCase) : LGraph→ LGraph as the result of transformation reuse.

Example 2. Now consider a transformation minimize : LTS → LTS that maps an LTS to one that is be-
haviourally equivalent to it but has a minimum number of states. Reusing this transformation as Γ(minimize) :
LGraph → LGraph for labelled graphs yields a problem. While minimize has a well-de�ned intent for LTSs
� to minimize size while maintaining behavioural equivalence � this intent is not preserved by Γ(minimize).
In fact, there is no corresponding transformation for LGraph that has this intent because labeled graphs have
no semantics! Although we can �technically� reuse minimize, the resulting transformation is meaningless. So,
clearly, applying Γ to a transformation should preserve its intent.

We explore the implications of this observation in the next section.

4 Preservation of transformation intent

In this section, we explore what it means to preserve transformation intent. In previous work [4], we cataloged
some general transformation intents such as Refactoring, Translation, Analysis, etc. that seemed to recur in
MDE practice and characterized each intent using a set of mandatory properties. That is, every transformation
with a given intent must satisfy the corresponding mandatory properties. Since these properties must be applied
to many di�erent transformations, they can be abstract and require concretization to be checkable for a speci�c
transformation. In the current paper, our objective is not to de�ne general intents but instead to capture the
intent of a particular transformation that we wish to reuse. Thus, we approach intent from a di�erent perspective,
but as we shall see, we reach similar conclusions.

4.1 Intent as transformation properties

A given transformation F can be characterized by a set of properties � a speci�cation it satis�es that captures
its important characteristics. Given such properties, a natural way to determine what makes a transformation
�F -like� is that it satis�es the properties that characterize F . Thus, in order to support transformation reuse,
we require our higher order transformation Γ to preserve such characterizing properties. We formalize this rule
as follows:

Rule 2 (Intent preservation (�rst attempt)) A type compatibility relation S is valid i� for all T2, T1 ∈ T ,
if RS(T2, T1) then for all transformations f : T1 → T ′ characterized by some property Pf , the condition Pf (Γ(f))
holds.

Unfortunately, this rule has a problem. A characterizing property like Pf is typically too speci�c to a given
type T1 and thus cannot be checked for transformations on other types. We illustrate this using a more detailed
analysis of transformation properties.

Although some holistic properties such as injectivity or surjectivity may in part characterize a transformation,
most transformation-speci�c characteristics focus on the input / output behaviour. Assume that we are interested
in transformations of the form f : T1 → T ′. The general form of a characterizing I/O property is

P (f) := ∀x : T1 · C(x, f(x)),

where predicate C expresses a constraint that must hold between the input and output models.
For example, the transformation minimize discussed above, is characterized by the property

PLTSmin(f) := ∀x : LTS · BisimLTS(x, f(x)) ∧ (∀x′ : LTS · BisimLTS(x′, f(x))⇒ |x′| ≤ |f(x)|))

which checks that f(x) is behaviourally equivalent to x using an LTS bisimilarity relation and then ensures that
there is no other LTS behaviourally equivalent to x that is smaller than f(x).

It is clear that PLTSmin(minimize) holds, but when we attempt to check PLTSmin(Γ(minimize)), we run into a prob-
lem. Since this property is quanti�ed over models of type LTS, it cannot be directly applied to a transformation
over models of type LGraph. To make it work we need to translate PLTSmin to some property P

LGraph
min that represents

the same intent for labeled graphs. However, as we observed above, no such property exists.
Now assume that our compatibility relation also says that state machine models (SM) are compatible with

LTSs using higher-order transformation Γ(SM,LTS). In this case, the transformation minimize can be meaningfully
reused for state machines but we must make sure that Γ(SM,LTS) produces a transformation with the correct intent.
We can de�ne the characterizing property that represents the intent of minimize for state machines as follows:

PSMmin(f) := ∀x : SM · BisimSM(x, f(x)) ∧ (∀x′ : SM · BisimSM(x′, f(x))⇒ |x′| ≤ |f(x)|))

Thus, for Γ(SM,LTS) to preserve intent in this instance, we require that PSMmin(Γ(SM,LTS)(minimize)) holds.

