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Summary
Digital twins are increasingly used across a wide range of industries. Modelling is key to digital twin
development – both when considering the models which a digital twin maintains of its real‐world
complement (‘models in digital twin’) and when considering models of the digital twin as a complex
(software) system itself. Thus, systematic development and maintenance of these models is a key
factor in effective and efficient digital twin development, maintenance, and use. We argue that
model‐driven engineering (MDE), a field with almost three decades of research, will be essential
for improving the efficiency and reliability of future digital twin development. To do so, we present
an overview of the digital twin life cycle, identifying the different types of models that should be
used and reused at different life cycle stages (including systems engineering models of the actual
system, domain‐specific simulation models, models of data processing pipelines, etc.). We highlight
some approaches in MDE that can help create and manage these models and present a roadmap
for research towards MDE of digital twins.
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1 INTRODUCTION

Digital twins are among the key drivers of advanced manufacturing1.
Recent surveys2,3 have identified a wide range of application areas and
technological approaches to building digital twins. Digital twins are soft‐
ware systems that provide services on top of virtual representations
of actual systems. They typically enhance actual systems into cyber‐
physical systems by providing mechanisms for data collection, (partial)
modelling, planning and decision making, and changing the state and
behaviour of the actual system. Thus, digital twins are complex soft‐
ware systems, raising questions about how they can be engineered both
efficiently and effectively.
In research and practice, there is no single definition of a digital twin

although all leading definitions have common features, such as sending
and receiving data from the actual system or providing a virtual rep‐
resentation 4. To navigate the design options for twins it is important
for digital twin engineers to have conceptual models5 and reference
models that capture such twins’ essential features and variation points
and to collaborate with data scientists, as well as domain, system and
software engineers. To date, there has been little attention paid in re‐
search and practice to digital twin developmentmethods.We argue that
models from software and systems engineering can be used to define
methods that are used to guide development teams and could be used
as the basis of digital twin development platforms6.
Digital twins manage models of the actual system and offer services

including, but not limited to analysis, diagnosis, prediction, fault detection
and planning. Digital twins could cover different capabilities7: (1) data
fusion from sensors to detect properties; (2) consolidation of properties
to populate models; (3) the use of model snapshots to provide dash‐
boards and detect situations; (4) projection of situations to speculate
about future states (simulation); (5) prediction of future situations from
historical information (learning); (6) adaptation that provides decision‐
support (AI); up to (7) partial and total adaptive control. Each type of
service will place requirements on the representation and processing of
the system models.
The field of Model‐Driven Engineering (MDE) has been argued to

support the efficient and effective development, deployment and main‐
tenance of software systems in general8. MDE could be used through‐
out the digital twin life cycle to specify and design a twin in order to
provide a (possibly executable) prototype. These models might be used
to automatically generate parts (or even all) of the twin, including con‐
figuring its connections to the actual system9,6. An alternative might be
that the twin uses models at run‐time to execute the models directly in
order to improve its adaptability or its ability to provide feedback.
This article reviews the opportunities for MDE to support the field

of digital twins. It is organized as follows: Section 2 shows key aspects
of digital twins and describes the state‐of‐the‐art for their contexts and
life cycle; Section 3 sketches challenges around models and modelling
in digital twins; Section 4 provides an overview of the key aspects of

MDE relevant to the digital twin life cycle; finally, Section 5 performs a
gap analysis leading to a research roadmap.

2 DIGITAL TWINS

To understand where digital twin engineering can be supported by
the field of MDE, we first describe what parts constitute digital twins,
explain their life cycle, and describe relevant digital twin contexts.

2.1 What is a Digital Twin

There are many different definitions of “digital twins” in the literature2

and recent standards such as 10, focusing on different aspects. For the
purposes of this paper, we use the following conceptualization based
on the 5Dmodel from Tao et al.11. This conceptualization differentiates
three key components (see Figure 1):

1. The actual system, which is a system or object in the real world.
Note that our understanding includes a wide range of systems and
objects, including socio‐technical or biological systems. The actual
system offers interfaces for output (that is, sensing / extracting data
about the state of the actual system) and input (that is, control‐
ling the state of the actual system either directly or by supporting
decision making processes of human controllers).

2. A virtual representation of the digital twin, which includesmodels and
connected data digitally representing the configuration and state of
the actual system.

