ING'S
College
LLONDON

Identifying the challenges of learning

programming at undergraduate level
A Threshold Concept approach

Executive Summary

Lucy Yeomans, School of Education, Communication & Society
Steffen Zschaler, Informatics Department
Kelly Coate, King’s Learning Institute

Identifying the challenges of learning programming at
undergraduate level: A Threshold Concept approach

Programming is an essential skill for any computer science student, indeed many would
argue that most STEM (Science, Technology, Engineering and Maths) programmes would
expect their students to have some understanding and capability in programming as part of
their course (McCracken et al., 2001). Nevertheless, learning to program is generally
acknowledged to be very difficult; students are required to have the correct abstract
understanding of a concept and be able to implement it in a concrete manner using
appropriate strategies (Robins et al., 2003; Lahtinen et al., 2005). This requires a significant
amount of hands-on programming experience. However, it has been argued that novice
programmers typically have a superficial understanding of programming that is context
specific and therefore they struggle with knowledge transfer (Lahtinen et al., 2005).
Furthermore, the heterogeneity of student cohorts regarding their experience of
programming makes differentiation extremely problematic and this is often attributed as
one of the major factors contributing to high drop-out rates on university courses (Jenkins &
Davy, 2002; Lahtinen et al., 2005; Pedroni et al., 2009).

Threshold Concepts

The notion of ‘Threshold Concepts’ has been used in wider education literature to identify
concepts that are central to students’ mastering of a particular subject area and that, it is
suggested, should be a new focus of teaching (Rountree & Rountree, 2009). Threshold
Concepts can be defined as core concepts which are particularly difficult to overcome.
Meyer and Land (2005) describe them as theoretical summits that, once reached, signify
either a leap forward in an individual's understanding, a clarity of a concept's complexity
and how it connects to other ideas, and/or a point in which a significant idea becomes
embedded within someone's knowledge in such a way that it would be hard to undo. They
subsequently simplified this definition into four characteristics: Troublesome,
Transformative, Integrated and Irreversible.

Since Meyer and Land’s initial proposal the uptake of a Threshold Concept approach to
teaching and learning in Higher Education has been enthusiastic. Nevertheless, the
definition and process of identification of Threshold Concepts remains subjective and
contested (Barradell, 2012). Firstly, because there is a lack of consensus as to how many of
the four characteristics are required to make a concept a ‘threshold’, rather than simply a
‘core’ concept (Barradell, 2012). Furthermore, Davies (2006) concedes that Threshold
Concepts may be additionally difficult to identify because within any given discipline they
may be ‘taken for granted’ and as such will not be made explicit. Rountree and Rountree
(2009) argue that the grasping of Threshold Concepts will rarely be achieved during one
eureka moment, but instead take place over a transitional period of time - from one state of
being and knowing to another. According to Threshold Concept theory, such transitional
periods, or ‘liminal spaces’, are where students are most likely to get stuck.

Much like other institutions, the undergraduate students in the Informatics Department at
King’s College London are extremely diverse in terms of their experience and proficiencies
at programming; cohorts have increased significantly year on year while supervision
capacity remains constant. In response to the challenges this presents, a study was devised
to explore how identifying relevant Threshold Concepts could support more effective
pedagogical approaches to programming education for first year undergraduate students.

Methodology

The study used a qualitative interview approach, shaped by a theoretical framework based
on Threshold Concept theory. The project team decided initially to focus on the first two
characteristics of Threshold Concepts suggested by Meyer and Land (2005) — troublesome
and transformative. Research instruments were designed with those in mind, with
questions related to aspects of programming that participants have/had struggled with as
well as which had potentially provided them with a paradigm-shift in understanding of the
subject matter.

Further investigation of the Threshold Concept literature suggested additional dimensions
of the troublesome characteristic to be considered in the study: students may use ‘mimicry’
as a way of grappling with difficult concepts, reproducing what they have been shown
without concrete understanding - although this can be viewed as, for some, a useful step
towards more complete understanding of a concept (Meyer & Land, 2005; Hughes & Peiris,
2006; Rountree & Rountree, 2009). Eckerdal et al. (2007) identified a framework to be used
in identifying when and where a student is in a liminal space while learning to program. The
framework was based on different sorts of conceptual understanding: abstract/theoretical
understanding of a concept; concrete understanding of the concept evidenced through
practical programming; the ability to go from abstract to concrete understanding;
understanding why the concept is used and taught and understanding the application of the
concept in new situations. The final consideration was the emotional response associated
with liminal spaces and programming in particular: an emotional reaction to a concept was
regarded by Rountree and Rountree (2009) be an indicator of its potential to be a threshold
concept, both frustration and elation could show at which point a student is within liminal
space. Additional dimensions of the transformative characteristic taken into account
included the proposal that once students master a Threshold Concept they can be said to be
acquiring a new identity, that of an ‘insider' within a discipline rather than a student
practising computer science (Eckerdal et al., 2007; Rountree & Rountree, 2009). This notion
of ‘feeling like a programmer’ was also explored in the study.

