
Efficient Multi-Objective Optimisation of Service

Compositions in Mobile Ad hoc Networks Using

Lightweight Surrogate Models

Dionysios Efstathiou, Peter McBurney, Steffen Zschaler

(Department of Informatics, King’s College London, UK

dionysios.efstathiou@kcl.ac.uk, peter.mcburney@kcl.ac.uk, szschaler@acm.org)

Johann Bourcier

(IRISA, University of Rennes 1, France

johann.bourcier@irisa.fr)

Abstract: Infrastructure-less Mobile Ad hoc NETworks (MANETs) and Service-
Oriented Architecture (SOA) enable the development of pervasive applications. Based
on SOA, we can abstract devices’ resources as software services which can be combined
into value-added composite services providing complex functionalities while exhibiting
specified QoS properties. Configuring compositions with optimal QoS is challenging due
to dynamic network topologies and availability of resources. Existing approaches seek
to optimise the selection of which services to participate in a centralised orchestration
without considering the overhead for estimating their combined QoS. QoS metrics can
be used as fitness functions to guide the search for optimal compositions. When com-
posing services offered by diverse devices, there is no trivial relationship between the
composition’s QoS and its component services. Measuring the fitness values of a candi-
date composition could be done either by monitoring its actual invocation or simulating
it. However, both approaches are too expensive to be used within an optimisation pro-
cess. In this paper, we propose a surrogate-based multi-objective optimisation approach
for exploring trade-off compositions. The evaluation results show that by replacing the
expensive fitness functions with lightweight surrogate models, we can vastly accelerate
the optimisation algorithm while producing trade-off solutions of high quality.
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1 Introduction

Mobile devices such as smart-phones and tablets are progressively replacing

PCs and laptops for web-access [van der Meulen and Rivera, 14]. Modern mo-

bile devices are equipped with a wide range of built-in sensors, fast proces-

sors, and networking capabilities. Due to the amount of offered features, these

devices present great potential for creating ubiquitous applications by form-

ing self-configuring ecosystems of collaborating devices. In such applications,

the device-to-device communication is based on infrastructure-less Mobile Ad

hoc NETworks (MANETs) [Corson and Macker, 99] which are peer-to-peer net-

works with no central control entity or pre-existing networking infrastructure.

Within such networks, devices, or in general computation nodes, move freely



and may join or leave the MANET at any time. Data exchange is realised in a

multi-hop fashion using intermediate nodes as relays [Corson and Macker, 99].

In recent years, MANETs have been used in various domains, including health-

care, emergency management, and smart cities [libelium, 13].

Service-Oriented Architectures (SOA) promote node-to-node collabora-

tion by abstracting nodes’ available resources as loosely coupled soft-

ware services. Services are designed based on the important property of

composability [Huhns and Singh, 05] where individual services can be com-

bined into value added compositions. Service composition provides func-

tionality that none of the component services could provide by it-

self [Papazoglou and Georgakopoulos, 03].

While service composition offers a nice programming abstraction for

aggregating loosely-coupled services, designing compositions with the de-

sired functionality and optimal Quality of Service (QoS) properties,

such as response time and energy consumption, is a very challenging

task [de Oliveira Jr. and de Oliveira, 11]. On the one hand, the highly hetero-

geneous nodes participating in a MANET offer services with varying QoS levels.

On the other hand, the inherent dynamism present in such networks causes

QoS levels to be highly fluctuating. Our goal is to enable the exploration of

composition configurations which are optimal in terms of multiple QoS metrics.

However, there may be a large number of equivalent service compositions with

the same functionality, but with different QoS. Note that the size of the search

space increases with the size of the considered service-based network. Using an

exhaustive search for exploring a set of trade-off solutions is infeasible.

Multi-Objective Evolutionary Algorithms (MOEAs) are able to search large

spaces and return a set of near-optimal solutions at any-time. QoS metrics are

ideal to be used as fitness functions for guiding the search for optimal service

compositions [Harman and Clark, 04]. However, estimating the QoS of a can-

didate service composition is not trivial especially in the case of distributed

service-based MANETs. In traditional approaches, the QoS of a composition is

estimated either by simulating or by actually invoking the composition and mon-

itoring the underlying system. However, both approaches are computationally

expensive requiring minutes or even hours for a single evaluation, thus making

impractical their application in the search process of MOEAs.

State-of-the-art service composition optimisation approaches use synthetic

functions for simulating services’ QoS [Canfora et al., 05, Rosenberg et al., 10].

Other studies use one-time measurements of services’ QoS which are assumed to

remain static during the life-cycle of the composed service [Mabrouk et al., 09,

Zheng et al., 11].

