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Abstract: As Cloud Computing becomes more predominant, large scale datacenters are subject to an increasing demand
for efficiency and flexibility. However, growing infrastructure management complexity and maintenance costs
are becoming a hindrance to the advancement of the Cloud vision. In this paper we discuss how existing
datacenter resource management approaches fail to provide infrastructure elasticity and suggest a resources
provisioning architecture to fill this gap. As a first step towards implementing our targets, we present a meta-
model to describe the characteristics of the Cloud landscape, emphasising on a provider’s perspective. With
this meta-model we intend to introduce new modelling concepts towards facilitating the selection of optimal
reconfigurations in a timely fashion.

1 INTRODUCTION

The advent of Cloud Computing has brought datacen-
ter design at evolutionary crossroads. However, mas-
sive data growth, challenging economic conditions,
and physical limitations of power, heat and space are
exerting pressure on the enterprise. Finding architec-
tures that can minimize cost, complexity and associ-
ated risks in the Cloud has become a priority (Josyula,
2012).

Inside a Cloud, workload is balanced among hun-
dreds of Virtual Machines (VMs). Each VM hosts
one or more applications and VM sizes are decided
according to load, while VMs are packed to Phys-
ical Machines (PMs) (i.e. actual hardware servers)
employing live VM migrations. The mapping of
VMs to PMs form the current configuration. Dur-
ing operation, the Cloud runtime execution context
continuously evolves, as workload demand fluctu-
ates according to unstable user-preferences, demand
spikes (i.e., unexpected increases in workload vol-
ume) and/or data spikes (i.e., change in the distri-
bution of particular objects’ popularity) can be no-
ticed. In addition, system attacks or unexpected fail-
ures might occur. The volatility of the runtime con-
text poses the need for reconfigurations in order to
preserve the system’s functionality and QoS targets.

To highlight the criticality of the aforementioned,
consider the case of a news company such as
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Guardian, which offers public facing internet-scale
services to millions of users. In the case of an unex-
pected “snap” article (e.g., terrorist attack) the com-
pany’s infrastructure will have to temporarily serve
a massive amount of user queries, without compro-
mising the expected QoS level. Questions as the fol-
lowing arise: How many new resources need to be
added to the system to meet the SLAs? How will the
reconfigurations affect the operational expenditures
(OPEX)? Answering these questions involves time
consuming, complex procedures that cannot be per-
formed in a timely fashion by human operators. Will
the system manage to provide up-to-date response to
the crisis?

Existing resource provisioning solutions seem to
focus on technology silos and not platforms as a
whole. Hence, they cannot sufficiently handle mis-
sion critical workloads, withstand variable demand
or widely control operational costs. Towards fill-
ing this gap, we propose an interoperable infras-
tructure management layer to optimize the resources
(re)configurations complexity within a reasonable
cost and time-range during datacenter operation. To
this end, we suggest the combination of Model
Driven Engineering (MDE) tools with dynamic multi-
objective optimization and policy-driven design. Ex-
pected outcomes of this combination include dynamic
selection of the Cloud optimization objectives accord-
ing to the runtime context, as well as automation of
the transitions between problematic Cloud states and
corresponding reconfiguration strategies.



As a first step towards implementing our solution,
we present a meta-model that specifies the core con-
cepts of the Cloud space. First, the proposed meta-
model aligns the notion of an enterprise Cloud with its
expected revenue. Second, it comprises information
regarding both physical and virtual Cloud resources
as well as the mapping of the running services be-
tween them. Finally, it models the Cloud points of
variability i.e., the aspects of the Cloud architecture
that can be reconfigured at run-time. The meta-model
serves as a basis to support on-line performance anal-
ysis, automated extraction of valid reconfigurations
and run-time validations towards achieving optimal
adaptations.

The rest of the paper is organised as follows:
In Section 2 we discuss the literature in the field
of resources management in dynamic datacenters
and Clouds, Section 3 introduces our envisioned ap-
proach, Section 4 presents the meta-model, Section
5 demonstrates a use case and finally Section 6 con-
cludes the paper.

