
A Matlab-Internal DSL for Modelling Hybrid
Rigid–Continuum Robots with TMTDyn
S.M.Hadi Sadati

School of Biomedical Engineering
& Imaging Sciences

Faculty of Life Sciences & Medicine
King’s College London

Email: smh_sadati@kcl.ac.uk

Steffen Zschaler
Department of Informatics

Faculty of Natural
& Mathematical Sciences
King’s College London

Email: szschaler@acm.org

Christos Bergeles
School of Biomedical Engineering

& Imaging Sciences
Faculty of Life Sciences & Medicine

King’s College London
Email: christos.bergeles@kcl.ac.uk

Abstract—Hybrid rigid–continuum robot design addresses a
range of challenges associated with using soft robots in applica-
tion areas such as robotic surgery. Design of such robots poses
challenges beyond standard rigid-body robots. A fast, reliable,
accurate yet simple dynamic model is important to support
the design, analysis, and control of hybrid rigid–continuum
robots. In our previous work, we developed a modeling package
for hybrid rigid–continuum systems, named TMTDyn. In this
paper, we focus on how we developed an internal domain-specific
language (DSL) using Matlab’s OO capabilities and the concept
of fluent interfaces to improve validation, understandability, and
maintainability of the models constructed using TMTDyn. We
present the language implementation, and discuss some of the
benefits and challenges of building a Matlab-internal DSL.

I. INTRODUCTION

Mimicking highly dexterous and deformable biological bod-
ies has been a trending topic of multi-disciplinary research,
called soft robotics, using intrinsically soft materials in the
form of continuum robotic platforms [1]. Performing delicate
tasks [2], high manoeuvrability in unstructured and confined
environments [3], [4], [5], dexterous grasping [6], mimicking
biological tissue and organs [7], bio-inspired dynamic loco-
motion [8] such as crawling [9], terrestrial [10] or submerged
locomotion [11] are among the promises made by the research
in the field. Soft robots are appealing to investigate new
design and theoretical concepts such as variable stiffness
structures [12], morphological computation [13] and embodied
intelligence [14], to simplify the control and sensing tasks
through robot embodiment [15], [16].

However, compliance has disadvantages such as uncertain
deformations, limited control feedback, reduced control band-
width, stability issues, underdamped modes, and lack of pre-
cision in tasks involving working against external loads [17],
[18]. These result in modeling and control challenges for such
designs. There is an urgent need for unified frameworks to
transfer our well-established knowledge of dynamic system
analysis, path planning and control design for rigid-body
robots to soft robotic research [19], [20], [21], [22] and
to model hybrid rigid–soft-body systems [23], [24]. Such
frameworks should be as simple as possible and easy to use to
be widely accepted by the ever-growing soft-robotics research
community that gathers researchers from different disciplines

and backgrounds. They should provide fast computational
performance to be suitable for control and design problems
of soft systems with large state spaces. To be useful to
the community, such frameworks need to be integrable with
standard software platforms (e.g. C/C++, Matlab, ROS).

In [25], we introduce two new modelling approaches for
continuum rods and actuators, a general reduced-order model
(ROM), and a discretized model with absolute states and Euler-
Bernoulli beam segments (EBA). These models enable us to
perform more accurate simulation of continuum rod manipu-
lators as well as extending the solution to modelling 2D and
3D continuum geometries, which is missing in similar recent
research [21]. In [26], these models are further explained
and implemented in a Matlab software package—TMTDyn—
providing a new modelling and simulation tool for hybrid
rigid–continuum body systems1.

Our main goal is to make the tasks of deriving the Equation
of Motion (EOM) of hybrid rigid–continuum-body robots,
performing dynamic-system analysis, state observation, and
control-system design more accessible to the interdisciplinary
soft-robotics research community and people with limited
expertise in dynamic-system modelling. To this end, in this
paper we describe a Matlab-internal DSL (Domain Specific
Language) serving as a “front-end” for the TMTDyn package.
This DSL provides the following benefits:

1) Accessibility: the DSL offers an intuitive structure for
describing a robotic system that is automatically broken
down into the parts required by the TMTDyn package.

2) Early validation: the DSL can offer validation checks
at the time of description rather than the time of evalu-
ation, allowing error messages to be more focused and
simplifying debugging.

