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Abstract. Search-based software engineering (SBSE) treats software-
design problems as search and optimisation problems addressing them by
applying automated search and optimisation algorithms. A key concern is
the adequate capture and representation of the structure of design prob-
lems. Model-driven engineering (MDE) has a strong focus on domain-
specific languages (DSLs) which are defined through meta-models, cap-
turing the structure and constraints of a particular domain. There is,
thus, a clear argument for combining both techniques to obtain the best
of both worlds. Some authors have proposed a number of approaches in
recent years, but these have mainly focused on the optimisation of trans-
formations or on the identification of good generic encodings of models
for search. In this paper, we first provide a structured overview of the
current state of the art before identifying limitations of the key proposals
(transformation optimisation and generic genetic encodings of models).
We then present a first prototype for running search algorithms directly
on models themselves (rather than a separate representation) and derive
key research challenges for this approach to model optimisation.

Keywords: evolutionary optimisation, object space, model-driven en-
gineering, model transformations

1 Introduction

Search-based software engineering (SBSE) is about using optimisation tech-
niques for automating the search for (near-)optimal software designs [1]. More
recently, the use of search-based approaches has also been extended to software
adaptation (e.g., [2,3]). Using search-based techniques allows the exploration of
much larger design spaces than could be explored manually by developers. As a
result, better solutions can be identified more quickly.

However, as has been recognised before [4,5], the problem domains in software
engineering are too complex to be effectively captured with traditional problem
representations as they are typically used in search-based systems. Model-driven



engineering (MDE) offers good techniques for capturing complex domains in-
cluding their structural constraints by using meta-models. As a result, there has
recently been increased interest in combining the advantages of SBSE and MDE
[6,7,8,9,10,11,12,13,14,15].

Much of this work has focused on finding good generic representations of
models that are tailored towards the needs of standard optimisation algorithms
(most typically, genetic algorithms, e.g. [16]). As we will discuss in detail in
Sect. 3, these generic encodings introduce their own challenges. Most impor-
tantly, they make it easy for search steps to produce invalid candidate solution;
that is, models that do not satisfy the constraints expressed by the meta-model
or its well-formedness rules.

We propose an alternative approach: instead of defining a secondary encoding
for candidate solutions, we propose to run optimisation algorithms directly on
models represented in standard meta-modelling data structures. We argue that
given that developers have spent substantial time and effort designing meta-
models that are a good representation of the domain, we should make use of as
much of this information as possible during search and optimisation. We present
a first prototype of a tool for running population-based optimisations directly
on models and discuss some of the research challenges that need to be addressed
to make this vision a reality.

The remainder of this paper is structured as follows: In the next section, we
give an overview of existing work defining generic approaches to SBSE in an
MDE context. We then discuss some of the limitations of these existing works in
Sect. 3, before presenting our own proposal in Sect. 4. Our work is only an initial
exploration, highlighting more problems than providing definitive solutions, so
in Sect. 5, we outline some of the key research challenges in this area.

2 Related Work

Table 1 summarises the current literature on optimisation in MDE.3 We use
two orthogonal sets of categories for characterising the different approaches that
have been explored so far:

1. By optimisation target. Some approaches focus on selecting optimal transfor-
mations (producing optimal models), while other approaches focus on finding
optimal models directly without considering optimality of transformations
(and, possibly, without explicitly specified transformations).

2. By encoding approach. Two general approaches have emerged: (1) general
encoding of MDE artefacts using standard genetic encodings and applying
genetic optimisation algorithms, and (2) techniques that work directly on
the structure of the MDE artefacts themselves (possibly with annotations).

We will briefly discuss these categories in more detail below.

3 Some other approaches exist, but they have only been defined for a specific problem.
Here, we focus on approaches that aim to be generic.



Optimisation of models Optimisation of transformations

Genome encoding [11,10,5] [6,13]
Direct search [12,17,4] [7,8,9,15]

Table 1. Overview of related work

2.1 Optimisation of transformations

A number of authors have proposed approaches that aim to search for optimal
transformations instead of looking only for optimal models. Optimality of the
models produced is still of interest, but they are only indirectly manipulated by
searching the space of viable model transformations. This indirect approach is
chosen for one of three reasons:

1. There may be optimality criteria directly on the transformations themselves.
For example, when optimising cloud data centre configurations based on a
current configuration [3], we are not only interested in finding the optimal
new configuration, but also the shortest or least costly path there. Searching
for transformations rather than for models directly allows these objectives
to be expressed and incorporated into the search process.