3. A set of services provided on top of the information captured in
the digital twin which includes, e.g., services for the synchroniza‐
tion of selected properties with the actual system at a defined
synchronisation rate, for reasoning about information from the vir‐
tual representation, and visualization and reporting information to
digital twin users4.

A digital twin is a software system, which includes the virtual repre‐
sentation of the actual system with models and data, and the services
needed to fulfill the purpose a digital twin serves.
To realize the software system representing a digital twin and its

services, industry and research suggest different reference architec‐
tures, e.g., by the Digital Twin Consortium13, the standard series ISO‐
23247 for manufacturing14,15, Reference Architecture Model Industry
4.0 (RAMI 4.0) 16, semantic Asset Administration Shells17, or more con‐
ceptual architectures such as the 3D model18, the 5D model 11,12, or
the work by Newrzella et al.19, Kritzinger et al. 20, Josifovska et al. 21,
Boyes and Watson 22 or Eramo et al. 5. These architectures provide an
overview of different functionalities a digital twin could cover. However,
each concrete, domain‐specific digital twin’s software architecture has
to be tailored for the purposes it aims to cover.
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F I GUR E 1 Digital twin schema derived from Tao et al.11,12

2.2 Digital Twin Contexts

Digital twins can be designed for different categories of actual systems.
The actual system and its environment constitute the context of the digi‐
tal twin. There are fundamental properties that characterize the context:
whether the actual system is an engineered or a non‐engineered sys‐
tems, whether it is a controlled or non‐controlled system and whether
it contains inanimate or animate components or human beings. Based
on these properties, we can distinguish three main categories of actual
systems which may form the context:

1. Engineered systems are systems whose design and realisation have
been carefully planned. We differentiate three types of such sys‐
tems, based on whether they have been developed with digital
control in mind:
(a) Cyber‐physical (including embedded) systems are technically
engineered products or groups of products comprising physi‐
cal components and computational control devices. An example
could be a robot, a modern car, a wind turbine, an air plane, a pro‐
duction line, or a power plant. Crucially, often they already have
digital components that provide an interface for a digital twin to
interact with the actual system.

(b) Technical systemswithout software.This category contains arte‐
facts such as tables, steam engines, classical bicycles, hydraulic
presses, windmills, bridges, buildings, etc. These systems are en‐
gineered, but do not have a software component (yet). To allow
the creation of digital twins, we need to enhance the systemwith
digital interfaces for data collection and for detecting changing
states and behaviours.

(c) Software systems sit somewhere halfway between the previ‐
ous two. Software is naturally digital, making the creation of a
digital twin of the software easier in principle. However, the in‐
formation captured digitally is not typically the information one
wants to reflect in the digital twin, necessitating the creation of
additional interfaces (e.g., for the monitoring of build processes).

2. Biological / natural systemswhich are not designed by human engi‐
neers and can exist without human intervention, such as biological
organisms and ecosystems, e.g., trees, forests, plantations, animal

F I GUR E 2 Digital twins for different types of actual systems and
their life cycle.

populations, or weather phenomena. Here, creating digital inter‐
faces is much more challenging and often means a transformation
from pure biological to bio‐technical systems.

3. Socio‐technical systems and processes, including organisations, i.e.,
systems that involve human behaviour and interaction between hu‐
mans and technical systems. An example could be a hospital, the
flow of patients through a healthcare system, or the organizational
structure of a company. They might already provide digital inter‐
faces for some aspects, e.g., technical devices, but also require to
add new ones, e.g., to detect human behavior.

These different categories each come with their own requirements
as well as broader aims, such as supporting sustainability, privacy, or
maintainability.

2.3 Digital Twin Life Cycle

The life cycle of a digital twin is deeply connected to the life cycle of
the actual system it is twinning. The life cycle of the digital twin and its
actual system does not have to run in lockstep. For example, consider
digital twins used for simulation‐based prediction during system design:
the life cycle of such a digital twin will be fully completed alongside the
design phase of the actual system and the digital twin may no longer be
used once the actual system has been constructed and is in operation.
Figure 2 shows the life cycle of some examples for such actual systems
and some examples for digital twins.
For an engineered object, the life cycle includes the design, con‐

struction, operation, and maintenance until the end of life. A digital
twin of a product line can accompany the whole life cycle starting
with, e.g., engineering models created during model‐based systems en‐
gineering 23, simulation and forecasting services, simulation data in the
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design, continuous updating of data and models with the reality during
construction, monitoring, and forecasting during operation until their
demolition or refurbishment during the end‐of‐life phase. The same
phases occur for a concrete production machine or one concrete prod‐
uct produced in such a production machine. However, in relation to the
life cycle of the product line, their life cycles start later.
The life cycle of biological systems such as humans, plants or animals