3) Maintainability: changes to the structure to be modelled
can be made easily and in a structured fashion; where the
plain TMTDyn package may require careful adjustment
of multiple parts of the code, all related changes are
closely linked in the DSL.

While DSLs for kinematics and dynamics in robotics have
been developed in the past [27], to the best of our knowledge,

1https://github.com/hadisdt/TMTDyn

https://github.com/hadisdt/TMTDyn

this is the first Matlab-internal DSL specifically targeting
hybrid rigid–soft-body systems.

In the remainder of this paper, we first show a motivating
example to develop such DSL for robot analysis in Sec. II.
We then give some background on concepts relevant to our
work in Sec. III before introducing our DSL in Sec. IV and
discussing our experience in developing this DSL in Sec. V.

II. MOTIVATING EXAMPLE

A dynamic system with inertial, compliant and constraining
elements can be expressed as a set of lumped (point) masses,
usually assumed at the system elements’ center of mass
(COM) locations, with moments of inertia which are connected
with springs / dampers and joints to the adjacent lumped
masses. For a continuum system, where usually a system
of differential equations describes the system mechanics, a
differential format of the lumped-system approach can be
employed. To this end, first, the free body diagram of the
load balance in a single differential element is drawn, then the
lumped-system equivalence of the system is assumed where
the parameters are differential terms.

The following principles guided the design of TMTDyn:

• The dynamic motion of a multi-link system is derived
where external/input loads, geometrical constraints, rope
elements, and soft impacts can be modelled.

• Each element in the system can be assumed as a combina-
tion of separable inertial, linear elastic, viscous damping
with power law, and external load elements, each with
3D elements.

• The system may have finite or infinite number of elements
but must have a finite number of states, forming an
Ordinary Differential Equation (ODE) to be integrated
numerically over time.

• External / input loads, elastic, damping, geometrical
constraint, soft contact, and directional elements (such as
string and membrane) are considered as joints between
two points on the system but with specific properties to
each element type2.

• 1D continuum elements can be modelled as a finite
number of interconnected Euler-Bernoulli elastic beam
elements (discretization), or as continuous beam elements
with predefined polynomial deformation shape functions
(ROM).

• 2D & 3D continuum elements can be modelled as wire
meshes in which edges are 1D Euler-Bernoulli beams and
connections are point masses.

• Hyperelasticity is not captured directly but can be added
by updating an element stiffness matrix in an intermediate
step during the numerical simulation.

System kinematics describes the geometric relations be-
tween the system elements in terms of rotation and translation.
TMTDyn derives equations describing the position vector and

2This will be discussed more later; our DSL provides dedicated keywords
to reduce cognitive load and improve validation.

TABLE I: The modeling parameters for the experiments with
a fabric sleeve around a single link pendulum (M: Measured,
C: Calibrated).

Sym. Value Metric Sym. Value Metric

m1[g] 40 M m1[g] 36 M
lm1 [mm] 270 M lcom1 [mm] 135 M
lm2x [mm] 350 M lm2y [mm] 0.8 M
lm2z [mm] 99 M lcx [mm] 38 M
lcz [mm] 30 M θh[deg] 85 M
E[KPa] 5 C ν 1 C
µh[Ns/m] 1e2 C µε[Ns/m] 1e2 C
µα[Nms/rad] 1e2 C

orientation of the local frame attached to each point of the
system over time.

As an example, consider a simple model of the dynamic
deformation of a fabric sleeve (as a 2D continuum medium)
worn on an elbow-like rigid-link pendulum (E2), modelled as a
complex hybrid system in our previous work. The results from
such a model can be useful for research on wearable sensors.
Capturing the dynamics of soft fabrics can provide many
benefits to textile-embedded human motion analysis systems,
such as those used for computer animation or rehabilitation
feedback [28], [29]. Table I presents the fabric and setup
dimensions and the simulation parameters. We will use this
example throughout this paper. Below, we first show its
specification in the current TMTDyn package and highlight
challenges of the current interface.

A. Pendulum with Fabric Sleeve Setup

A fabric sleeve, made of Jersey fabric, was cut and clamped
on a rigid-link pendulum, cut to shape out of ABS clear plastic
(Fig. 1). This shape is modelled on a standard sized human
arm, and used to simulate the effect of clothing movement
given wearer motion. The pendulum was fixed with a 1-DOF
(degree of freedom) joint at the top and passively swings. The
model was intended to capture the fabric dynamics due to the
pendulum’s free motion. Three magnetic trackers were used to
measure the link COM motion, and deformation of two points
on the fabric (s1, s2).