2. There might be reachability constraints requiring valid solutions to be reach-
able from an initial model through a sequence of model transformations.
Optimising transformation chains enables these constraints to be expressed.

3. The transformations encode developer choices, but may need to be rerun for
other source models at a later stage. In other words, the transformations are
the actual optimisation object, their application to models is separate to the
optimisation process.

Using genome encodings. Abdeen et al. [13] propose encoding different
transformation sequences as genomes so that they become amenable to search
with a genetic algorithm. Their approach is based on Viatra. Each candidate so-
lution is a tuple made from a start model and a sequence of applications of small,
predefined Viatra transformations. The paper provides some good discussion of
the issue of invalid individuals: these may be the result of crossover or mutation,
making transformation chains invalid or causing them to create invalid models.
[13] uses a specific ranking mechanism to handle these cases.

Fleck et al. [6], propose MOMoT. MOMoT uses base transformations ex-
pressed in Henshin and optimises chains of applications of these transformations
to a base model. Fleck et al. handle invalid candidate solutions with a repair
mechanism, effectively reducing the population size for these situations.

Using direct search. Drago et al. [7,8,9] proposed QVT-R2, an exten-
sion of QVT-Relational. In QVT-R2, transformation developers create non-
deterministic transformations by providing multiple rules matching the same
structure in the source model. The rules are then annotated with information
about relevant quality analysis (e.g., information about how to invoke an external
performance analysis). Each choice point is then incrementally and interactively
fixed for a given source model by running all transformation options and asking



the developer to choose the best resulting model based on the automatically
invoked quality analyses.

Hegedüs et al. [15] describe an approach to the guided exploration of trans-
formation chains, using a single-state, back-tracking algorithm guided by de-
pendency graphs between the individual transformations. Their work is based
on their earlier work on CPS(M) [14], where they introduced an approach to
search-based constraint solving directly over models.

2.2 Optimisation of models

Using genome encodings. Williams [10] proposes Crepe, a generic encoding of
models as sequences of integers. Given a meta-model and a so-called “finitisation
model” (containing information about the range of attributes), Crepe provides a
unique, bi-directional transformation between instances of the meta-model and
integer-vector representations of these models. The integer vectors can be used
as genomes in the context of genetic algorithms using standardised, domain-
independent operators for mutation and crossover. In [11], the authors provide
some extensions to the approach as well as a first comparative evaluation of its
performance compared to a manually implemented optimisation.

Kessentini et al. [5], give a high-level overview of an architecture for reusing
SBSE techniques in the context of MDE. A key ingredient of their approach
is also a generic meta-model for encoding models as genomes, making them
amenable to standard genetic operators such as mutation and crossover.

Using direct search. Burton and Poulding [4] were the first to describe an
idea for running optimisation directly on models.4 They create separate domain-
specific modelling languages describing a search problem and candidate solutions
and run search to find near-optimal solutions. As described in [17], their solu-
tions are mappings between solution and problem models, effectively limiting
the problem to the optimisation of vectors of binary associations. This enables
them to easily define general mutation and crossover operators so that standard
evolutionary search can be applied.

Denil et al. [12] present a general approach for model-based optimisation
using their Formalism Transformation Graph and Process Model (FTG+PM).
Their main focus is implementing different search algorithms as transformation
scheduling programs, fully integrating them into a general MDE approach. They
show how to implement a number of single-state search algorithms in this way,
applying them to a problem in circuit design. Candidate solutions are implicit in
the transformation scheduling language, which may make it difficult to extend
this approach to population-based search algorithms.

3 Issues with Generic Encoding of Models

We are interested in optimisation of models rather than transformations. While
the latter is useful when we have optimality requirements over transformation

4 In earlier work, Horvath et al. [14] introduce the idea of search over models, but
without support for optimisation.
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Fig. 1. Zoo DSL example (based on [10])

chains (or reachability constraints expressed through such chains), more typi-
cally, we are interested simply in deriving optimal models. In such a case, opti-
mising transformations incurs too much overhead in repair and through redun-
dant representations of the same model through different transformation chains
(effectively reducing the size of the search population).