includes the (optional) plan, growth, life, and end‐of‐life phase. If we
take a biological‐system experiment as an example—for example, to cre‐
ate a lab‐grown ear—a digital twin already accompanies the planning of
the experiment and uses services to check the plans with regulators, ob‐
serve the ear during its growing phase, and regulate the environment
of the ear to provide better growth. After transfer to a human, the ear
might be further observed and stimulated to determine whether this
experiment is successful or not. The same life cycle occurs for other
biological processes such as 3D bio‐printing or in vitro fertilization. Fur‐
thermore, a digital twin could accompany humans or organs of humans
such as a digital twin for the brain24, a human heart 25 or lungs. For sens‐
ing and actuating a biological system synchronized with its digital twin,
digital twin developers might consider the whole bio‐technical system
including relevant technological solutions as the actual system.
The life cycle of software systems is similar to the one of engineered

objects. In waterfall‐like development processes, developers start with
the analysis and design of a system, implement, generate, operate,
reengineer, stop, or replace the system in the end‐of‐life phase. In agile
processes, the first three phases are continuously repeated for each soft‐
ware product increment. During the whole life cycle, a digital twin could
accompany such a software system. If we create a software product line
(SPL)—used for developing families of similar software products—we
could have a digital twin for the SPL reference design and implemen‐
tations as well as each concrete realization of the SPL in an individual
software product.
The life cycle of socio‐technical systems such as an organization can

be summarized as planning, set‐up or founding an organization, running
it, and liquidating or monetizing it. If a structured planning phase exists,
e.g., in start‐up incubators, if founders start by elaborating a business
plan, or if a crowdfunding campaign should support the funding of a
company, a corresponding digital twin could already exist from the be‐
ginning. If a company already exists, the digital twin might only exist
during the operation of a company, e.g., to monitor business processes
or key performance indicators.
Changes in the actual system and its environment may lead to re‐

adjustments and changes in the digital twin, such as adding new services,
handling new types of models, or changing data structures and visualiza‐
tion needs. These changes lead to the need for continuous DevOps26

cycles during the lifetime of the actual system and its digital twin.

3 CHALLENGES AROUND MODELS
ANDMODELLING IN DIGITAL TWINS

The previous section presented typical elements of digital twins and
their life cycle, highlighting some of the challenges in developing and
maintaining digital twins. Importantly, digital twins include models (in
the form of digital representations that can be used to derive insights)
of some actual system. This section examines these models in detail:
what are the different types of models involved in a digital twin’s life
cycle and how can making these models explicit help us engineer and
maintain digital twins more efficiently and effectively.
Models are more than data: they capture structure and provide con‐

text for the interpretation of data. Digital twins include data gathered
from the actual system and models that support the interpretation and
analysis of these data. Some models are derived from data—either a
posteriori from historical data or (updating) dynamically. Other mod‐
els are provided as a priori descriptions/prescriptions27 independent of
data, though they may be parameterized with data from the actual sys‐
tem. Where information cannot be easily measured or computed, one
can use approximation models, also known as surrogate models. These
aim to learn functional relationships between data inputs and outputs
statistically, but can sometimes lead to a lack of explainability. Mod‐
els are on the knowledge and information planes of the well‐known
data–information–knowledge hierarchy28,29.
In our discussion, we make a fundamental distinction between two

types of models:

1. Models in digital twins are models of the actual system that are main‐
tained inside the digital twin. They capture information about the
actual system and enable analysis, simulation, inspection etc. These
models can be descriptive, predictive, or prescriptive (see5).

2. Models of digital twins, on the other hand, consider the digital twin
system as a complex software‐intensive system and capture infor‐
mation about the structure, behaviour, and state of the digital twin
system.

The following subsections discuss each of these two types in turn.