1) Modelling Assumptions & Program Input: The fabric
can be modelled as a membrane, which is a 2D tension-
only continuum geometry that does not withstand bending or
compression. This can be done by assuming the fabric as a net
of equally distributed masses with connecting linear springs;
a lumped-mass approximation of the fabric mesh. We have
used a similar method to model a spider web with TMTDyn
recently [30].

To model the system, we focus on the fabric model and
consider the link motion as a passive swinging pendulum from
an initial state based on the experimental recording. The fabric
deforms when clamped on the link. The overall geometry of
the clamped fabric is modelled with FreeCAD software as
a wireframe sketch with a 3 × 5 grid of nd = 15 nodes
and 22 edges as in Fig. 1.c. The CAD model is stored in
Initial Graphics Exchange Specification (IGES) format to be

a) b)

l
m2z

l
m2x

 l
cx

l
cz

Clamps

Arm pivot
joint

M
ag

ne
ti

c
tr

ac
ke

rs

s
1

s
2

Mesh
nodes

c)

-0.35

-0.05

7
6

-0.3

y[m]

0

5

-0.05

x[m]

0
0.05

-0.25

0.05

8

134

-0.2z[
m

]

-0.15
9

3 12

-0.1
10

-0.05

2
11

0 14

16

15

-0.3

-0.1

-0.2

-0.20

z[
m

]

y[m]

-0.1

-0.1

x[m]

0.1 0

0

0.10.2
0.2

rigid pendulum

fabric mesh

Fig. 1: a) A fabric is cut to form a fabric sleeve around a single link pendulum. b) The link forms a passive pendulum with
clamped fabric sleeve. The link is fixed with a 1 DOF joint at the top and two magnetic trackers at nodes s1 & s2. Red
dots are equivalent to the CAD-file nodes. c) CAD-file wireframe of the sleeve in the clamped configuration (as shown by
mesh_import.m module) and the final animation of the simulation results.

imported into the TMTDyn model later. The fabric is clamped
at nodes 14 & 16 to the link at position [±lcx , 0, lcz] (see Fig.
1). Two sets of six constraints are defined to fully fix each of
these two nodes to the link.

The fabric mesh is modelled with lumped masses at the
CAD-file wireframe nodes that are interconnected with Euler–
Bernoulli (EB) beams. The system states are described with
absolute states of the masses where the frames defining the
DOF of each mass are defined w.r.t. the system reference
frame. The nodes are rigid lumped masses with an equally
distributed mass of m2/nd. Considering the fabric as a thin
plate, the following relation is used to derive the nodes’ second
moment of inertia as in Eq. 1. where � denotes inner prod-
uct. Links are considered as EB ribbons (beams) connecting
the pairs of point masses on the nodes, where the frames
defining the ends of a link are defined w.r.t. the local frame
of the connecting masses. The beams have linear elasticity
Kε = diag(ac[G,G,E]) and Kα = diag([E,E,G]).diag(J).
Here, J = [l3m2y lm2b , lm2y l

3
m2b

, l3m2y lm2b + lm2y l
3
m2b

] is a
1×3 vector consisting of the EB ribbons’ cross-section second
moments of areas, where lm2b = (lm2x + lm2z)/2 is the mean
width of the ribbons in the x, z-axis directions.

To map the nodes’ motion to the beams deformation map,
the beams are defined in the local body frames (xaxis is not
defined) with an initial deformation to comply with the initial
geometry of the fabric, as imported from the ’cad.iges’
file, by setting init = nan3.

B. TMTDyn specification

The inputs for the TMTDyn package to model this setup are
shown in Listing 1. TMTDyn uses a number of Matlab structs
to capture input data. Specifically, the par struct is used to
capture parameters controlling how TMTDyn derives EOMs
and what it does with them. These are mostly boolean flags
selecting individual features of the library to be used. The
world struct allows specifying global parameters, such as the

3See the project wiki page at https://github.com/hadisdt/TMTDyn/wiki

gravity vector. The body and joint vectors contain structs for
modelling the robot geometry. Finally, the mesh struct allows
one CAD file to be loaded, describing a set of interconnected
lumped masses, which in this example is used to model the
fabric mesh.