4.2 Intent as families of properties

The above discussion showed that speci�c characterizing properties are not su�cient to de�ne preservation of
intent. Instead, we need something more general: a family of properties that realize the given intent for each
type of a model. In [4], we suggested that such a family can be characterized using a parameterized property that

can be concretized by �lling in the parameters. For example, we might characterize the �model minimization�
intent as the parameterized property

P
〈T 〉
min(f) := ∀x : T · BisimT (x, f(x)) ∧ (∀x′ : T · BisimT (x′, f(x))⇒ |x′| ≤ |f(x)|))

This still assumes that T is a state-based behavioural modeling language where bisimulation can be used to
check equivalence. An even more general version of the intent could be

P
〈T 〉
min(f) := ∀x : T · SemEquivT (x, f(x)) ∧ (∀x′ : T · SemEquivT (x′, f(x))⇒ |x′| ≤ |f(x)|)),

where SemEquivT is the semantic equivalence relation for models of type T .
Based on these considerations, we revise the intent preservation rule:

Rule 3 (Intent preservation) Type compatibility relation S is valid i� for all T2, T1 ∈ T , transformations

f : T1 → T ′ and intents I with parameterized characteristic property P
〈T 〉
I , the following condition holds:

if RS(T2, T1) and PT1

I (f) and PT2

I exists then PT2

I (Γ(f))

Note that this rule only requires PT2

I (Γ(f)) to hold when PT2

I exists to take into account cases such as P
〈T 〉
min

that does not exist for T = LGraph. This can be interpreted either as saying that the value of Γ(f) is irrelevant
when PT2

I does not exist, or that Γ(f) is unde�ned when it does not exist (i.e., Γ is partial). In general, the
latter interpretation seems more informative but may be harder to achieve in practice. That is, if Γ is a partial
transformation then an unde�ned output can be used to indicate when a transformation cannot be reused.

5 Towards an approach for de�ning a valid compatibility relation

As discussed in Sect. 3, one way to de�ne Γ [20] is to assume that the compatibility relation between T2 and
T1 induces a transformation get(T2,T1) : T2 → T1 (or just get when the context is clear) that �converts� a model
of type T2 into a corresponding model of type T1. The use of conversion (and coercion) functions is a standard
technique of type theories [21] used in programming and we adopt them for model type compatibility. Given
this conversion transformation, we can de�ne Γ(f)(x) := f(get(x)) for the exogenous case.

To address the endogenous case (endo1), we de�ne a bidirectional transformation [22] for conversion between
T1 and T2. Following the lenses approach to bidirectional transformations [23], we de�ne this as a pair of
transformation 〈get, put〉, where get is as de�ned as above and put has the type T1 × T2 → T2. Bidirectional
transformations are a generalized approach to the �view-update� problem � a T2 model is �rst �viewed� as a
T1 model using get, then this T1 mode is updated manually or by a transformation and �nally put re�ects this
update back in the original T2 model which it takes as one of its inputs. Thus, for the endogenous case, we de�ne
Γ(f)(x) := put(x, f(get(x))).

We now give the de�nition for a compatibility relation based on conversion transformations.

De�nition 2 (Conversion-based type compatibility relation) A compatibility relation 〈RS ,FS〉 is con-
version based if it provides a family of bidirectional conversion transformations {〈get(T2,T1) : T2 → T1, put(T2,T1) :
T1 × T2 → T2〉|T1, T2 ∈ T and RS(T2, T1)}, and for Γ(T2,T1) ∈ FS and transformation f : T1 → T ′, the following
hold:

• Γ(T2,T1)(f)(x) = put(x, f(get(x))), if T ′ = T1;

• Γ(T2,T1)(f)(x) is unde�ned, if T ′ = T2; and

• Γ(T2,T1)(f)(x) = f(get(x)), otherwise.

For example, assume that we have a conversion-based compatibility relation Sbi that is limited to bijective
conversion transformations and we de�ne the bidirectional transformation between LGraph and LTS as follows:

• get : LGraph → LTS � converts a labeled graph into an LTS by changing nodes into states, edges into
transitions and names into labels.

• put : LGraph × LTS → LGraph � converts an LTS into a labeled graph by changing states into nodes,
transitions into edges and labels into names.

Note that put ignores its �rst input argument (i.e., the original labeled graph) since both it and get are simple
bijective transformations and thus the original model is not needed to construct the update.