We propose the use of lightweight surrogate models in a traditional MOEA

to accelerate the exploration of (near-) optimal service compositions. The main



contributions of our study are the following:

– We present low cost statistical models for predicting the service com-

positions’ QoS in the context of a fire-fighting pervasive application. The

results show that the developed models provide accurate predictions with

little computational effort and by exploiting limited predictive information.

– We introduce a multi-objective optimisation approach to efficiently

explore (near-) optimal service compositions. We use the popular

NSGA-II algorithm [Deb et al., 00] and replace the expensive simulation-

based fitness functions with statistical models which act as surrogates for

guiding the search for optimal solutions. Our experimental results indicate

that the developed surrogates can guide NSGA-II to high quality solutions.

This paper significantly extends our previous work in [Efstathiou et al., 14]

by considering the services response time and presenting the process of building

and assessing the developed surrogate models.

The remainder of this paper is structured as follows: Section 2 presents the

motivation and the optimisation problem of our research. Section 3 discusses

the background on building surrogate models and evolutionary optimisation.

Section 4 describes our surrogate-assisted approach for tackling the defined op-

timisation problem. Section 5 describes the methodology used in our experimen-

tal study. Section 6 presents the results of our study followed by section 7 which

discusses related work. Finally, section 8 presents conclusions and future work.

2 Motivating Scenario

We consider a service-based system for improving the decision making of

Fire-Fighters (FFs) in an emergency situation [Efstathiou et al., 13]. In this

scenario, FFs are equipped with mobile devices which form a mobile MANET.

Following SOA principles, devices offer their resources (e.g. data, network and

hardware components) as software services. Service composition promotes the

creation of complex applications by combining services offered by different

devices. Below we describe the services and devices involved in our scenario.

Scenario Services Consider the forest fire emergency situation where

a commanding FF uses periodically a composite application to infer whether a

FF is in danger to take appropriate measures if necessary. More specifically, the

commanding FF aggregates information about the condition of his subordinates

such as position, heart rate, and oxygen level. This information need to be fed

into a processing service which assesses if there is a potential danger. In the case

of an emergency event (e.g. a FF has stopped moving and high levels of carbon

dioxide in the blood are observed), another FF team in the close proximity



must be notified to intervene (e.g. by sending directions to a rescue team) along

with a medical team ready to approach. Finally, the various decisions and the

situation events are logged to the FF department’s database which may respond

with a set of recommended actions to be taken. The above service composition

is depicted in figure 1 and involves the invocation of the following services: data

collection, processing, internal emergency, external emergency, and notification.

Figure 1: The workflow of the example composite application.

Device Heterogeneity Table 1 presents the characteristics of the various de-

vices participating in the considered FF scenario. In detail, we classify the devices

based on their processing power into fast, medium and slow devices.

We assume that a service provided by a node with a fast CPU will perform

better than the same service running on a node with a slower CPU. Apart from

CPU speed, device’s load plays an important role in determining the response

time of a service running on a specific device. Similarly to the previous classifica-

tion, we classify devices based on their load to low, medium and highly loaded.

Given two devices with the same CPU speed but with different load, we assume

that the service running on the device with the lower load will perform better.

In such a dynamic and time-critical scenario where computational and battery

resources are limited, composite applications should exhibit specific QoS such

as minimum response time and battery consumption. However, services’ QoS is

influenced by a variety of factors such as topology changes, mobility, resource

availability, and others. QoS of a composite application are highly susceptible

to changes on the underlying network. The goal of our research is to enable the

exploration of composite services exhibiting optimal QoS trade-offs.

User Device CPU RAM Type

Commanding FF ACER Iconia A500 1GHz × 2 Cores 1GB Fast

FF Vehicle Raspberry Pi 700MHz 512MB Medium

Field FF IRIS/MICAz 8MHz 8KB RAM Slow

Table 1: Devices’ characteristics for the fire-fighting application scenario.



2.1 Problem Formulation

Suppose the abstract plan of a composite application describing a set of Abstract

Services (ASs) as illustrated in figure 1. The nodes of the formed MANET offer

Concrete Services (CSs) which implement the plan’s ASs. Service orchestrators

are responsible for calling the appropriate CSs and forwarding intermediate re-

sults to relevant nodes. Our goal is to produce QoS optimal compositions by tun-

ing the following available parameters of a service composition, called Degrees

of Freedom (DoF) [Efstathiou et al., 13]: (a) selection of CSs, (b) partitioning of

the composition into sub-orchestrations, and (c) selection of orchestrating nodes.

Definition 1. Distributed Service Orchestration Problem

Given: A set of m ASs creating the composition plan P , a set of n nodes partic-

ipating in the network where each node provides a single CS and can coordinate

a single orchestration, a mapping of the n available CSs that implement the

functionality of the m ASs, and a set of q quality objectives Q = {Q1, · · · , Qq}.