C. Drawbacks of current specification interface

The current interface is not atypical of Matlab libraries.
The use of structs provides a flexible and efficient encoding
of the information needed to derive EOMs for hybrid rigid–
continuum robots, but it also creates a number of challenges:

1) Accessibility: Creating and understanding a model in the
TMTDyn format can be challenging. One has to have
a good understanding of how rotation and translation
are encoded in TMTDyn both for fixing the relationship
between different parts of the system and for describing
degrees of freedom that enable the robot to move. There
is concept overloading, where the same interface concept
is used to describe different things (e.g., ‘joint’ is an
overloaded concept that can describe an actual joint as
well as a geometric constraint between two masses and
different additional information must be provided for
each case).

2) Validation: The TMTDyn package implements a range
of checks to validate the model before computation
starts. While these checks will flag up errors, actually
identifying and correcting the cause of the problem is
not easy. This is compounded by the dynamic nature
of Matlab, allowing struct members to be declared on
the fly, simply by setting their values. As a result, a
small misspelling of one of the keywords will lead to
an invalid model, which can be very difficult to debug
as the problem is only discovered when attempting to
analyse the model. Matlab does not provide any built-in
support for analysis for this interface.

3) Maintainability: There are some complex interactions
between different parts of the specification. For example,
the description of DOF requires an entry in the joints

https://github.com/hadisdt/TMTDyn/wiki

I2 =
m2

12nd
�

 l2m2y + (
lm2z

5)2 0 0

0 (
lm2x

3)2 + (
lm2z

5)2 0

0 0 (
lm2x

3)2 + l2m2y

 , (1)

Listing 1: TMTDyn package input for the sleeve fabric models clamped to a rigid-link pendulum, structure-based user interface.
Model labels are as in Fig. 1.

1 p a r . d e r i v e = 0 ; % d e r i v e TMT EOM
2 p a r . de r ive_mex = 0 ; % use Mat lab codegen
3 p a r . simdyn = 2 ; % dynamic s i m u l a t i o n wi th C−mex f i l e s
4 p a r . p o s t _ p r o c e s s = 1 ; % pos t−p r o c e s s u s i n g use r−s p e c i f i e d code
5 p a r . anim = 1 ; % a n i m a t e t h e r e s u l t s
6 syms E ν µε µα θh0

µh ; % s y m bo l i c v a r i a b l e d e f i n i t i o n f o r d e r i v a t i o n s
7 p a r . sym = [E , ν , µε , µα , θh0

, µh] ;
8 p a r . v a r = [5e3 , 1 , 1e2 , 1e2 , 1 . 4 8 , 1 e2] ; % v a l u e s f o r s y m b o l i c v a r i a b l e s i n s i m u l a t i o n as i n Tab le

1 .
9

10 wor ld . g = [0 ,0 , −g] ; % g r a v i t y
11
12 body (1) .m = m2 ; % pendulum r i g i d l i n k
13 body (1) . l_com = [0 , 0 , −lm1] ; % pendulum COM
14
15 j o i n t (1) . second = 1 ;
16 j o i n t (1) . t r . r o t = [2 , i n f] ; % 1 DOF r o t a t i o n around y−a x i s
17 j o i n t (1) . dof . i n i t = θh0

; % pendulum i n i t i a l a n g l e
18 j o i n t (1) . dof . damp . v i s c = µh ; % pendulum j o i n t v i s c o u s damping
19
20 % I mp or t mesh geomet ry :
21 mesh . f i l e _ n a m e = ' cad . i g e s ' ; % CAD− f i l e name
22 mesh . t o l = 1e−3; % geomet ry i m p o r t t o l e r a n c e
23 mesh . t r . t r a n s = [0 , 0 , lcz] ; % mesh geomet ry i n i t i a l p o s i t i o n / o r i e n t a t i o n
24 mesh . t r . r o t = [2 ,θh0