Generic genetic encodings of models as proposed in [5,10,11], however, have
their own problems. In particular, it seems very difficult to ensure locality and
preservation of well-formedness as we will demonstrate in an example. Fig-
ure 1 (a) shows the meta-model of a simple Zoo DSL. This DSL allows the
description of zoo configurations, where there are cages with animals, some of
which may eat other animals. An optimisation problem of interest would be to
find the minimum number of cages to keep all the animals in so that there are no
animals that eat each other in the same cage. Note that cages have a maximum
capacity and animals require a certain amount of space. The meta-model has
been annotated to indicate how it would be encoded by the algorithm proposed
in [10]. There, models are encoded as integer strings, where each model element
is started by an integer identifying its meta-class (shown in dashed rectangles
in Fig. 1 (a)). This is then followed by pairs of integers where the first identifies
the structural feature (indicated by dashed circles in the figure) and the second
provides the value for this feature. For associations, the values are provided by
numbering all instances of the target type in sequence of appearance in the gene.

Figure 1 (b) shows an example model5 and its encoding as a gene using
this algorithm. To ensure smooth applicability of the standard mutation and
crossover operators, genetic encodings should be local; that is, changes in one
part should not affect other parts of the represented object. This is not the case
for this generic encoding. For example, Fig. 1 (c) shows the same gene after it has
been split in preparation of a standard single-point crossover operation, remov-
ing the representation for object a1 only. The remainder of the gene is exactly as

5 We leave out the recurring Zoo object for simplicity.



before, but the model fragment encoded by it has changed dramatically: the eat
relationship between the two animals has been lost and a3 has been moved into
the cage. Note that the latter change has also led to a violation of the model’s
well-formedness rules, which require that spaceRemaining should always indi-
cate the space left to place additional animals in a cage (and so should now be 2).
We are not aware of any generic genetic encoding of models that has overcome
this problem using generic mutation and crossover operators. As a result, such
approaches require a lot of repair of candidate solutions, substantially worsening
the optimisation performance [11].

The problem could be resolved by defining domain-specific mutation and
crossover operators. However, these are difficult to implement on the level of
genotypes; they will effectively have to constantly reinterpret the genes as the
corresponding model fragments. We have explored this in [18], showing that
such specific operators do indeed have a positive effect on the performance of
the optimisation algorithm.

In the next section, we propose that using optimisation directly on mod-
els makes it much easier to define such domain specific operators, substantially
reducing the need for repair. As discussed in Sect. 2, we are not the first to
propose this: Burton et al. [17,4] first proposed the idea and gave an example.
They do not, however, provide a general implementation. Denil et al. [12] pro-
vide a first generic implementation using a transformation scheduling language.
However, it is difficult to see how their approach would generalise to population-
based algorithms as typically used for multi-objective optimisation as the actual
candidate-solution model is implicit in the specification. As a result, their im-
plementation works well for single-state search algorithms, including with back-
tracking, but cannot easily represent populations of more than one candidate
solution. Moreover, they do not provide general mechanisms for encoding opti-
misation objectives, initial model generation, or model evolution and breeding.
Therefore, there still is substantial need for further research in this area.

4 Model-based Optimisation

Three ingredients are required for any search-based algorithm:

1. A representation of individual candidate solutions;
2. A mechanism for generating new candidate solutions from existing candidate

solutions (e.g., through mutation or breeding); and
3. A mechanism for evaluating the quality of candidate solutions; that is how

well they satisfy each of the optimisation objectives (often called the solu-
tion’s fitness).

Most search algorithms also require a means of generating an initial population
of candidate solutions. Once these ingredients have been defined for a specific
problem, we can apply standard search-based algorithms.

As discussed above, we will use models to represent individual candidate so-
lutions. Therefore, the overall search space is defined through a meta-model. An



Fig. 2. Henshin rule for moving animals between cages

initial population of candidate solutions can be provided in a number of ways—
for example, it could be provided as a set of explicit model files or we could use
constraint solvers like Alloy [19] to generate a suitable set of initial models (e.g.,
using the Cartier tool originally developed for transformation testing [20,21]).

To generate new solutions from existing ones, endogenous model transforma-
tions are an obvious candidate. In particular, we propose to use graph transfor-
mations, as they have a clear and simple syntax for easily expressing endogenous
transformations. For example, Fig. 2 shows a simple Henshin rule that can be
used for the search problem described in the previous section. Because these
rules are defined on the model level, we will often be able to easily write them
in a way that ensures well-formedness rules are preserved.

Evaluating the fitness of candidate solutions can take many different forms.
In the simplest case, fitness may be determined by a model query—for example
expressed in OCL. In other cases, we may require to run a simulation of the
candidate solution, which may involve further transformations etc. (e.g., [2,3]).