3.1 Models in Digital Twins

These are the models we often think of first when considering a digital
twin – after all, models of an actual system are an integral part of ev‐
ery digital twin. Considering them as explicit artefacts, rather than as an
implicit model that perhaps emerges from data in a database together
with a particular analysis algorithm (say, a deep‐learning‐based classi‐
fier), allows us to think about their structure, purpose, and life cycle
more deeply.
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3.1.1 Kinds of models

Digital twins include different kinds of models. In particular, modelling
experts differentiate structural and behavioural models:

1. Structural models, which capture the logical structure of the actual
system—i.e., its sub‐systems, components, and actors. Examples
are, e.g., structural models of railwork networks, citizen energy
communities, or production plants. Structural models can be ex‐
pressed in general purpose modelling languages—for example Sys‐
tems Modelling Language (SysML) block definition diagrams—as
well as domain‐specific modelling languages, e.g., domain‐specific
architectural component‐and‐connector diagrams.

2. Behavioral models, which capture key processes and interactions in
the actual system and between the actual system and its environ‐
ment. A typical modelling language for such processes in the busi‐
ness domain is the Business Process Model and Notation (BPMN)
standard. In the systems engineering domain, state machines are a
familiar modelling language, but more domain‐specific models also
exist.

Orthogonal to these two kinds, modelling experts also structuremod‐
els based on properties of the system engineers aim to develop models
for: engineered or natural systems. These models could have structural
and behavioural aspects.

1. Models for engineered systems capture detailed mechanisms, the tan‐
gible structure and behavior of these systems. Examples include
CAD models, building information models (BIM) in the construction
domain, geographic information system (GIS) models (for example
of the geographical layout of a railway network), or SysML models
describing the structure and behavior of a production machine.

2. Models for natural systems aim to describe the structure and behavior
of these existing systems. Examples include mathematical models
(e.g., ODE‐style descriptions of chemical reaction networks), models
describing the topology and geographical structure of the world, or
weathermodels as simulations of the future state of the atmosphere
through time.

Models in digital twins can be captured in general‐purpose modelling
languages but also in highly domain‐specific modelling languages30,31.
This broad variety of languages raises challenges around integrating
models captured in different modelling languages, created by experts
in different organizational units, or focused on different aspects of the
actual system, ensuring their consistency and coherent evolution over
time.
Systems of interest for representation through a digital twin are often

systems of systems32. Different sub‐systems in such a system of sys‐
tems are controlled by different organisations or actors, making the idea
of a single, centrally managed digital twin of the complete system unre‐
alistic. Instead, for a practical realization of digital twins, there is a need

for federating digital twins, reflecting the compositional construction of
the system being twinned and making the digital twin itself a system
of systems 33. In such a situation, each of the “sub‐twins” will have its
own ways of referring to key elements of the system being represented.
Centrally aligning thesemodel concepts to a commonly agreed ontology
is usually difficult because of the nature of distributed organisational
control in the actual system. Instead, digital twin engineers need to be
able to map representations onto each other. Capturing the decisions
we make in such a mapping explicitly is important for quality assurance
purposes.

3.1.2 Purpose

Every model is constructed for a purpose34. The purpose determines
what aspects of reality we include in the model and what we abstract
away. This abstraction, in turn, determines what the model can be used
for andwhere its limitations lie. For example, a simulationmodel created
for analysing the flow of streams of passengers through an airport may
not have enough information to analyse individual passenger decision
making.
This focus on a purpose and different abstractions is interesting in

the context of digital twins, where the lifetime can be long. The ques‐
tions digital twin users ask of a digital twin—that is, the digital twin use
cases—are likely to change, leading to a slow change in the purpose of
the digital twin over time. The services in the digital twin need to evolve
with this change. As a result, the models underlying these services may
no longer be sufficiently accurate or include all the information required
and may need to change, too. This need for change creates challenges
aroundmaintainability and consistency: large, monolithic models will be
more difficult to evolve consistently, efficiently, and systematically35.
Even the modelling tools and formalisms may change over time, given
the potentially very long lifetimes of digital twins and their actual sys‐
tems. Equally, evolving models will likely change the alignment between
models and the underlying data. One solution attempt might be to col‐
lect as much data as possible and speculatively integrate as much of it
as possible into models even if this information is not required for the
current purpose. This solution attempt may provide flexibility when the
purpose changes (assuming changes in purpose can be predicted rea‐
sonably well), but will make the use of the models more difficult for the
initial purpose.
For digital twins to be used as decision‐support systems (for example,

in socio‐technical digital twins36) or even more autonomously (as in
the definition of digital twins proposed by Kritzinger et al.20), digital
twin users must be able to trust them37. This means digital twin users
must be able to understand how the digital twin has arrived at its de‐
cisions and recommendations 38 and that the models inside the digital
twin are sufficiently accurate representations of the actual system for
the recommendations and decisions to be appropriate. Simulation is a
core service provided by digital twins and fundamental to its planning
and decision‐making capabilities. In the context of engineered systems,
trust in models and simulations has been discussed under the labels
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F I GUR E 3 Life cycle of a digital twin in detail.