Let a composition plan P be represented as a directed graph consisting

of a node set AS = 〈AS1, AS1, · · · , ASn〉 of ASs and an edge set DF =

〈(ASi, ASj) : i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n〉 of data flow between ASs, where ASi

is the source and ASj the data destination.

Problem: Find a set of service composition configurations which implement the

functionality described by P and are optimal according to Q.

2.2 QoS Metrics - Fitness Functions

Fitness functions measure the quality of a solution and guide the search pro-

cess for finding the optimal ones. In Search-Based Software Engineering (SBSE)

problems [Harman et al., 12], QoS metrics are ideal to be used as fitness func-

tions for searching optimal software architectures [Harman and Clark, 04]. We

use the following QoS metrics for estimating the quality of a composite service:

– Response time QRT is the time from when a user issues a request until the

user receives the result. QRT is affected by: the network round trip time

(RTT) of the exchanged messages on the underlying network; the request

processing time (RTS) a service provider needs to process a request; and the

orchestration time (OT) for coordinating the execution of a set of services.

– Energy consumption QEC of a configuration, which is the energy difference

observed in the nodes for realising a service composition configuration where

nodes spent energy for: sending/receiving data, and orchestrating other ser-

vices. They also spend energy for service execution, but this is independent

of the configuration; therefore we can safely ignore it.

– Service reliability QSR is the ratio of successfully to total exchanged data

between collaborating nodes within a composition configuration.



2.3 Simulation Settings

We use NS-31 to simulate our scenario where firefighters of three hierarchical

levels (Group, Engine, and Team) carry devices which form an infrastructure-less

MANET and offer services. More specifically, we simulate a network of 84 mobile

nodes (4 Group Leaders, 16 Engine Leaders, and 64 Team Leaders/Members)

with transmission range of 45m distributed in a area of 500m×500m. Each group

follows a different mobility model because each group has a different purpose

and mission to fulfil. To ensure that the network is completely configured before

simulating a composition configuration we included a set-up/warm-up time of

20 seconds. For more details about the chosen mobility, network and routing

parameters, please refer to our previous work in [Efstathiou et al., 13].

2.4 The Need for Surrogate-Assisted Stochastic Optimisation

Suppose that we want to find a set of optimal compositions for an abstract

workflow of 6 ASs as shown in figure 1. Consider that each of the 84 networking

nodes provides a CS, and can play the role of an orchestrator. In our example,

assume the following mapping between abstract and concrete services ASi =

{4, 10, 20, 20, 20, 10}, which means that AS1 is implemented by 4 CSs, AS2 by

10 CSs, and so on. Assuming that we are free to choose any equivalent CS for

implementing the corresponding AS, this results to a total of 4× 10× 20× 20×

20× 10 = 3.2 · 106 possible service composition configurations.

The execution time for evaluating the QoS metrics of a single composition is

∼ 3 minutes using a powerful machine with Intel Core i7 vPro with 12GB DDR3

RAM. This means that a full enumeration of the search space of the 3.2 · 106

service compositions is infeasible as it would take ∼ 89 months of CPU time.

MOEAs seem unaffordable in our problem due to the high computational cost

of the fitness functions which has a critical impact on the overall complexity of

the search algorithm [Harman and Clark, 04]. For example, suppose that using

a MOEA requires 103 fitness function evaluations which would take ∼ 50 CPU

hours which is still infeasible for the time limitations of our scenario.

There are two main solutions for reducing the computation cost of a

MOEA [Jin, 05]. The first is to reduce the algorithm complexity of the MOEA

which does not seem promising as the main overhead is due to the complex na-

ture of the tackled problem. The second approach is to reduce the computational

cost by approximating the fitness functions used for guiding the search process

of the MOEA. To achieve this, functional approximation [Jin, 05] proposes the

replacement of the real computationally expensive fitness functions with cheaper

alternatives called surrogate models. These surrogate models can be used by the

1 Network Simulator 3 - http://www.nsnam.org/



MOEA to evolve the population of individuals at a smaller computational cost

than that of the real fitness functions.

3 Background Overview

In this section we present the necessary background about surrogate models and

evolutionary optimisation.