2 RELATED WORK

In the current literature, systems are continuously
monitored and accordingly adapt their resource con-
figurations, to comply with volatile user requirements
and preserve end-to-end QoS. Particularly, research
in the resource provisioning field span the following
directions: (a) Operational Costs Awareness, (b) Net-
work/Communication Overheads Awareness and (c)
Applications Affinities Awareness.

Operational Costs Awareness A plethora of so-
lutions has been proposed to alleviate the costs of
operating and maintaining a datacenter. Bin pack-
ing heuristics have been widely explored to densely
pack overloaded VMs to underutilized PMs (Khanna
et al., 2006). The problem of minimization of eager
VM migrations is considered crucial to achieve sta-
bility inside the datacenter (Ferreto et al., 2011). (Ku-
sic et al., 2008) approached dynamic consolidation
by building estimates for future workloads incorpo-
rating Limited Lookahead Control, and feed them to
a utility maximization problem. Other utility based
approaches are presented in (David Breitgand, 2011;
Chuen et al., 2011). Costs optimization is attempted
through Constraint Programming, deduction to Gen-
eralized Assignment Problem (GAP) or Genetic Al-
gorithms. Reinforcement Learning (RL) is used in
(Tesauro et al., 2006) to estimate rewards of different
reconfiguration actions. Feedback control theory has
been suggested to manipulate server utilization (Ab-
delzaher et al., 2001).

Network/Communication Overheads Aware-
ness Attention has been given to the control of net-
work bandwidth consumption inside a datacenter.
Stage and Setzer (Stage and Setzer, 2009) aim to min-
imize the risk of overloading the system’s links by
predicting workloads and network utilization rates.
(Piao and Yan, 2010) suggests a communication-
overhead minimization solution that places VMs to
PMs with smallest data transfer times. Meng et al.
(Meng et al., 2010b) indicate the need for traffic-
aware VM placement to improve scalability.

Applications Affinities Awareness Considering
dependencies among VMs (e.g. memory sharing pos-
sibility) and their hosted applications could be bene-
ficial to configuration planning. Appaware (Shrivas-
tava et al., 2011) e.g., accepts as input a VMs depen-
dency Graph and exploits VM communication pat-
terns to minimize the overall placement cost. Meng et
al. leverage multiplexing to identify compatible VMs
for being jointly provisioned so as to achieve capacity
savings (Meng et al., 2010a).

2.1 Discussion

As increased expenditures and complexity in data-
center resources management remain open issues, we
note the limitations of existing approaches. RL and
Control Theoretic frameworks suffer from poor scal-
ability, being inappropriate for Cloud applications.
Utility based solutions aim to provide local or global
optimizations. The first category achieves faster re-
sponse times though it can be inaccurate, while the
latter faces feasibility issues due to computational
costs.

Utility based approaches can be further classified
into proactive or reactive. Proactive are based on re-
source utilization predictions to keep a system run-
ning. However, predictions include intrinsic predic-
tion errors and introduce inaccuracies as well as com-
plexity. Reactive schemes achieve their objectives by
recovering from failures, which might be risky for the
anticipated Cloud agility. The biggest concern with
objective functions, is that they remain rigid to a set
of initial objectives and system constraints.

However, due to volatile granularities of human
(i.e., Cloud users, Cloud providers) requirements, un-
predictable events occurrences, complex interactions
between workloads and shared infrastructure, the dat-
acenter state continuously evolves. Simultaneously,
multiple, (often) conflicting goals need to be accom-
plished in order to deliver a competent solution tar-
geted to modern enterprises e.g, resource wastage,
power consumption, network communication over-
heads and others. Additionally, the duration of adap-



tations decisioning and implementation, is strictly
bounded by a time-sensitive window after which the
target configuration becomes stale. Hence, the sys-
tem optimization objectives may vary from time to
time and the optima have to be found in time, pos-
ing new challenges for the design of robust resource
provisioning solutions for Clouds.