To test out these ideas, we are currently developing a prototype tool for model
optimisation.6 Our tool provides a simple Xtext-based DSL to allow describing
model-based search problems together with an interpreter for running searches.
Search algorithms, fitness functions, and initial model provision are modularised
behind Java interfaces. For search algorithms this means that it is easy to incor-
porate existing implementations, such as the MOEA framework7. We currently
have no DSL-level support for fitness functions and initial model generation,
but plan to add these features. For now, they are specified by providing Java
implementations. Solution evolution is realised by Henshin transformations.

Figure 3 shows an example specification of the Zoo example in our tool. After
some configuration information in the first line, this code declares the structure
of the search space by indicating a meta-model, and then defines relevant fitness
functions and model evolvers. Fitness functions are currently provided by imple-
menting a specific Java interface; we are planning to provide full OCL integration

6 See https://github.com/mde-optimiser/mde_optimiser
7 See http://moeaframework.org/

https://github.com/mde-optimiser/mde_optimiser
http://moeaframework.org/


Fig. 3. Specification of the Zoo search problem

Fig. 4. Basic code for running model-based search algorithms

in the language for simple model queries. Evolvers are defined by specifying a
Henshin model and naming a rule in this model.

Figure 4 shows how to run a search using our tool. At this point, we only
support programmatic invocation. For this, a new Interpreter object needs to
be created and configured with a parsed version of the problem, a ModelProvider
for generating initial models, and a generic search algorithm (a variant of random
hill climbing in this example). Invoking execute runs the search as specified and
returns the set of solutions found.

As a tool, our prototype is closest to MOMoT [6], which also uses meta-
models to represent search spaces and Henshin rules to represent evolution.
However, they are searching for transformation chains using a genetic encod-
ing, while we are searching directly on models.

5 Research Challenges

Our initial work has identified a number of challenges requiring further research
to enable model-based optimisation to be used effectively.

5.1 Reuse of existing optimisation algorithms

Some existing optimisation algorithms make particular assumptions about the
search space. For example, hill climbing, a basic single-objective search algo-
rithm, expects to be able to identify the complete “neighbourhood” of a given
candidate solution so that this can be systematically explored. Similarly, swarm-
based search algorithms expect to be able to identify a “direction” vector between
solutions and to use this to guide the derivation of one solution from another.
These notions are easily defined in classic search-based approaches, where solu-
tions are represented by (high dimensional) numerical vectors. It is less obvious
what they mean for models, which are only indirectly related by model transfor-
mation chains. Providing appropriate interpretations of these notions will make



it possible to reuse more existing search and optimisation algorithms. Beyond
that, however, there is an opportunity to explore novel search algorithms that
take guidance from the structure and constraints encoding the search space in a
model-driven context.

5.2 Model evolution

Generating new candidate solutions from existing ones is a key part of any search
algorithm. In model-based search, a number of challenges need to be addressed:

Model breeding. Many population-based algorithms rely on a notion of
“breeding”, which allows creating new candidate solutions by combining two
good parent solutions. This is useful because it allows the search to reach new
areas of the search space, hopefully benefiting from the advantages of both parent
solutions. For example, in genetic algorithms, “breeding” is realised through so-
called crossover operators, which combine two genes by swapping sub-sequences.
While mutation of solutions is easily captured by model transformations as dis-
cussed, it is less clear how to express breeding. Two approaches seem worth
exploring:

1. Domain-specific breeders. As with model mutation, we could use model trans-
formations to express domain-specific breeding. These transformations would
take in two models and produce a new model. For example, in our Zoo prob-
lem, we could consider developing a transformation that takes two cage–
animal allocations and produces a new one mixing allocations from both
sources while making sure that constraints are not violated (e.g., updating
spaceRemaining values and checking for eats relationships). Burton et al.
[17] show a first example of this for problems where solutions are essentially
sets of links between pre-existing model elements.

2. Generic breeding through model merging. Model breeding essentially requires
identifying the common and different parts of two models so that the common
parts can be retained in the new solution and the different parts can be mixed
suitably. This is very similar to what has been developed in the context of
work on model differencing and model merging [22,23,24,25]. It should be
possible to reuse ideas from this field to develop generic model breeders. The
key challenge here is that mixing of differences should lead to a new model
that is (a) different from both parent models, and (b) well-formed. This will
require suitable adjustments to be made to existing diff/merge algorithms
for models.

It is very likely that in either case we will not be able to produce breeders that
are guaranteed to produce well-formed models, introducing the need to deal with
invalid solutions in the search. Abdeen et al. [13] give a good discussion of these
issues in the context of genetic optimisation of model-transformation chains,
where they use repair as well as customised ranking rules. Similar techniques
could be applied to model-based optimisation, too.