At this point, we can ask whether Γ de�ned as in Defn. 2 preserves the intent of particular LTS transformations.
We have seen that the transformation minimize has no corresponding transformation for labeled graphs, so the
action of Γ on this transformation is irrelevant. Unfortunately, Γ cannot �tell� us that this is not a case of good
reuse by being unde�ned on this input since the conversion transformations get and put are total, and so Γ is
total as well. This points to one weakness of Sbi � the conversion transformations will be total for any pair of
types de�ned as compatible by Sbi because they are restricted to being bijective and so we cannot rely on the
partiality of Γ to indicate when a transformation cannot be reused.

Now consider the transformation camelCase. It can be characterized by the following parameterized property:

P〈T 〉
cc (f) := ∀x : T · Camelize〈T 〉(x, f(x))

where Camelize〈T 〉(x, y) holds when model x is isomorphic to model y and for each pair 〈e, e′〉 of elements
mapped by the isomorphism, the attribute of e′ representing its name (if one exists) is the camel case version
of the corresponding attribute of e. It is easy to see that PLTScc (camelCase) holds, as we have described it and
that P

LGraph
cc (Γ(camelCase)) also holds. Thus, the intent of camelCase is preserved for this instance, but is it

preserved for any pair of compatible types in Sbi?
The characteristic of the transformations get and put that allow this preservation is the fact that they are

bijective but also that named elements are always mapped to named elements, i.e., the meta-attribute of an
element being �named� is preserved by the conversion transformations. Thus, Sbi as currently de�ned is not
guaranteed to preserve the intent of camelCase. However, it can be �xed to do so by adding the constraint that
conversion transformations must preserve named elements.

In the above example, the intent of the conversion transformations in the �xed Sbi is characterized by the
property of being bijective and preserving named elements. In the general case, since Γ is formed as the com-
position of conversion transformations with the reused transformation, the problem of coming up with a good
conversion-based compatibility relation can be expressed in terms of the composition of transformation intents.
That is, we want to determine the intents of get and put so that when we compose these with a transformation f
as in Defn. 2, the intent of the result is the same as the intent of f . It should be clear that we can achieve this in
speci�c cases, e.g., we can determine the required intent of get and put to guarantee the intent preservation for
camelCase. It is less clear whether we can ensure the preservation of intent for a broad class of transformations.
We leave this investigation to future work.

6 Research Agenda

From our analysis in the previous sections, we have seen that intent preservation should be the driving factor
behind deciding whether a type compatibility relationship is valid. It would thus be highly bene�cial to provide
a simple and easily checkable (ideally, automatically) criterion of whether two model types are type-compatible
to each other. Below, we explore what is required to accomplish this.

In Sect. 5, we have discussed how Γ could be realized as a conversion transformation composed with the
transformation to be reused. We have brie�y discussed that for this to work, we would need to reason about
the composition of transformation intents. How to perform such a reasoning remains a research challenge. Two
things will need to be understood to this end:

1. We require a precise technique for describing transformation intents. In Sect. 4.2, we made a �rst attempt at
describing transformation intent as a family of properties speci�ed by a parameterized formula. It remains
to be understood how to correctly instantiate such a a parameterized formula, e.g., what are the constraints
for instantiating BisimT ? How can these constraints be e�ectively expressed and veri�ed?

2. We require a calculus for deriving transformation intents from the composition of other transformation
intents as induced by the composition of the transformations themselves. Such a calculus can then be
employed for implementing the reasoning employed in Sect. 5.

There is another issue here as well: It seems likely that no type-compatibility relation S could preserve
every intent of every transformation T1 → T ′. Moreover, there will be weaker type-compatibility relations that
only preserve a certain subset of transformation intents, but allow more types to be considered compatible.
Consequently, we argue with Kuehne [19] that type-compatibility needs to be considered as a contextual notion

� type compatibility with respect to a class of intents (perhaps written as SI for a given class I of transformation
intents). For example, we may consider LGraph and LTS compatible for intents that only consider the syntactical
structure of a model, but not for intents that refer to a model's semantics. If this is the case, then a substantial
amount of research is required to

1. Identify suitable classes of intents;

2. Identify suitable type-compatibility relations to go with each class of intents;

3. Understand whether there are classes of transformation intents for which no suitable type-compatibility
relation exists; and

4. Understand the relationships between these intent classes. For example, is there a lattice of increasingly
more constrained notions of type compatibility that provide increasing assurances while decreasing �exibility
of reuse? If so, where is the sweet spot in this tradeo�?