In an attempt to achieve some consensus regarding the Threshold Concepts for novice
student programmers, data was gathered from three sample populations: first year
undergraduate students, third year undergraduate students and professional programmers
with a range of programming experience. The rationale was to capture a sense of which
concepts were identified at the beginning and end of the undergraduate experience, as well
as incorporating the perspectives of practitioners far more established in the field. This was
a response to the identification of a gap in Threshold Concept literature related to
stakeholders outside the immediate learning environment (Rountree & Rountree, 2009;
Barradell, 2012).

Methods

Observations and unstructured interviews with first year undergraduate students
participating in pair-programming labs took place over a three-month period, where
students were asked questions regarding their experiences of programming and which
aspects of the course they enjoyed and didn’t enjoy. While these data were not extensively
used in the analysis, they formed a crucial step in informing the questions asked for the next
data collection phase and also, on a practical note, to improve student participation rates
when they were invited to take part in focus groups designed to investigate potential
Threshold Concepts in a more focussed manner. Again participants were asked particularly
about aspects of programming they found challenging, but they were also asked to discuss
any concepts that changed their perception of programming itself. The introductory
guestions were then followed by an activity whereby participants were asked, as a group, to
physically organise a list of concepts covered in their curriculum in order of difficulty. The
final arrangement was then used as a prompt in further questioning related to potential
Threshold Concepts as discussed above.

Focus groups were also held with students in their third year, where they were asked to
consider both their experiences in their first year but also their current views, and with
professional programmers who came from a range of training backgrounds and amount of
experience. The industry professionals were additionally asked to reflect on their
experiences of learning programming but to also discuss what they continued to encounter
as problematic. The aim was to see whether there was any commonality between the
concepts proposed from the three different sample populations and put them under further
scrutiny as candidates for Threshold Concepts.

The focus group transcripts were thematically coded to look for evidence of Threshold
Concepts as described above. Concepts which were mentioned in more than three of the
five focus groups were analysed for evidence of being both troublesome and
transformative. Concepts which were identified by all participants as having just one of the
characteristics were discarded. The results can be found on the following page.

Classes and
inheritance

Troublesome and
transformative by
practitioners, troublesome
and transformative by
students

“Classes and inheritance for me... yes,
getting your head around that was
quite hard but then once you, it
becomes quite a vital part of the
programing once you get your head
around it” year 1 student participant

Designing objects

Troublesome by
practitioners, troublesome
and transformative by
students

“When | properly understood how to
separate everything out into
appropriate classes that was like a
major turning point in probably my
ability as a programmer” year 1
student participant

User Interface
Architectures

Transformative by
practitioners, troublesome
and transformative by
students

“I feel like User Interface Architecture
just grows bigger and bigger at some
point and you have to be organised
not to lose any piece of code and to
actually be able to find, like... adding,
like, two lines of code” year 1 student
participant

Data structures

Troublesome by
practitioners, troublesome
and transformative by
students

“(Data Structures) weren’t hard to
understand, but we don’t, we all
understand, we should understand it
a little bit better than what we
currently do. And definitely the first
year we felt that way” year 3 student
participant

Regular
expressions

Troublesome by
practitioners, troublesome
and transformative by
students

“You just look up a regular
expression, no one ever; | don’t think
anybody in the universe writes... You
can look it up, you can sit with a book
and work it out like any mathematical
thing, and then it’s done, and you
look at what you’ve worked out and
you don’t understand it. It doesn’t
matter, it works.” Practitioner
participant

Abstract classes

Transformative by
practitioners, troublesome
by students

“And abstract classes for me anyway,
| don’t know about anyone else... Yes,
| mean | understand it | just don’t
know how like | just I've never seen
the point in using it” year 1 student
participant

Threshold Skills

As part of the lab observations one of the student Teaching Assistants also suggested that
the nature of programming is skill-based, one that only make sense in application, and so
we might consider the place of skills in the study. A similar notion has been put forward in
some of the Threshold literature (Thomas et al., 2014). One possible Threshold Skill was
identified throughout the course of the study; Code Organisation was considered to be both
troublesome and transformative by all of the focus groups:

“Organisational code... is definitely one of the... it takes experience to write organised
code.” (practitioner participant)

“I think you learn about code organisation throughout your life.” (year 3 student
participant)

“you have to be organised not to lose any piece of code and to actually be able to find, like...
adding, like, two lines of code.” (vear 1 student participant)

Emotional response

Emotional responses frequently occurred or were referred to when a participant discussed a
potential Threshold Concept, adding additional validity to claims of their legitimacy as such.
Furthermore, it was perhaps unsurprising to find that they appeared at other times in the
data. As has already been discussed, programming is difficult to learn and, it could be
argued, practice. As illustrated by the following quote from one of the practitioners, the
challenges of programming continue well into a professional career and when a program is
successful it can elicit powerful emotional reactions:

“I don’t know when I started thinking I’'m a proper programmer but for me when my code
goes through a code review successfully, a peer review successfully and sits in production
without breaking ... for say three, four weeks without any problem at all, then I start feeling
proud, not proud, but content and satisfied with myself”

Accidental Complexities

An unexpected find in the data was the occurrence of what we termed ‘Accidental
Complexities’. Accidental complexities can be a concept that in itself isn't a Threshold
Concept, but when taught alongside other larger (perhaps Threshold) concepts, might
introduce additional difficulty for the learners. Examples of such concepts mentioned by
students as troublesome during the study include Layout Managers, which are taught
alongside the development of graphical user interfaces, and ActionListener, which is used by
students as a proxy for event handlers — particularly where implemented using anonymous
inner classes. Accidental complexities may also occur when attempting to provide the
students with an additional skill (e.g. teamwork), or as a pedagogical device (e.g. pair
programming as a means of enabling peer teaching). While the inclusion of such activities
would generally be seen to be good practice, several of the student participants discussed
the problematic nature of trying to amalgamate various different people’s ideas together to
find a cohesive solution to the problem at hand. This was cited as a particular issue when
students were in teams of mixed experience or ability.

The Threshold Concepts identified were done so through a process of consensus-building
amongst the students and industry professionals. While many of the concepts discussed
were identified as troublesome, only a few were also considered to be transformative by
one or more of the participant groups. As a result, there is compelling evidence to suggest
that the six concepts put forward are suitable candidates for Threshold Concepts in
programming. Of particular interest are Classes and Inheritance, Designing Objects and
Abstract Classes, all of which fall under the area of Object-Oriented programming. ‘OO’ has
in the past been suggested in the literature as a prospective Threshold Concept in
programming, but it has also been criticised as being far too large an area to be of
significant use (Rountree & Rountree, 2009). Our findings contribute more specific sub-
concepts of OO which may be of more help in identifying particular points in the curriculum
where students may require additional support.

The researchers noted during the course of the study that the dimension of acquiring a new
identity that is part of a community of practice may be limited in its capacity to identify
potential Threshold Concepts. The students themselves didn’t respond to prompting
regarding ‘feeling like a programmer’ and many of the industry practitioners joked that they
still didn’t feel like they were a programmer, even after years of professional experience.
The closest suggestions they made were related to skills rather than concepts, such as the
ability to devise the program themselves from start to finish, as the following quote
illustrates:

“A lot of people don 't feel that confident in their ability, and so for me it doesn’t feel like
there was one concept that I grasped that necessarily made me feel like a programmer. It’s
more as you get more exposure to your colleagues and stuff, and I guess you 're getting less
criticism, you start to feel a little more confident”

The above quote reveals the range of emotional strings tied up with programming. The
participant alludes to the peculiarity in programming of work product being judged largely
for its ability to not go wrong rather than because of inherently good design or execution.
The students similarly refer to a sense of relief that a program simply functions as required,
going some way to explain the prevalence of partial conceptual understanding amongst the
participants as revealed when applying Eckerdal et al.’s (2007) framework to the focus
group data.