3.1 Surrogate Models

Surrogate models are statistical models built to approximate computationally

expensive functions. This model acts as a fit to the available training data so

that unknown data points can be predicted without calling the modelled function

[Jin, 11]. The real fitness function f (x) can be represented as y = f (x), where x

is the vector of design parameters and y is the QoS value of the service composi-

tion. Then, a surrogate model is of the following form ŷ = f̂ (x) = f (x)+ǫ, where

ǫ is the approximation error. Regression analysis [Hastie et al., 03] is a simple

and intuitive method for constructing such models. A representative set of re-

gression techniques in the machine learning literature is described below. Linear

Regression (LR) [Hastie et al., 03] assumes a linear relationship between the re-

sponse Y and the predictor variables X1, X2, · · · , XN . The process of building

a linear model is called Model Selection which refers to the process of choosing

the model with the appropriate complexity for the data.

Multivariate Adaptive Regression Splines (MARS) [Hastie et al., 03] are piece-

wise models which are formed by joining together two or more truncated linear

functions in distinct intervals of the predictors variables. There is a smooth

transition from one function to the next. In general, these linear functions are

polynomial curves which can be of any degree, typically cubic. Splines are suit-

able for modelling any smoothly changing response variable.

Classification and Regression Trees (CART) [Hastie et al., 03] are tree-based

models used for both classification and regression applications. CARTs are rep-

resented by a set of questions which split the initial training sample into smaller

and smaller parts.

Random Forest (RF) [Hastie et al., 03] is an ensemble model which combines

the results of multiple decision tree models and it is based on the same idea

with bagging. In bagging many bootstrap samples are drawn from the initial

data set which are used to build a prediction model, in this case a decision tree.

To perform a prediction, the results of all the trees are combined by averaging

which reduces the variance of the overall prediction.



3.2 Stochastic Optimisation

Evolutionary Algorithms (EAs) are based on biologically-inspired mechanisms

such as crossover, mutation, and selection, to evolve a population of individuals

which smartly explores a solution space. Each individual is a candidate solution

and is represented by a chromosome. A chromosome is consisting of genes. Genes

are analogous to the variables of the problem which are encoded based on its

nature (e.g. integer or real values). A chromosome is a vector of features (degrees

of freedom) which constitute a candidate solution. Chromosomes can be strings,

permutations, sets or any other data structure. Any EA is defined by a suitable

representation, a set of genetic operators, and one or more fitness functions.

Non-dominated Sorting Genetic Algorithm (NSGA-II) [Deb et al., 00] is the

most popular EA with a large number of applications and is based on two core

ideas: Pareto ranking, and crowding distance. Pareto ranking sorts the current

population into fronts of non-dominated solutions based on their Pareto domi-

nance. This ranking penalises solutions in regions of the objective space which

are dominated by many others, forcing the exploitation of the best population

members. Secondly, crowding distance measures the population density around

a solution and aims at maintaining diversity within the population. It is used

to break ties between individuals with the same rank in the selection phase of

NSGA-II where solutions with larger crowding distance are preferred.

4 The Surrogate-Assisted Optimisation Approach

In this section, we describe our approach for exploring (near-) optimal service

compositions. To build our search-based approach we need to define the fol-

lowing two ingredients: a problem representation, and the appropriate fitness

functions for guiding the search. For fitness functions, we propose the replace-

ment of the computationally expensive “real” simulation-based fitness functions

with efficient surrogate models described in the previous section.

4.1 Defining the Design Space

We first define the space of service composition configurations. The work in

[Efstathiou et al., 13] showed that by taking into account multiple DoFs for tun-

ing the quality of a composite service, we can define a solution space of higher

quality than the traditional orchestration which considers only the DoF of ser-

vice selection. In detail, we have proposed the following three parameters for

tuning the quality of a service composition configuration: service selection, or-

chestration partitioning, and orchestrator node selection. We call a composition

configuration a solution. The set of all possible solutions is the set of all possible

combinations of the defined DoFs, or in other words the defined design options.



4.2 The Optimisation Algorithm

We employed the popular NSGA-II algorithm for exploring trade-off composite

services. To apply the NSGA-II algorithm in our problem, we have to define the

following building blocks: solution representation, genetic operators, and fitness

functions, which are described in the subsections below.

Solution Representation The service composition chromosome consti-

tutes a container for further chromosomes. The genotypes exhibit variable

lengths due to the fact that the number of sub-orchestrations can be varied

between one (centralised orchestrator) and m (fully decentralised orchestration).

(a) (b) (c)

Figure 2: Chromosome representations for: (a) mapping concrete to abstract

services, (b) sub-orchestrations, and (c) composition configuration.

We represent a candidate solution as a three-fold assignment of (i) concrete

services to abstract services, (ii) abstract services to sub-orchestrations and (iii)

network nodes to orchestrator nodes. Figure 2(a) shows the chromosome for

mapping concrete services to abstract services. The chromosome for representing

a sub-orchestration is depicted in figure 2(b). Finally, a complete configuration

can be represented as a set of sub-orchestration chromosomes as denoted by

the + sign in the upper left corner of the box shown in figure 2(c). The grey

box indicates the chromosome, while the white boxes represent the genes that

compose the chromosome. The signs 1, + and ? represent the repetition of a

gene or chromosome exactly once, at least once, and at most once respectively.