] ;
25 mesh . body .m = m2 /nd ; % e q u a l l y d i s t r i b u t e d f a b r i c mass ove r t h e nodes
26 mesh . body . I = I2 ; % D e s c r i b i n g t h e mesh a b s o l u t e DOF wi th mesh . j o i n t (1) :
27 mesh . j o i n t (1) . t r . t r a n s = [i n f , i n f , i n f] ; % masses a b s o l u t e s t a t e a s sys tem DOFs
28 mesh . j o i n t (1) . t r . r o t _ t y p e = ' n o n _ u n i t _ q u a t ' ; % o r i e n t a t i o n r e p r e s e n t a t i o n t y p e
29 mesh . j o i n t (1) . t r . r o t = [i n f , i n f , i n f , i n f] ; % non−u n i t q u a t e r n i o n
30 mesh . j o i n t (1) . dof (4) . i n i t = 1 ; % q u a t e r n i o n i n i t i a l v a l u e
31
32 % D e s c r i b i n g t h e mesh EB beam c o n n e c t i o n s wi th mesh . j o i n t (2) :
33 mesh . j o i n t (2) . s p r i n g . c o e f f = [d i a g (Kε) , d i a g (Kα)] ; % l i n e a r e l a s t i c i t y o f beams
34 mesh . j o i n t (2) . s p r i n g . i n i t = nan ; % beam i n i t i a l s t a t e from sys tem geomet ry
35 mesh . j o i n t (2) . damp . v i s c = [µε , µα] ; % l i n e a r v i s c o u s damping
36 mesh . j o i n t (2) . damp . power = ν ; % damping power law
37
38 % F a b r i c c lamps :
39 j o i n t (2) . f i r s t = 1 ;
40 j o i n t (2) . second = 16 ; % clamp a t node 16 based on mesh f i l e p l o t
41 j o i n t (2) . t r . t r a n s = [lcx , 0 , −lcz] ;
42 j o i n t (2) . f i x e d = ones (1 , 3) ; % on ly t h e C a r t e s i a n l o c a t i o n i s c o n s t r a i n t (f r e e r e l a t i v e r o t a t i o n s)
43 j o i n t (3) . f i r s t = 1 ;
44 j o i n t (3) . second = 14 ; % clamp a t node 14 based on mesh f i l e p l o t
45 j o i n t (3) . t r . t r a n s = [−lcx , 0 , −lcz] ;
46 j o i n t (3) . f i x e d = ones (1 , 3) ;

vector to be coordinated with a number of entries in the
DOF vector (one for each inf transformation in the
joint specification). The connection is made based on
the index in both vectors. However, because for every
joint there may be more than one DOF entry, identifying
the correct DOF entry for a given joint entry is a non-
trivial task with a high cognitive load. This is particularly
problematic when making changes to the model, where
a small change to a joint can inadvertently cause the
two sets of index to become out of sync, leading to an

invalid model that is very difficult to debug.

III. BACKGROUND

In this section, we provide brief background on concepts
relevant to our work. Specifically, we briefly discuss domain-
specific languages (DSLs) and the differentiation of internal
and external DSLs, the idea of fluent interfaces for imple-
menting internal DSLs, and Matlab’s approach to object-
orientation as this will be required for the development of
a fluent language.

Domain-Specific Languages: are computer languages de-
veloped specifically to capture problems in a specific applica-
tion domain. DSLs allow domain experts to express their goals,
problems or requirements in terms they are familiar with,
while ensuring that these expressions can be meaningfully
interpreted (and often ‘executed’ in some form) by a computer.
This is useful because it encapsulates details required at the
level of abstraction at which a computational process actually
works and shields domain experts from them, leading to a
more effective division of labour in a cross-disciplinary group
of experts. For our purposes, we wish to hide the details of
how EOMs are computed and provide a language that is close
to how someone aiming to solve a particular problem with the
help of a novel robot thinks about the robot’s structure.

DSLs can be internal or external [31]. The former are
developed directly embedded in an existing ‘host’ language—
often a general-purpose language such as Ruby, Java, or C++.
The latter are developed as independent languages which are
subsequently interpreted or compiled for execution. Robot
design uses a rich set of existing languages and tools, most
notably Matlab and C++. Adding yet another standalone
language to this mix is a hard sell: existing languages and
tools come with a rich ecosystem of libraries and support
infrastructure, which would need to be adapted and translated
at great cost to be interoperable with a newly introduced
external DSL. Instead, an internal DSL embedded in Matlab
offers the right trade-offs for this problem, despite the well-
known limitations of internal DSLs.

Fluent interfaces: are the typical approach to API design
used in developing internal DSLs [31]. The key idea is to use
a set of interacting classes, whose methods can be chained
together into call sequences that read like keywords in a new
language. This is achieved by making each method return
either the object it was called on or a new object representing
a subordinate language scope. Carefully designing the names
of methods so that chains of method invocations can be read
like sentences increases the usability of the language.