3 ENVISIONED APPROACH

As the number of possible configurations grow expo-
nentially with the number of optimization objectives
mentioned above, research community faces the is-
sues of complexity and uncertainty. We aim to tame
these burdens combining Model Driven Engineering
(MDE) tools with multi-objective optimization strate-
gies as Figure 1 shows. We assume a diagnostics

Figure 1: Overview of Envisioned Solution.

interface to fingerprint the Cloud runtime states and
provide automated identification of performance cri-
sis or changes in Cloud Provider’s optimisation goals.
For example, in scenario a could be identified that
the provider focuses on pursuing green environmen-
tal policies minimizing power electricity and thermal
dissipation costs, in scenario b that the provider pri-
oritises to greedily increase its profit offering IaaS
services to the maximum possible number of clients
while in scenario c that the provider has to quickly
overcome a network attack overloading the system
links.

Management automation enables operational ef-
ficiencies related to change of control. Therefore,
we intent to automate the transition from diagnosed
Cloud states to appropriate reconfiguration strate-
gies exploring model transformations and constraints
(enforcing system viability). Each reconfiguration
strategy entails the dynamic formulation of a multi-
objective Optimization Problem, specifying an objec-
tive function to capture only the most critical current
Cloud optimisation goals (e.g., minimization of re-
sources wastage, control of power consumption etc.)
in order to limit the possible solutions space and sup-

port timely reconfigurations. The purpose of enabling
the dynamic formulation of multiple possible objec-
tive functions is to allow expression of preference for
optimal feasible system states from an ideal state, in
the Cloud’s valid states-space. The update of the ob-
jective function (i.e., replacement of objectives) will
be aligned with the runtime evolution of the Cloud.

Thereafter, the definition of an adaptation strat-
egy within the reconfiguration, provide means to
solve the specified multi-objective optimization prob-
lem, and can encompass -according to scenario- so-
lutions already existing in the literature, promot-
ing interoperability. Finally, successful transforma-
tions will be cached in the system as customisable
Event/Condition/Actions (ECA) to facilitate future
reconfiguration decisions. This policy-driven design
will help reduce maintenance complexity and costs
through the ability to reuse. Moreover, the low level
configuration syntax is abstracted, enabling higher
level management tools to require knowledge only
about the policy semantics.

As a first step towards realizing the aforemen-
tioned, we acknowledge that an abstract meta-model
is needed in the Cloud resources landscape. There ex-
ist different approaches on modelling resources and
the environment where they are contained (Becker
et al., 2009; Huber et al., 2012). In general such ap-
proaches are either targeted for design time analysis
or do not suffice to cover the whole extent of a Cloud’s
topology.

The purpose of the meta-model is to support au-
tomated extraction of the possible valid Cloud states,
and capture properties relevant to performance analy-
sis in order to enable runtime reasoning of the config-
urations. Hence, the meta-model comprises informa-
tion about: (a) the actual capabilities and limitations
of the system; (b) trade-offs developed inside an oper-
ating system which are unknown at design time (i.e.,
VM communication patterns); (c) points of variabil-
ity (i.e., dynamic aspects of the Cloud infrastructure
that can be adapted at run-time) (d) expression of the
system’s runtime optimization targets.

We have focused on a high-level meta-model of
the Cloud landscape and in particular information
needed to describe feasible infrastructure variability
points, in terms of physical hosts and virtual ma-
chines. Detailed specification of aspects as storage,
network, or computing requirements will need to be
added to this meta-model for application to real sce-
narios. However, we omit them in this paper due to
lack of space.



4 THE CLOUD META-MODEL

In this section we present the Cloud landscape meta-
model. As shown in Figure 2 the meta-model was
designed utilizing the Eclipse Modelling Framework
(EMF) 2.

Figure 2: Cloud System Metamodel.