Figure 3: An example service composition configuration.



An example chromosome representation for a complete composition

configuration is depicted in figure 3. In this example, we have two sub-

orchestrations which are hosted on nodes (SON) 2 and 4 respectively. The

first sub-orchestration includes the abstract services 1 and 2, while the second

orchestrates the services 3, 4 and 5. For implementing the abstract service

1 (AS), the concrete service 12 (CS) was selected which is hosted at node 2 (HN).

Genetic Operators The design of genetic operators is the second key

element for constructing any MOEA. The chosen varied size representation

complicates the implementation of genetic operators. For each of the three

considered DoFs, we designed a pair of crossover and mutation operators,

resulting to a total of 6 operators. Crossover ensures that features of the

parents will be passed to the offspring forcing the convergence on the good

solutions found so far (exploitation). For example, the single-point crossover for

the first DoF, produces a new configuration by combining the concrete services

mappings of two parents as depicted in figure 4.

Figure 4: An example crossover operation for the first DoF.

For the second DoF, two parent solutions are combined by swapping sub-

orchestrations. The crossover operator for the last DoF, creates an offspring by

combining the list of orchestrators of the parent configurations.Mutation ensures

that any possible configuration can be searched which increases the exploration

of the space and aims at maintaining diversity by avoiding to over-bias to fittest

individuals. For instance, the mutation operator for the first DoF chooses ran-

domly a concrete service for implementing an abstract service. The operators

were designed to allow the modification of solutions to reach any area of the

space while guaranteeing that the changed configuration is a valid one.



Symbol Variable Description

PV1 Hops # of wireless hops between nodes in a composition

PV2 Orchestrators # of orchestrator nodes in a composition

PV3 devFast # of fast devices in a composition

PV4 devMedium # of medium fast devices in a composition

PV5 devSlow # of slow devices in a composition

PV6 loadLow # of devices with low load in a composition

PV7 loadMedium # of devices with medium load in a composition

PV8 loadHigh # of devices with high load in a composition

Table 2: Variables for predicting the QoS metrics of composite applications.

4.3 Creating a Surrogate Fitness Function

By constructing a surrogate model our goal is to predict the QoS of a composite

service where service users and providers communicate over a wireless multi-hop

MANET. First, we need to determine the p factors (predictor variables) which

may affect the QoS metrics (response variables) described in section 2.2.

We develop models by using regression analysis techniques for predicting the

QoS of composite services in MANET environments. The models are trained

on datasets taken by simulating the studied use-case scenario. In this section,

we present the data gathering approach, the considered responses and predictor

variables as well as our model comparison methodology. Our goal is to find the

technique with the best performance on the studied problem.

4.3.1 Predictor Variables

We consider the seven predictor variables (p = 8) shown in table 2. These pre-

dictors are not the only ones which we could use for our study. We have chosen

these particular predictors for our analysis because it was comparatively cheap

to obtain the relevant data for them. For example, the information about the

hop distance between a pair of nodes in a network is already provided by the

underlying routing layer (e.g. OLSR [Jacquet et al., 01]) which is responsible for

discovering and maintaining communication routes within a wireless multi-hop

network. On the other hand, calculating the link interference at a node is a much

more complicated and expensive process [Zhou and Zhuang, 13].

4.3.2 Model Selection

When solving a prediction problem there is a wide range of available prediction

models to choose from. Each model may have many sub-models which are de-

fined by tuning their parameters. A candidate model is defined by two degrees



of freedom: the set of predictor variables in the model, and the model param-

eter values. In other words, our goal is to select the predictor variables and

parameter values which maximise the predictive power of the regression model.

Model Selection concerns the selection of the best prediction model based on

some performance metrics which is usually the prediction error of the model on

an independent validation set which was not used for training the model. For

each of the four regression techniques, we select the model with the maximum

predictive power among all the possible candidate models.

Variable selection is intended to select the “best” subset of predictors vari-

ables. Given that we consider 8 predictor variables as shown in table 2, this

results to a total of 256 possible combinations of predictor variables with sub-

sets ranging in size from single, to the set of all available predictor variables. As

the number of possible combinations is not too large, we performed an exhaus-

tive search to guarantee that we determine the optimal set of predictor variables

for the considered regression models. In each model size class p = 1, 2, · · · , 8

the model with the smallest root mean squared error was chosen as a candidate

model for the final step of model selection.