of “experimental” or “validity” frame39,40. These take the perspective
that the essential validation required is whether a simulation can re‐
produce the input–output behaviour of an actual system to a desired
level of accuracy. In the context of complex systems (including biolog‐
ical and socio‐technical systems), research suggests41 that a richer set
of information is required to ensure trust in the model, linking mod‐
elling decisions to the scientific literature, real‐world experimentation,
expert decision making etc. In particular, this approach suggests that we
need to be able to trust the structure of the models and not just their
input–output behaviour. Establishing trust at this level requires making
a structured argument 42,43, similar to how one might construct a safety‐
assurance case. Where digital twins integrate artificial intelligence, in
particular, machine learning, similar arguments are required to ensure
trust 44.

3.2 Models of Digital Twins

Here, the focus is on some of the modelling concerns relevant as part
of the development of a digital twin as a complex software system.
This development can be connected to the model‐based systems engi‐
neering process 45, however, it is a process on its own requiring agile
development methods.
Figure 3 takes a closer look at the continuum formed by the whole

life cycle of a digital twin, as supported by DevOps principles, i.e.,
the requirements analysis, design, generation and implementation, test,
release and operate phase. This continuum enables the seamless tran‐
sition from one step to another in the life cycle. From a software
engineering point of view, a high degree of reuse is to be aimed for; li‐
braries of models, domain‐specific modelling languages, and digital twin
services foster such reuse (the green arrows in Figure 3 show the library
reuse).
Digital twin engineers collect relevant requirements for the digital

twin and create requirements models within the requirements analysis
phase of a digital twin. This collection can include functional require‐
ments of the digital twin to be built up to specific user needs andwishes.

The requirements are then used to design the digital twin. In the design
phase, we plan the first version of the digital twin and create designmod‐
els such as for the system architecture or data structure, select which
languages should be available in the digital twin during its runtime, and
select which services from the service library to include in the digital
twin. The production code and test code that uses the selected digital
twin services and functionalities are derived from the design models by
hand or using generative techniques as in Model‐Driven Engineering
(see Section 4). After successful tests, the digital twin can be released
and start its operation. The operation of the digital twin is characterized
by the continuous monitoring of the actual system and its context.

3.3 Models Across the Digital Twin Life
Cycle

As digital twins exist for long‐living actual systems, e.g., up to 20 years
for injection molding machines or wind‐turbine parks, and up to 50
years for bridges or buildings, it is clear that requirements for the actual
system and the digital twin of it, and its context may change mas‐
sively. This continuous need to react to changes requires an engineering
approach with continuous DevOps cycles for the digital twin which
influences both models in digital twins and models of digital twins.
Since these continuous DevOps cycles of the digital twin are trig‐

gered by changes in the system or its context, we are focusing on these
changes in the ongoing relationship between the actual system and
the digital twin. Figure 4 takes a closer look into the four main phases
of the life cycle of an engineered actual system: Design where the ac‐
tual system is planned; Construction where it is built; Operation where
it is used; and End‐of‐Life where it is refurbed, demolished, and recy‐
cled. In an ideal world, all of these phases are accompanied by a digital
twin which transforms continuously from a design digital twin to a con‐
struction digital twin, or monitoring digital twin. This transformation
requires continuous DevOps cycles for the digital twin (the DevOps cy‐
cle from Figure 3 is shown as continuous grey loops below the actual
system in Figure 4).
Already at the beginning of the design phase of the actual system 1

in Figure 4, we have to engineer the digital twin by reusingmodels of the
actual system and digital twin services as discussed in Figure 3, to have
a digital twin already available when the design of the actual system
starts.
Depending on the type of actual system represented by the digital

twin, models of the system may already play a role independently of
the existence of a digital twin. In particular, where the actual system is
an engineered system (including, for example, production line systems),
models are likely to exist that were used in developing the actual system.
To ensure high fidelity of the digital twin aswell as efficient development
of the digital twin, it is helpful for digital twin engineers to be able to
reuse these models directly inside the digital twin. However, reuse can
be challenging, as it requires the models to be kept consistent with the
actual system throughout its design and implementation. It also requires
the definition of mechanisms for how elements in the model connect to
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F I GUR E 4 Life cycle of the actual system accompanied by the life cycle of its digital twin.