The root entity comprising all the other entities is
the Cloud. The deliveryModel property refers to the
commercial Cloud realization (i.e., public, hybrid or
private). The property budget denotes the provider’s
invested capital. A Cloud’s purpose is to serve an ar-
bitrary amount of Workloads. The Workload proper-
ties type, periodicity and userProfile specify the inten-
sity and characteristics of the imposed workloads.

The Cloud can have many possible Configurations,
denoting the system’s hardware and software compo-
nents as well as the possible mappings between them.
The Cloud Components can be encountered in dif-
ferent states, as enumerated in ComponentState, in-
dicating their health and availability. We distinguish
five different states: “Switched-on” indicating that the
component is in use; “Switched-off” indicating that
the component has been deactivated; “Idle” indicat-
ing that no function or service is running on this com-
ponent; “Overloaded” indicating that there are not
enough resources in this component to complete a re-
quested task; and “Non-responding” indicating a pos-
sible failure.

4.1 Cloud Components

The central entity Component abstracts the Cloud in-
frastructure. As Figure 3 shows, we distinguish be-
tween two component types, the HardwareCompo-
nent denoting the Hardware Infrastructure and the
SoftwareComponent denoting the Software Infras-
tructure.

The software landscape can be summarized as De-
ployedServices executing on Virtual Machines (VM)

2http://www.eclipse.org/modeling/

Figure 3: Cloud Infrastructure.

while assisted by RuntimeEnvironment Entities, e.g.,
the hypervisor. Other properties that the VM class en-
tail, are vCPU i.e., the quantity of physical CPU as-
signed to it, vMemory i.e., the quantity of physical
Memory assigned to it, and the downtime i.e., time
period when a VM is unavailable as a VM migration
is being carried out. The relation interactsWith mod-
els shared communication among VMs.

The HardwareComponent’s properties utilization-
Ratio capacity and operatingCost provide feedback
relevant to the efficiency and cost of a configuration.
Core entity of the hardware landscape are the Physi-
cal Machines (PM), comprised of storage and CPU.
PMs can host multiple VMs during their operation.

4.2 Cloud Variability

In Figure 4 the volatility of the Cloud’s context and its
capability to adapt accordingly are depicted. Imagine
for example, the case of two VMs sharing resources
and assume that the workload of one increases leading
to an SLA violation. The Cloud configuration will
have to be adapted by e.g., increasing the size of the
overloaded VM so as to support its hosted services
without SLA violations.

A Cloud can have many possible High Level
Goals e.g., capital/operating costs optimisation, en-
forcement of resilience etc. The Detector interface
is responsible to diagnose the most urgent among
them and dynamically form a corresponding multi-
objective optimisation problem, modelled by the Rev-
enue entity. The Revenue essentially denotes a -
closely aligned with the runtime context - objective
function, expressing the quantity that has to be cur-
rently maximised (e.g., server utilisation ratio) or
minimised (e.g., network Traffic) to achieve an effi-
cient system configuration.

The realisation of the Revenue yields an Adapta-
tionStrategy, which provides means towards a Cloud
reconfiguration. The AdaptationStrategy is imple-



Figure 4: Cloud Variability.

mented via a concatenation of AdaptationActions. The
AdaptationActions entity captures the degrees of free-
dom of a Cloud resources landscape describing the
types of actions that can be performed towards transi-
tioning from an old configuration to an improved tar-
get. The identified possible action types span: (a) VM-
Resize i.e., how much virtual memory or virtual CPU
should a VM receive (b)VMCreate i.e., creation of a
new VM (c)VMMap: (re)selection of PMs to host the
aforementioned VMs (d)VMDestroy i.e., switch off a
VM (e)PMSwitchOn i.e., activation of a new PM (f)
PMSwitchOff i.e., switching-off a PM.

The property variationRange specifies the range in
which the aforementioned entities may vary, while the
property variationDuretion indicates time limits for the
reconfiguration actions.

5 USE CASE

In this section we provide a use case to indicate the
applicability of the proposed meta-model.