When building a regression model like MARS, CART, and RF, a number

of parameters must be tuned. Parameter tuning concerns the selection of the

optimal parameter settings. The choice of the optimal parameters is done by

an exhaustive search of all the possible combinations of the parameters in the

ranges shown in table 3. These ranges were chosen based on the characteristics of

our prediction problem and on the common parameter settings of the considered

regression techniques. We select for each technique the parameter setting which

results in the minimum root mean squared error.

Model Parameter Tested/Used Range

MARS
nk [5, 30]

thresh [.001, .005] , by .0005

nprune [1, 30]

CART
minsplit {10, 20, 30, 40, 50, 100}

cp {.005, .01, .02, .03, .04, .05}

RF
ntree {500, 750, 1000, 2000, 3000}

mtry [1, p = 8]

Table 3: Parameters of the regression techniques



4.3.3 Model Assessment

This step is carried out after model selection and aims at acquiring an objective

judgement of the generalisation performance of the compared approximation

models. The models are trained using the complete dataset used in the Model

Selection step (training and validation sets). To acquire an objective estimation

of the prediction performance of the compared models, we use an independent

test set. The aim of this comparison is to select the model which performs best

in new data, or in other words, minimises the prediction error.

5 Experimental Validation

Our experimental study aims to answer the following research questions:

– RQ1 Which is the best performing surrogate model in terms of prediction

accuracy outside the training set?

– RQ2 Can the developed surrogates replace the simulation-based functions

within the evolutionary algorithm for exploring good optimal solutions?

– RQ3 How much do we gain in terms of computational cost and how much

do we lose in terms of optimality by using a light-weight surrogate model

instead of the real expensive fitness function?

5.1 Methodology

We used R to evaluate the surrogate models mentioned above. The train-

ing dataset was collected by using a simulation-based approach as we do not

have the resources for performing real-world experiments of the studied scenario.

Prediction Quality Metrics To evaluate model quality we use four

metrics [Hastie et al., 03]: coefficient of determination R2, Mean Absolute Error

(MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and

Mean Absolute Percent Error (MAPE). Errors over large and small values are

not weighted by using the previous error metrics. MAPE is a measure of how

high or low are the differences between predictions and actual data.

For the optimisation part of our prototype we used the MOEA Framework2.

We took advantage of the elasticity provided by Amazon Elastic Compute Cloud

(EC2) for executing the computationally-expensive experiments including the

simulation-based fitness functions. The NSGA-II algorithm evolved a population

of 96 configurations for 30 generations. After some tuning, we resulted with

the following parameters for our problem: 95% crossover rate, 5% mutation rate.

2 http://www.moeaframework.org/



Optimisation Quality Metrics To quantitatively compare the perfor-

mance of NSGA-II for the cases of the expensive and surrogate fitness functions

we employ four quality indicators, namely Hypervolume (IHV ), Cardinality (IC),

Spread (∆) and Generational Distance (IGD) [Deb et al., 00, Zitzler et al., 08].

Cardinality measures the number of optimal solutions in a Pareto set ap-

proximation. It is cheap to compute but is not compatible with the Pareto

dominance relation. IHV calculates the volume of the objective space which

is weakly dominated by an approximation set and is the only unary indicator

known to be strictly monotonic [Zitzler et al., 08]. The higher the hypervolume,

the better the quality of the approximation set. ∆ is a diversity metric which

measures how evenly the points in the approximation set are distributed in

the objective space. Smaller spacing indicates better population spread. IGD

measures how far is the solutions in the approximation set from the reference

set which represents the best possible Pareto set.

To compute these indicators, we normalised fitness values to avoid unwanted

scaling effects based on ideal and utopia points in the union of all approxima-

tion sets achieved by all approaches in comparison [Knowles and Zitzler, 06].

Similarly, we computed a reference set by determining the set of non-dominated

solutions in this union set.

5.2 Statistical Analysis

In evolutionary optimisation the relationship between quality of resulted solu-

tions and required resources is not fixed, but can be described probabilistically.

If we apply the same algorithm several times to the same problem, each time a

different set of (near-) optimal solutions may be returned. To obtain reliable con-

clusions about the performance of the inherently stochastic MOEAs, we repeat

each algorithm 30 times and collect the values of the studied quality indicators.

A statistical test is used to assess whether the observed differences between

compared algorithms are statistically significant [Arcuri and Briand, 11]. We use

a non-parametric Mann-Whitney test to evaluate statistical significance because

we have no information about the distribution of the data.