elements in the actual system. This connection is a general requirement
andmay become easier where designmodels are reused, as the relevant
traceability information may already have been captured.
In the design phase ( 2 in Figure 4), models about the actual system

are created, e.g., systems engineering models. These models are contin‐
uously updated in the digital twin as they evolve in reality over time.
Moreover, 3 data about the engineered system is created in third‐party
applications—for example, sets of parameters in simulation and opti‐
mization software—and shared with the digital twin and communicated
back in other stages of the design phase. The digital twin can handle
data and models as it 4 includes services—for example, for data and
parameter visualization, simulation, or model validation.
The engineering process of the digital twin has to take into account

that the design process of the actual system often starts with the design
of objects which are then realized not in lots of size 1 but where sev‐
eral actual systems are constructed and operated. Thus, multiple digital
twins have to be realized, based on the same initial set of engineering
models, data and services at the beginning, which are then adapted to
the actual context during construction. When the planning of a prod‐
uct line moves on to a concrete engineered product, 5 we can transfer
the planning data and models of a product line digital twin to the digital
twins of concrete production machines. Those are then further detailed
during their design phase and receive updated models, and data.
Changes in this design process or changing requirements might make

it necessary to 6 start a new dev‐cycle of the digital twin and, e.g.,
update existing models of digital twins, or include additional models or
services from the libraries.
Complex actual systems take some time to be actually constructed—

from several months up to several years for production lines and facto‐
ries. In this construction phase, we receive 7 data on the construction
process and have to 8 update models if the planned ones deviate

from reality. Based on such changes, engineers might have to 9 update
parameters in the cyber‐part of an actual cyber‐physical object.
As in the design phase, also in this phase changing management,

changing laws, new key performance indicators, new services, and new
data might require changing the digital twin and 10 starting new
dev‐cycles.
In the operation phase, the digital twin 11 monitors the actual sys‐

tem and receives data continuously. One can 12 compare planned
runtime models with real runtime models and if deviations occur, the
digital twin 13 sends execution commands to adapt the actual system.
In additional development cycles 14 , one can add new languages—
for example, to add runtime models, or new services (e.g., for process
discovery from data or process conformance checking).
In the end‐of‐life phase, the actual system and its parts can take dif‐

ferent paths: the system can be deconstructed, parts can be recycled,
reused, or thrown away. This change in the actual system might require
15 to reconfigure our digital twin, e.g., based on new data or the ab‐
sence of expected data. Due to legal reasons 16 , we might need to
keep data and models (or the whole digital twin) longer than the actual
system. Moreover, we might 17 reuse parts of the actual system and
provide related data, models, and services for the digital twin of the
other actual system.
To summarize some main challenges when developing and evolving

digital twins: Besides the current practice of ad‐hoc development of dig‐
ital twins, several problems are related to the underlying complexities
of the actual system46,47: The system complexity due to a large number
of heterogeneous subsystems, time complexity related to the long lifes‐
pan of the actual system and changing realities, integration complexity
due to heterogeneous artefacts, different stakeholders and heteroge‐
neous views, as well as information complexity due to heterogeneous
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data and models. In addition, budget challenges might influence the de‐
velopment and maintenance of digital twins. Moreover, current digital
twin practices face a gap in information and feedback flows between
the different life cycle phases.

4 MODEL‐DRIVEN ENGINEERING

As we have seen, models play a key role in many aspects of digital twin
development. This prominent role of models raises important questions
about how these models should be created, maintained, manipulated,
and used (see also Tao et al. 48, Sect. V.B). Some of these challenges have
already surfaced in the discussion above. For example, we have seen
the importance of being able to reuse models across life cycle stages.
MDE 8 is a sub‐field of software engineering that focuses on using

models as first‐class artefacts in the software engineering process. As a
result, the field has developed many techniques for the efficient devel‐
opment of modelling languages, effective manipulation and validation
of models, and techniques for maintenance and optimisation of models.
These techniques will also be useful in the creation and use of digi‐
tal twins. The next section discusses some of the ways in which MDE
can help address digital twin challenges and outlines some open chal‐
lenges that should be addressed between the MDE and digital twin
communities.
To set the context for this discussion, we briefly set out the key con‐

cepts in MDE. For space reasons, this section cannot be an exhaustive
introduction to the field. For more detail, Brambilla et al.8 provides a
good introduction.