Note that, in particular, the goal cannot be to require transformation reusers to provide a full proof at the point
of reuse that the type-compatibility relation they chose maintains the speci�c intent of the transformation to be
reused. Instead, they should be able to identify the class of transformation intent and reuse a type-compatibility
relation for which it has been previously proved that it maintains intents of that class. In this way, the hard
work of proving validity of type-compatibility relations can be reused.

7 Conclusion

In this paper, we aimed to assess the validity of the current proposals for model type compatibility relations [3,
2, 17] and the essence of di�erences between them. In so doing, we have understood that current approaches
miss a key ingredient, namely, the intent of the transformations to be reused. While transformation intent has
been studied in other contexts [4], we have explored the potential impact of intent on transformation reuse
and our notion of type compatibility. Although we have added some more clarity to the discussion, the main
contribution of the paper is the identi�cation of a new research agenda: we believe there is a need to explore
formal representations of transformation intent, as well as the precise relationship between transformation intent
and reuse-oriented type-compatibility relations. We invite workshop participants to join us in working on this
research agenda.

References

[1] A. Kusel, J. Schönböck, M. Wimmer, G. Kappel, W. Retschitzegger, and W. Schwinger, �Reuse in
model-to-model transformation languages: are we there yet?� SoSyM, vol. 14, no. 2, pp. 537�572, May
2015. [Online]. Available: http://dx.doi.org/10.1007/s10270-013-0343-7

[2] C. Guy, B. Combemale, S. Derrien, J. R. Steel, and J.-M. Jézéquel, �On model subtyping,� in Proc. 8th
European Conf. on Modelling Foundations and Applications (ECMFA'12), ser. LNCS, A. Vallecillo, J.-P.
Tolvanen, E. Kindler, H. Störrle, and D. Kolovos, Eds., vol. 7349. Springer, 2012, pp. 400�415.

[3] J. de Lara and E. Guerra, �From types to type requirements: Genericity for model-driven engineering,�
SoSyM, vol. 12, no. 3, pp. 453�474, 2013.

[4] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. Selim, E. Syriani, and M. Wimmer, �Model
transformation intents and their properties,� Software & Systems Modeling, pp. 1�38, 2014.

[5] R. Marvie, �A transformation composition framework for model driven engineering,� University of Lille 1,
Tech. Rep., 2004, lIFL technical report 2004-n10.

[6] A. Vignaga, F. Jouault, M. C. Bastarrica, and H. Brunelière, �Typing in model management,� in Proc. 2nd
Int'l Conf. on Theory and Practice of Model Transformations (ICMT'09), ser. Lecture Notes in Computer
Science, R. Paige, Ed., vol. 5563. Springer-Verlag, 2009, pp. 197�212.

[7] R. Chenouard and F. Jouault, �Automatically discovering hidden transformation chaining constraints,� in
Proc. Int'l Conf. on Model Driven Engineering Languages and Systems (MoDELS'09), ser. LNCS, A. Schürr
and B. Selic, Eds., vol. 5795. Springer, 2009, pp. 92�106.

http://dx.doi.org/10.1007/s10270-013-0343-7

[8] B. Vanhoo�, D. Ayed, S. V. Baelen, W. Joosen, and Y. Berbers, �UniTI: A uni�ed transformation infras-
tructure,� in Proc. 10th Int'l Conf. Model Driven Engineering Languages and Systems (MoDELS'07), ser.
Lecture Notes in Computer Science, G. Engels, B. Opdyke, D. C. Schmidt, and F. Weil, Eds., vol. 4735.
Springer, 2007, pp. 31�45.

[9] I. Kurtev, J. Bézivin, and M. Aksit, �Technological spaces: An initial appraisal,� in CoopIS, DOA'2002
Federated Conferences, Industrial track, 2002. [Online]. Available: http://www.sciences.univ-nantes.fr/lina/
atl/www/papers/PositionPaperKurtev.pdf

[10] J. Steel and J.-M. Jézéquel, �On model typing,� SoSyM, vol. 6, no. 4, pp. 401�413, 2007.