Object-orientation in Matlab: Fluent interfaces rely on
using object-oriented concepts for API design to enable
method chaining. Matlab is originally not an object-oriented
language, but does provide object-oriented features. Some id-
iosyncrasies of the Matlab approach to object orientation must
be taken into account when implementing fluent interfaces: By
default, objects are passed by value in Matlab rather than by
reference. This makes developing methods that return a sub-
scope while updating the current scope difficult. Fortunately,
objects of classes that sub-class the handler class are always
passed by reference. Matlab also doesn’t support statements
that continue over multiple lines of text. Instead, an ellipsis
(. . .) must be placed at the end of each line. This will add
some syntactical clutter to our internal DSL.

IV. A MATLAB-INTERNAL DSL

Listing 2 shows our motivating example expressed in our
new DSL. The DSL is a Matlab-internal language built using
fluent interfaces [31]. For each new context (indicated in

the listing by levels of indentation), we have implemented
a separate builder class providing the keywords available to
the user at this level. The entire specification starts by using
tmtdyn(), which creates an instance of the root tmtdyn
builder class. From tmtdyn(), three keywords are available:
simulation() to specify simulation parameters, world()
to specify general world parameters4, and robot() to start
the definition of the robot structure. Finally, users use run()
to run the analysis based on the specification provided.

Rather than providing a detailed account of every line of
Listing 2 (many of which are hopefully self-explanatory), we
will focus on highlighting some of the key design principles
behind our DSL:

1) Using Matlab OO to support fluent interfaces;
2) Improving accessibility through specialised keywords;
3) Improving maintainability by co-locating the definition

of transformations and additional information about de-
grees of freedom; and

4) Improving validation using runtime checks for method
availability.

A. Using Matlab OO to support fluent interfaces

For each scope, we have defined a new Matlab class using
the Builder design pattern [32]. The tmtdyn().run()
method then extracts all information accumulated and in-
vokes the appropriate TMTDyn functions as configured in the
simulation() settings.

All builder classes follow the fluent-interface design pattern.
Methods return a reference to self (or a fresh sub-builder if
a new scope is opened) so that they can be easily chained
using dot notation. Method names have been carefully chosen
to achieve natural and intuitive readability of chained method
calls. A technical challenge is that, by default, all Matlab
objects are passed by value. As a result, a method like the
one below from class tmtdyn will not work as expected:

1 f u n c t i o n r o b o t = r o b o t (s e l f , name)
2 s e l f . t h e _ r o b o t = r o b o t _ b u i l d e r (s e l f , name) ;
3 r o b o t = s e l f . t h e _ r o b o t ;
4 end

In particular, the update to self will be lost as soon as the
robot() method returns. Fortunately, this counter-intuitive
behaviour can be easily fixed by ensuring all classes extend
the handle system class. Instances of handle are always
passed by reference.

The use of separate classes for different scopes restricts
the ‘keywords’ available at each point in a specification:
only the methods defined in the current builder class can be
invoked. Calling a method not defined in the current scope
will lead to an error when executing the Matlab program.
While this is an important feature for validation purposes
(see below), it can also cause problems. In particular, in a
naïve language implementation, users would have to explicitly
close each scope to obtain a reference to the containing
scope, for example by chaining an, otherwise meaningless,

4Currently, TMTDyn only supports defining the gravity vector

Listing 2: Motivating example expressed using our internal
DSL

1 tmtdyn () ...
2 . s i m u l a t i o n () ...
3 . v a r (E , 5 e5) ...
4 . v a r (ν , 1) ...
5 . v a r (µε , 1 e2) ...
6 . v a r (µα , 1 e2) ...
7 . v a r (θh0

, 1 . 4 8) ... % i n r a d i a n s
8 . v a r (µh , 1 e2) ...
9 . de r ive_eom () ...