6 Results and Discussions

Results for RQ1 To determine the most appropriate surrogate model for our

problem, we compare them according to their accuracy which is the ability of the

model to closely predict the response variables. Table 4 presents the results for

the four prediction metrics R2, RMSE, MAE, and MAPE of the four models in

comparison (LR, MARS, CART, and RF). The results are based on a hold-out

10-fold cross-validation technique [Hastie et al., 03].



QoS Metric
Surrogate Test Error

Model R2 RMSE MAE MAPE

Response

Time (QRT )

LR 0.63 12 8.5 0.14

MARS 0.83 8.5 6 0.094

CART 0.44 18 12 0.17

RF 0.8 8.6 5.9 0.092

Service

Reliability (QSR)

LR 0.25 10 8.1 0.1

MARS 0.33 9.7 7.7 0.098

CART 0.052 12 9.6 0.12

RF 0.2 11 8.4 0.11

Energy (QEC)

LR 0.45 0.029 0.023 0.032

MARS 0.55 0.026 0.021 0.029

CART 0.052 12 9.6 0.12

RF 0.41 0.03 0.023 0.033

Table 4: Accuracy metrics of the regression techniques (a higher R2 and a

smaller RMSE, MAE, or MAPE value is desired).

Among the compared models, MARS obtains smaller prediction error for

almost all the considered QoS metrics for the cross-validation tests. MARS is

followed very closely by RF especially for the case of QRT where RF slightly

outperforms MARS for the MAE and MAPE metrics, while CART has the

worst performance. MARS outperform the tree-based techniques (CART , RF )

by having ∼ 35% lower test-error. For the QSR and QEC QoS metrics, LR

outperforms CART and RF . Despite RF ’s additional complexity as an ensemble

technique it achieves lower predictive performance than MARS for most of the

cases. RF does, however, outperform CART as expected.

We observe that the considered models exhibit the poorest performance for

the QSR metric. This may be due to the fact that this QoS metric is affected

by other factors which we did not consider as potential predictor variables.

Our intuition suggests that the probability of successful packet transmission is

based on factors more costly to acquire or measure such as signal-to-noise ratio,

interference estimation, and others [Baumann and Heimlicher, 07].

Results for RQ2 In RQ1, we studied the predictive performance of

the proposed surrogate models applied on external test sets. When evaluating

surrogate models to be used within a MOEA, we need to assess the ability of

the developed models to guide the search towards good areas of the service

composition configuration space. With regards to RQ2, we first run the

NSGA-II algorithm with the simulation-based fitness function. Then, we



Fitness IHV IC ∆ IGD

Function Mean σ Mean σ Mean σ Mean σ

Expensive 0.925 ± 0.02 48.167 ± 13.52 0.656 ± 0.07 0.047 ± 0.01

LR 0.937 ± 0.04 51.5 ± 17.28 0.785 ± 0.11 0.049 ± 0.01

MARS 0.958 ± 0.03 44.056 ± 13.23 0.881 ± 0.11 0.046 ± 0.01

CART 0.663 ± 0.03 14.167 ± 3.72 0.72 ± 0.13 0.124 ± 0.02

RF 0.761 ± 0.03 18.278 ± 7.53 0.693 ± 0.08 0.086 ± 0.02

Table 5: Quality indicators of expensive and surrogate fitness functions.

replace the expensive fitness functions with the surrogate models during the

evolution of the MOEA. At the last generation of the MOEA, we compute the

simulation-based QoS metric values on the explored Pareto individuals. Table 5

presents the results for the four performance assessment indicators obtained for

30 runs and the mean values with their standard deviations are reported.

Table 5 show that by using the surrogate models LR and MARS, not only the

computational burden can be greatly reduced but also solutions of higher quality

can be explored due to the “bless of uncertainty” [Ong et al., 06, Lim et al., 10].

‘Bless of uncertainty” refers to the uncertainty introduced by prediction errors

in the surrogate models which may not be always bad but it may be beneficial by

accelerating the evolutionary search to converge towards good optimal solutions.

For the IC indicator, LR achieves the best results due to its ability to assign

different QoS values by doing fine-grain predictions based on slightly different

predictor values. Tree-based approaches, like CART and RF, seem unable to

provide fine-grain differentiation of solutions. These approaches try to handle the

trade-off between building a big tree with many leaves for describing a specific

training set (overfitting) and generalisation of performance.

The H0 for RQ2 states that the approaches using the expensive and

surrogate fitness functions produce Pareto solutions of the same quality. It

is rejected by the Mann-Whitney test at 1% significance level. The p-values

for the four pairs (expensive against each of the surrogate models) of tech-

niques in comparison are 9 ·10−3, 5.9 ·10−4, 1.6 ·10−7, and 1.6 ·10−7 respectively.