Let’s consider the simple Cloud infrastructure of
Figure 5, consisting of three PMs (PM0, PM1, PM2)
hosting over Xen hypervisor two intercommunicat-
ing VMs (VM0, VM1), each one executing a differ-
ent enterprise service (DeployedService0, Deployed-
Service1), serving the customer’s workload. The
Provider’s High level goal has been diagnosed as
minimisation of OPEX expenses, hence the prob-
lem’s revenue can be formalised as e.g., min ∑

n
i=1 ci+

min ∑
m
i=1 t j (where ci symbolizes residual ratio of re-

sources and t j the performance overhead due to recon-
figuration). This revenue basically imposes the need
to minimize the idle infrastructure. We assume that in

Figure 5: Cloud Use Case.

the initial configuration PM2 hosts VM0 and VM1,
while PM0 and PM1 are idle. Moreover, Deployed-
Service0 runs on VM1 and DeployedService1 is exe-
cuted on VM0.

Let’s assume that the PM utilisation thresholds are
violated for an extended period of time, resulting to
non satisfactory OPEX. The Cloud has to reconfigure
in order to provide a resources configuration solution
that will support improved asset usage, therefore op-
timised OPEX.

Figure 6: Possible Reconfiguration Solutions.

The description of our meta-model structures, en-
ables automated extraction and exploration of the
valid reconfiguration solutions space of the problem.
Figure 6 shows two valid reconfiguration instances. In
the first, the concatenation of reconfiguration actions
yielded to optimise the revenue include: switch-off
PM1 which does not host any VMs, and migration of
VM0 from PM2 to PM0. From further observation of
the instance we notice that VM0 and VM1 are inter-
communicating, hence we gather that DeployedSer-
vice1 and DeployedService0 have dependencies (e.g.
may share memory pages). This feedback can assist
future decisioning of these VMs sizing and location.
The second reconfiguration instance, models another
possible solution of the same optimisation problem
where PM1 is switched-off, VM0 receives less mem-



ory resources and and VM1 is migrated from PM2 to
PM0. Figure 7 depicts the application of the first re-
configuration solution to the use case cloud.

Figure 7: Cloud Infrastructure After Reconfiguration.

The proposed modelling concepts provide means
for automated exploration and reasoning of the Cloud
resources landscape space. Hence, both reconfigura-
tions pictured in Figure 6 show possible solutions of
the problem discussed in the use case. However, we
can not answer which solution dominates the other,
or which solution will provide a faster alleviation of
the identified issues. Therefore, our next step towards
realizing our vision is the design of a heuristic to con-
trol the evolution of reconfigurations solution space
as Cloud objectives change, enforcing runtime con-
straints (e.g. time range of adaptation steps).

6 CONCLUSIONS

Cloud Computing promises infrastructure elasticity
at a low cost. However, modern datacenters are be-
coming increasingly complex. In this paper we are
concerned with the issue of resource management in
Clouds. Particularly, we suggest that a combination of
MDE and dynamic multi-objective optimization can
efficiently manage the resulting trade-offs between
the various possible Cloud optimisation goals.

As a first step towards realizing our vision we pre-
sented a meta-model to describe the Cloud Comput-
ing resources landscape with focus on the provider’s
perspective. The presented modelling approach com-
prises information regarding the provider’s optimisa-
tion objectives, Cloud physical and virtual infrastruc-
ture as well as points of dynamic infrastructure vari-
ability. The meta-model aims to serve as a basis to fa-
cilitate automated extraction of Cloud resources fea-
sible space, towards selecting optimal configurations.

As part of our on-going work, we intend to design
a heuristic to control the evolution of reconfiguration
space during replacement of problem objectives. We
also aim to formalise the possible reconfigurations
within the model as run-time model transformations
based on Cloud revenue and available adaptation ac-

tions. Further plans, include the use of Kevoree 3 ex-
perimental Cloud platform to validate our approach.
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