[11] K. B. Bruce, L. Petersen, and A. Fiech, �Subtyping is not a good �match� for object-oriented
languages,� in Proc. 11th European Conf. on Object-Oriented Programming (ECOOP'97), ser. LNCS,
M. Ak³it and S. Matsuoka, Eds., vol. 1241. Springer, 1997, pp. 104�127. [Online]. Available:
http://dx.doi.org/10.1007/BFb0053376

[12] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel, �Meta-model pruning,� in Proc. Int'l Conf. on Model
Driven Engineering Languages and Systems (MoDELS'09), ser. LNCS, A. Schürr and B. Selic, Eds., vol.
5795. Springer, 2009. [Online]. Available: http://www.irisa.fr/triskell/publis/2009/Sen09b.pdf

[13] S. Sen, N. Moha, V. Mahé, O. Barais, B. Baudry, and J.-M. Jézéquel, �Reusable model transformations,�
SoSyM, vol. 11, no. 1, pp. 1�15, 2010. [Online]. Available: http://dx.doi.org/10.1007/s10270-010-0181-9

[14] L. Rose, E. Guerra, J. de Lara, A. Etien, D. Kolovos, and R. Paige, �Genericity for model management
operations,� SoSyM, 2011, published on-line �rst.

[15] J. S. Cuadrado, E. Guerra, and J. de Lara, �Flexible model-to-model transformation templates: An
application to ATL,� Journal of Object Technology, vol. 11, no. 2, pp. 4:1�28, 2012. [Online]. Available:
http://dx.doi.org/10.5381/jot.2012.11.2.a4

[16] ��, �A component model for model transformations,� IEEE Trans. Software Eng., vol. 40, no. 11, pp.
1042�1060, 2014.

[17] S. Zschaler, �Towards constraint-based model types: A generalised formal foundation for model genericity,�
in Proc. 2nd Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling (VAO'14),
C. Atkinson, E. Burger, T. Goldschmidt, and R. Reussner, Eds., 2014.

[18] T. Kühne, �An observer-based notion of model inheritance,� in Proc. Int'l Conf. on Model Driven Engineering
Languages and Systems (MoDELS'10), ser. LNCS, D. Petriu, N. Rouquette, and Ø. Haugen, Eds., vol. 6394.
Springer, 2010, pp. 31�45.

[19] ��, �On model compatibility with referees and contexts,� Software & Systems Modeling, vol. 12, no. 3, pp.
475�488, 2013.

[20] J. de Lara and E. Guerra, �Towards the �exible reuse of model transformations: A formal approach based
on graph transformation,� Journal of Logical and Algebraic Methods in Programming, vol. 83, no. 5�6,
pp. 427�458, 2014, 24th Nordic Workshop on Programming Theory (NWPT 2012). [Online]. Available:
http://dx.doi.org/10.1016/j.jlamp.2014.08.005

[21] Z. Luo, S. Soloviev, and T. Xuea, �Coercive subtyping: Theory and implementation,� Information and
Computation, vol. 223, pp. 18�42, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.ic.2012.10.020

[22] Z. Hu, A. Schürr, P. Stevens, and J. F. Terwilliger, �Bidirectional transformation" bx"(dagstuhl seminar
11031).� Dagstuhl Reports, vol. 1, no. 1, pp. 42�67, 2011.

[23] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt, �Combinators for bi-directional
tree transformations: a linguistic approach to the view update problem,� ACM SIGPLAN Notices, vol. 40,
no. 1, pp. 233�246, 2005.

[24] A. Schürr and B. Selic, Eds., Proc. Int'l Conf. on Model Driven Engineering Languages and Systems (MoD-
ELS'09), ser. LNCS, vol. 5795. Springer, 2009.

http://www.sciences.univ-nantes.fr/lina/atl/www/papers/PositionPaperKurtev.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/PositionPaperKurtev.pdf
http://dx.doi.org/10.1007/BFb0053376
http://www.irisa.fr/triskell/publis/2009/Sen09b.pdf
http://dx.doi.org/10.1007/s10270-010-0181-9
http://dx.doi.org/10.5381/jot.2012.11.2.a4
http://dx.doi.org/10.1016/j.jlamp.2014.08.005
http://dx.doi.org/10.1016/j.ic.2012.10.020

	Introduction
	Existing approaches
	The validity of type compatibility
	Preservation of transformation intent
	Intent as transformation properties
	Intent as families of properties

	Towards an approach for defining a valid compatibility relation
	Research Agenda
	Conclusion