• Models are the key ingredients of MDE. A model is an abstraction of
parts of the real world for a purpose.

• In MDE, models need to be expressed in a modelling language
that has been formalised (i.e., exists in a way that is unambigu‐
ously processable by a computer). Modelling languages can be
general‐purpose, like the UnifiedModelling Language or SysML. For
many projects, domain‐specific modelling languages (DSMLs), cre‐
ated specifically for the development of applications in a particular
domain, can be more useful.

• Models can be transformed into other models or into text (e.g.,
program code, documentation, reports, etc.) by automated model
transformations, often expressed in dedicated transformation lan‐
guages.

• A large range of tools andmechanisms exist tomanagemodels.These
support model versioning, model comparison, model analysis, model
validation, model composition and reuse, linking models, and many
more.

5 MDE OF DIGITAL TWINS: A RE‐
SEARCH ROADMAP

The previous sections described the different aspects and processes in‐
volved inMDE of digital twins. They covered the topics of development,
execution and analysis of a digital twin, and throughout, highlighted the
concerns and considerations developers should have in developing a
digital twin. In this section, we perform a gap analysis, discussing the
remaining challenges facing digital twin development and potential av‐
enues for future research topics. Figure 5 shows an overview of current
challenges, existing solutions from the MDE Body of Knowledge and
needed action items for each topic further discussed in the following
subsections.

5.1 Development Guidelines and Stan‐
dardisation forDigital Twins and their Engineer‐
ing

Digital twin development is still largely ‘artisanal’ and would benefit
from the possibility of reuse and from standardisation of development
knowledge 49, such as ongoing in ISO/IEC JTC 1/SC 41 for IoT and
DTs† or for cities and municipalities in DIN SPEC 91607 ‐ 2024‐1150.
Even though implementation differences exist between digital twins in
different contexts and environments, the potential to standardise refer‐
ence architectures or requirements capture for digital twins remains. In
an MDE‐based approach to digital twin development, such knowledge
would be captured in DSMLs, models, and model transformations. Re‐
search challenges remain around specifying the concrete DSMLs and
transformations: For example, what are the concepts required in DSMLs
that can capture the typical requirements, assumptions, and scope of
digital twin systems?What are the most important non‐functional prop‐
erties of digital twin systems, including specific properties such as
synchronization frequencies and fidelity? How can they be captured
in models of digital twins and can such models be automatically trans‐
formed for analysis at digital twin design time or even to generate
digital twin implementations that achieve the required non‐functional
properties by construction?

5.2 Digital Twin Interoperability

Integration and data exchange between different components is a key
technical challenge in digital twin development. Correct and timely data
conversion when synchronizing the information in the digital twin with
the status of the actual system is crucial for digital twin efficacy, par‐
ticularly where virtual models and services within a digital twin are
largely heterogeneous and use different data formats. Time‐based qual‐
ities, security, and modularity are core digital twin qualities and are
closely tied to design and data transfer concerns. An MDE approach

† https://www.iso.org/committee/6483279.html
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could help address these challenges in two ways: (i) using DSMLs, data
formats could be standardised across components for more efficient
information interchange; and (ii) where such alignment is not possible,
the translations required could be implemented using model transfor‐
mation technology, making them explicit and amenable to analysis and
verification. Where digital twin components are provided externally
as ‘black boxes’, MDE offers opportunities for automating the gener‐
ation of wrappers and glue‐code to increase reuse efficiency. In the
area of simulation—keeping in mind that many digital twins include
a simulation capability—distributed co‐simulation51 and the high‐level
architecture52 are established approaches for black‐box composition.
These approaches can be combined with the generation capabilities of
MDE to achieve even greater flexibility across domains53. Challenges
remain, of course. For example, only a limited understanding currently
exists of what the structure of the information to be interchanged
should be (though work such as the Asset Administration Shell17 has
made anMDE‐based start on these questions). Equally, many data inter‐
change transformations need to be bidirectional. The theory and tooling
for bidirectional transformation is an active research area within MDE.