Efficient model evolution. Our current prototype first establishes all matches
for all evolvers and then randomly selects one of them when asked to produce



a new candidate solution. Especially where rules have similar pre-conditions or
will often not be applicable this seems an inefficient approach. We should explore
mechanisms for selecting evolvers (and matches) more efficiently. Denil et al. [12]
provide some initial insights into this problem by considering optimisation algo-
rithms to be a kind of transformation scheduling specification. This enables them
to use different sets of evolvers at different stages of the optimisation process.

Non-deterministic matching in graph transformation engines. Search-
based algorithms rely on an amount of randomness underlying the exploration
process. Using graph transformations as model evolvers requires the matching
process to be non-deterministic. In other words, if there are multiple potential
matches for a graph-transformation rule in a model, the choice of match to ap-
ply should be non-deterministic. Otherwise, we risk excluding large parts of the
search space from the search as a result of an accidental systematic effect of how
models happen to be stored in memory or of how model elements are enumer-
ated to find potential matches. Henshin is currently not non-deterministic in this
sense, requiring us to explicitly establish all matches and make a random selec-
tion. It would be more efficient if Henshin were to non-deterministically select
matches on its own.

Compact representations of solutions and evolvers. Typically, a sub-
stantial part of a candidate solution will remain constant, as it essentially de-
scribes problem constraints rather than solution elements. Burton et al. [17] use
different models to represent these static parts independently of the parts that
change during search. This makes for a very compact solution representation,
but requires a separate composition transformation whenever a solution’s fitness
is to be evaluated or when a new solution needs to be generated. There is a
need to understand other similarly compact representations of candidate solu-
tions and how they affect solution evolution and fitness evaluation. Similarly, we
should explore ways in which evolvers can be represented more compactly and
executed more efficiently knowing that large parts of a candidate solution never
change. This has been partially explored in the context of single-state search in
the work on design-space exploration [15], where critical-pair analysis is used
to establish a dependency graph between evolvers and use this as a basis for
guiding the selection of the next evolver to apply.

5.3 Performance

Search algorithms are computationally expensive. Typically, they require a large
number of iterations to be run for large populations of candidate solutions. Each
iteration requires each candidate solution in the population to be evolved to a
new solution and the fitness of these solutions to be evaluated. The performance
of search algorithms is therefore substantially influenced by the performance of
solution evolution and fitness evaluations. Depending on the size of the models,
model transformations can be computationally expensive to execute. There has
been recent interest in increasing the efficiency of model transformation execu-
tion [26,27]. We need to explore how this could be integrated into model-based



optimisation. Ideally, we would like to be able to run model-based search even
at system run time to support self-aware system adaptation.

5.4 Flexible definition of model providers

As discussed above, candidate solutions in model-based optimisation are par-
ticular in that substantial parts of the model will remain constant as they are
describing the search problem. When using constraint solvers like Alloy [19], this
would result in a large number of constraints, potentially impacting the perfor-
mance of initial model generation. Better techniques need to be studied that can
limit the performance impact on model generation. It would be useful to iden-
tify what are the key constraints that must be available to the constraint solver
for it to construct valid instance of the variable model part without necessarily
recreating the complete constant part every time.

5.5 Expressing fitness evaluations

Some fitness functions are essentially model queries, which can be efficiently ex-
pressed in languages like OCL. However, other evaluations will be more complex,
including simulations and model analyses. At the moment, these are handled by
providing a general Java interface to be implemented for specific fitness eval-
uations. Techniques better aligned with model-driven approaches need to be
developed. Kessentini et al. [5] have made some interesting first proposals in this
area, which need to be explored further.

6 Conclusions

Search-based software engineering (SBSE) and model-driven engineering (MDE)
are highly complementary approaches to software engineering. As a result, there
has been substantial interest recently in exploring the combination of both ap-
proaches, in particular using MDE technologies to simplify and streamline the
application of SBSE. This paper adds to the debate by

1. Providing an overview and initial classification of the current state of the
art;

2. Identifying issues with generic genetic encodings of models;
3. Presenting an initial prototype for model-based optimisation; and
4. Identifying a catalogue of research challenges towards complete support for

model-based optimisation.
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27. Mészáros, T., Mezei, G., Levendovszky, T., Asztalos, M.: Manual and automated
performance optimization of model transformation systems. International Journal
on Software Tools for Technology Transfer 12(3) (2010) 231–243


	Towards Model-Based Optimisation: Using Domain Knowledge Explicitly