Accidental complexities were an interesting finding in the focus group data and prompts
debate regarding a tension between accepted good teaching practice and Threshold
Concepts and Skills. The complexities may have been introduced as a result of an attempt
to provide students with additional tools and skills which, while in themselves are
undeniably useful e.g. learning to work as a team or using anonymous inner classes when
writing ActionListeners, may actually cause additional difficulties in grasping the main
concept at hand. For instance, the association with (suggested as troublesome)
ActionListener and an identified Threshold Concept brings into question the
appropriateness of trying to cover both at the same time. While the smaller concepts in
guestion may be considered essential knowledge for a proficient programmer, there is a
strong argument to delay teaching them until the main Threshold Concept has been
mastered. Further exploration of the satellite concepts taught alongside the identified

Threshold Concepts may reveal additional opportunities to strip back and simplify the
curriculum to spend more time on the concepts which take priority and ensure the student
has successfully traversed their so-called ‘liminal space’. Additionally, there is an argument
for a reconsideration of which points in the curriculum are suitable to be taught as group
work, as their coinciding with a Threshold Concept may prove problematic. While there
may be strong justification for introducing this complexity at this point, the level of support
provided or the scale of the complexity introduced (e.g., team size, level of independence of
the teams, etc.) can negatively impact on students passing through liminal space.

The findings of the study have produced some interesting questions. Now that we have
identified some potential Threshold Concepts, which is the best way to approach structuring
the syllabus around them? Is spacing them out across the terms of the first year enough?
Does the order of the concepts being taught make a difference to how challenging they are?
Furthermore, how can we best decide what is essential to be taught alongside Threshold
Concepts in order to find the balance between including what is necessary at that particular
time and what is just unhelpful noise? These are issues we intend to explore for the next
steps of the study.

This research took place with invaluable input from undergraduate students and student
Teaching Assistants within the King’s College London Informatics Department as well as
programmers from industry. In particular, our special thanks go to the first year
undergraduate students and the industry practitioners who volunteered their time to
participate in the study.

Baillie, C., Bowden, J.A. & Meyer, J.H.F. (2012) Threshold capabilities: threshold concepts
and knowledge capability linked through variation theory. Higher Education, 65(2): 227-246.
Barradell, S. (2012) The identification of threshold concepts: a review of theoretical
complexities and methodological challenges. Higher Education, 65(2): 265-276.

Davies, P. (2006) Threshold concepts: how shall we recognise them? In Threshold Concepts
and troublesome knowledge, Edited by: Meyer, J. H. F. and Land, R. London: Routledge.
Eckerdal, A., McCartney, R., Mostrom, J.E., Ratcliffe, M., Sanders, K. & Zander, C. (2006)
Putting threshold concepts into context in computer science education, ACM.

Eckerdal, A., McCartney, R. & Mostrom, J.E. (2007) From Limen to Lumen: computing
students in liminal spaces, New York, New York, USA: ACM.

Hughes, J. & Peiris, D. (2006) ASSISTing CS1 students to learn: learning approaches and
object-oriented programming, ACM.

Jenkins, T. & Davy, J. (2015) Diversity and Motivation in Introductory Programming.
Innovation in Teaching and Learning in Information and Computer Sciences, 1(1): 1-9.
Lahtinen, E., Ala-Mutka, K. & Jarvinen, H.-M. (2005) A study of the difficulties of novice
programmers. In ITiCSE '05: Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education. ACM, 14-18.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, B., Laxer, C., Thomas,
L., Utting, I. & Wilusz, T. (2001) A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. ACM SIGCSE Bulletin, 33(4): 125-180.

Meyer, J. H.F. & Land, R. (2003) Threshold concepts and troublesome knowledge (2):
Epistemological considerations and a conceptual framework for teaching and learning.
Higher Education, 49(3): 725-734.

Pedroni, M., Meyer, B. & Oriol, M. (2009) What Do Beginning CS Majors know? Technical
Report 631, ETH Zirich, Chair of Software Engineering.

Robins, A., Rountree, J. & Rountree, N. (2003) Learning and teaching programming: A review
and discussion. Computer science education, 13(2): 137-172.

Rountree, J. and Rountree, N. (2009) Issues regarding threshold concepts in computer
science. Proceedings of the eleventh Australasian computing education conference (ACE
2009). Edited by: Hamilton, M. and Clear, T. pp.139-145. Darlinghurst, Australia: Australian
Computer Society.

Thomas, L., Boustedt, J. & Eckerdal, A., McCartney, R., Mostrom, J. E., Sanders, K. & Zander,
C. (2014) A broader threshold: Including skills as well as concepts in computing education.
Fourth Biennial Conference on Threshold Concepts: From personal practice to communities
of practice, Trinity College, Dublin.

Zander, C., Boustedet, J., Eckerdal, A., & McCartney, R. (2008) Threshold concepts in
computer science: A multi-national empirical investigation. In Threshold Concepts Within the
Disciplines, Edited by: Land, R. Meyer, J. H. F. and Smith, J. Rotterdam: Sense.