5.3 Multi‐Paradigm andMulti‐ViewMod‐
elling for Digital Twins

Models in a digital twin often span multiple levels of abstraction. For
example, a digital twin for agriculture may include a model concerning
the qualities and properties of fields such as turnover rate and yield,

but may also include a model on individual crops and their optimal
growth conditions, etc. Integrating these different abstraction levels
into a single digital twin is often far from trivial. Communication pro‐
tocols between models at different abstraction levels, and aggregation
of data collection from those models, need to be considered carefully.
Often, a digital twin involves a diverse range of stakeholders during de‐
velopment, maintenance, and use. Different stakeholders may require
different viewpoints on the digital twin (both in relation to models in,
and models of the digital twin), including the type of data exposed to
the user and the format/syntax of data presentation. In MDE, the ar‐
eas of multi‐paradigm and multi‐view modelling address challenges like
the two above, making the theory and tools developed highly relevant
for digital twin development. Significant open research challenges re‐
main. For example, research is needed on how tominimise development
overheads such as facilitating stakeholder engagement, implementa‐
tion time for different data views, and view integration. Bidirectional
synchronization and transformations play a key role here54.

5.4 Model, Object, and Digital Twin Evo‐
lution

Section 2.3 discussed the relationship between the life cycle of the ac‐
tual system and the life cycle of the digital twin. We highlighted that
this relationship requires constant co‐evolution between the digital twin
and the actual system – beyond just bi‐directional data updates, this
also needs to support updates to the structure of any models kept in
the digital twin 55. For example, when new services and components are
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added to the actual system, these need to also be represented in the
digital twin, requiring appropriate amendments to the structure of any
models in the digital twin. MDE research has a significant body of work
exploring aspects of co‐evolution between models and the reality they
represent or reactive updates from one model to connected models56.
These ideas are also applicable in the digital twin context. However, new
challenges arise related to the need for the digital twin to be updated
automatically when changes in the actual system occur. For example,
how and when a digital twin should be ‘disconnected from/reconnected
to’ the actual system and how the virtual representation and services of
the digital twin can be updated appropriately and automatically. Digital
twin engineers also have to consider how these changesmay impact the
consistency of models/meta‐models and data during transition periods.

5.5 Model‐Based DevOps for DTs

Digital twins requiremodels of the actual system. Creating thesemodels
initially can be challenging. For engineered actual systems in particu‐
lar, models often already exist from the system design phase. However,
these can currently be difficult to reuse when creating digital twins. In
MDE, the idea of models@runtime57,58 provides tools and techniques
for managing system (design) models at runtime of a software system.
This idea has led to the extension of DevOps ideas to the space of
run‐time model‐based DevOps59,60, including the smooth transition
from design models to runtime models61. Digital twins need to man‐
age very large models and data sets efficiently and effectively, and this
management continues to be a research challenge for models@runtime
approaches, too. Similarly, digital twin engineering still raises challenges
around identifying appropriate abstraction and refinement mechanisms
to synthesise the rich detail of actual data into processable model infor‐
mation and vice versa 62. Moreover, feedback from the operation phase
of the actual system and its digital twin back to the system design and
its design models could improve engineered systems.

5.6 Composition of Digital Twins

Actual systems are complex, and as discussed before, represent actually
systems of systems. As a consequence, digital twins cannot be devel‐
oped monolithically, but rather need to be considered as federations
of sub‐twins 33. This federation raises challenges about the safe and
robust composition of different digital twins, their models and simula‐
tions. MDE has a long tradition of exploring issues of modularity and
composition/integration of models, transformations, and DSMLs, both
in foundational terms and practical tools. All of these are applicable to
digital twin development and can provide significant benefits. MDE is
also able to capture typical digital twin composition operators in appro‐
priate DSMLs, which would enable more efficient expression of new
composition scenarios, including their dynamic manipulation and opti‐
misation. However, significant challenges remain61, not least around
managing information protection between different organisations in

charge of different sub‐digital twins, and in relation to supporting dy‐
namic federation (and disbandment) of digital twins. This challenge
requires dynamically adjusting models and simulations, possibly part‐
way through simulation runs, while making sure that real‐time and
historic data (which may be based on different twin federations) are
managed robustly and reliably.

6 CONCLUSIONS

To create, maintain and evolve digital twins along with their actual sys‐
tem over a long lifespan is a significant engineering challenge.Modelling
is at the core of digital twins48. In this paper, we have discussed differ‐
ent forms ofmodelling in and of digital twins and howMDEprovides the
basic techniques to support the digital twin life cycle in an agile manner.
We have identified different ways of applying MDE to digital twin de‐
velopment and operation and have identified future research challenges
for MDE‐based digital twin development.
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