Results for RQ3 We now study the trade-off between the computa-

tionally expensive simulator-based and cheap surrogate models fitness functions

. For that reason, we present in the first column of table 6 the execution time

for evaluating the QoS metrics of a population of service composition configura-

tions. In the second column of table 6, we show the change in the hypervolume

indicator of the approach using the surrogate model in relation to the approach

using the expensive functions computed as the ratio
HVSurrogate

HVExpensive
achieved by

the accurate simulation-based expensive fitness functions. Values higher than



Fitness texec (seconds) IHV Execution

Model Mean Change Speed-up

Expensive 13376.5 - -

LR 0.926 1.013 14445

MARS 1.075 1.036 12443

CART 7.225 0.717 1851

RF 4.083 0.823 3276

Table 6: Comparing the surrogate models with the expensive fitness function.

1 indicate an improvement in optimisation quality. The last column of table 6

presents the execution speed-up achieved by the optimisation algorithm using

the various surrogate models in contrast to the expensive fitness functions

during a generation of the NSGA-II algorithm. The values of this column

are calculated as the ratio
tExpensive

tSurrogate
. Note that the one-time upfront cost of

building the model is negligible and it is not reported (< 5 seconds for all the

models). In our scenario the prediction models can be built by servers located

in the FF department and can be exported to any device in the network. The

experiments reported in table 6 were executed on R running on an Intel Core i7

vPro with 12GB DDR3 RAM. We also executed the best performing models LR

and MARS on a Raspberry Pi and observed 19.6 and 29.4 seconds of execution

time respectively which is within the time constraints of the considered system.

We look for models that balance predictive quality against their execution

time. It is obvious that, due to its simplicity LR achieves the largest speed-

up and also very good results in terms of hypervolume when compared to the

approach using the expensive fitness functions. MARS appears to be the best

performing technique and its speed-up is comparable to the simple LR technique.

CART is the most time-consuming model which may be caused the complexity

of the decision rules and the depth of the developed tree model. It is worth

noting that all of the reported model build times are small compared to the time

needed for running the expensive fitness function for a single service composition

configuration (∼ 3 minutes) in the context of our studied motivating scenario.

7 Related Work

We classify the related work into two groups: QoS prediction in MANETs, and

QoS prediction of single and composite services. In the first group, in a highly in-

fluential work [Ferreira and Helberg, 09] the authors developed a wireless testbed

for measuring how various factors can affect QoS metrics. Other studies in this

area used machine learning techniques for predicting the QoS in a MANET. For

example, Guo et al. [Guo et al., 10] proposed the use of neural networks for pre-



dicting the end-to-end delay between a pair of communicating nodes. Towards

predicting the same metric, Singh et al. [Singh et al., 12] proposed the use of

a fuzzy logic-based prediction model. However, these studies focus on predict-

ing the latency between a pair of nodes without considering the more complex

interaction patterns which emerge within a service-based system.

In the second group, the authors in [Marzolla and Mirandola, 07] proposed a

prediction approach for providing performance bounds based on various work-

loads by using Queueing Network analysis. Focusing on estimating the re-

liability property of a service composition, Gallotti et al. [Gallotti et al., 08]

proposed probabilistic model checking technique. Di Marco and Sabetta

[Di Marco and Sabetta, 10] proposed a model-based framework towards auto-

matic construction of composite services to support automated SLA negotia-

tion and SLA-driven service reconfiguration. Their approach exploits rich ser-

vice descriptions containing information about their provided QoS. Zheng et al.

[Zheng et al., 11] proposed a collaborative filtering approach for predicting QoS

values of Web services based on past experiences of service users. Wang et al.

[Wang et al., 13] proposed a prediction-based approach towards maintaining the

desired levels QoS of a service composition during execution. However, the men-

tioned approaches focus on predicting the QoS of composite services based on

past QoS data of component services ignoring how these services are combined

together. Also, they assume that past QoS measurements remain static during

the whole life-cycle of the composed service which is unrealistic for the con-

sidered highly dynamic environments. Moreover, they focus on traditional web

services offered via wired and resource-rich networks.

8 Conclusions and Future Work

We described a surrogate-assisted multi-objective optimisation approach for ex-

ploring optimal service compositions within a service-based MANET. We pro-

posed the use of statistical models as fitness functions To overcome the computa-

tional overhead by the simulation-based fitness functions, for exploring optimal

service composition configurations. Our experimental results show that surro-

gates can vastly accelerate the execution time and still guide the evolutionary

search into exploring solutions of high quality.

An interesting point for further study is the effect of applying the service com-

positions explored by the MOEA with the various surrogate models throughout

the lifetime of the system. This would give us an insight about which models are

better on choosing configurations which have long-term beneficial effects for the

system and which are acting in a more short-term and greedy way.
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