10 . use_mex () ...
11 . o p t i m i z e _ c o d e () ...
12 . a n a l y s i s () ...
13 . dynamic_sim (' m _ f i l e ' , 0 , 1) ... %

s i m u l a t i o n f o r t =0:1 s
14 . p o s t _ p r o c e s s () ...
15 . a n i m a t e () ...
16 . r u n _ u s e r _ c o d e () ...
17 . wor ld () ...
18 . g ([0 , 0 , −g]) ...
19 . r o b o t (' f a b r i c _ p e n d u l u m ') ...
20 . body (' arm ') ...
21 . wi th_mass (m2) ...
22 . w i t h _ c e n t e r _ o f _ m a s s _ a t ([0 , 0 , −lm1]) ...
23 . c o n n e c t e d () ...
24 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
25 . r o t _ y () ...
26 . i n i t i a l _ v a l u e (θh0

) ...
27 . p a r a l l e l _ d a m p e r () ...
28 . v i s c o s i t y (µh) ...
29 . mesh (' f a b r i c ') ...
30 . f r o m _ f i l e (' exp / exp2 . i g e s ' , 1e−3)...
31 . w i t h _ t r a n s f o r m a t i o n () ...

32 . r o t _ y (θh0
) ...

33 . t r a n s _ z (−lcz) ...
34 . wi th_node (' f a b r i c ') ...
35 . wi th_mass (m2/nd) ...
36 . w i t h _ i n e r t i a (I2) ...
37 . c o n n e c t e d () ...
38 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
39 . t r a n s l a t i o n ([i n f , i n f , i n f]) ...
40 . r o t _ n o n _ u n i t _ q u a t ([i n f , i n f , i n f ,

i n f]) ...
41 . dof (1) ...
42 . i n i t i a l _ v a l u e (1) ...
43 . w i th_edge (' f a b r i c _ l i n k s ') ...
44 . b e a m _ s t i f f n e s s () ...
45 . c o e f f i c i e n t ([d i a g (Kε) ' , d i a g (Kα) ']) ...
46 . i n i t i a l _ s t a t e _ f r o m _ c o n f i g u r a t i o n () ...
47 . beam_damping () ...
48 . v i s c o s i t y ([µε* ones (1 , 3) , µα* ones (1 , 3)

]) ...
49 . power (ν) ...
50 . c o n s t r a i n t (' c l i p _ c o n s t r a i n t _ 1 ') ...
51 . from_body (1) ...
52 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
53 . t r a n s l a t i o n ([lcx , 0 , −lcz]) ...
54 . to_body (1 6) ...
55 . f i x e d _ d i r e c t i o n s ([1 , 1 , 1]) ...
56 . c o n s t r a i n t (' c l i p _ c o n s t r a i n t _ 2 ') ...
57 . from_body (1) ...
58 . w i t h _ t r a n s f o r m a t i o n _ f r o m () ...
59 . t r a n s l a t i o n ([−lcx , 0 , −lcz]) ...
60 . to_body (1 4) ...
61 . f i x e d _ d i r e c t i o n s ([1 , 1 , 1]) ...
62 . run () ;

.end() call. Each scope object contains a private property
called the_source, which references the containing scope
element, so end() would be implemented like this:

1 f u n c t i o n s o u r c e = end (s e l f)
2 s o u r c e = s e l f . t h e _ s o u r c e ;
3 end

Calling end() would then return the containing scope, so
that subsequent chained method calls would be able to use
the methods defined in that scope again. However, this would
create a lot of syntactic clutter, which is generally undesirable
in language design. Fortunately, Matlab provides basic meta-
programming capabilities, which enable us to intercept the
routing of method calls. We use this to implicitly close scopes
when a method from a containing scope is invoked. To do so,
each builder class overrides the subsref method, responsible
for method lookup:

1 f u n c t i o n v a r a r g o u t = s u b s r e f (s e l f , S)
2 t r y
3 [v a r a r g o u t { 1 : n a r g o u t }] = ...
4 b u i l t i n (' s u b s r e f ' , s e l f , S) ;
5 c a t c h
6 s e l f . onLeaveCon tex t () ;
7 [v a r a r g o u t { 1 : n a r g o u t }] = ...
8 b u i l t i n (' s u b s r e f ' , s e l f . t h e _ s o u r c e , S) ;
9 end

10 end

This first attempts to look up any requested method in the
current object. If the method is not found there, it is looked

up in the containing scope, which can be found via property
the_source. Here, onLeaveContext() is a method in
each builder class to do context-specific cleanup.

Automatically closing scopes like this makes the DSL more
concise, but can also lead to problems like the well-known
“dangling else problem” [33]: If the same keyword is available
in two nested scopes, which one does the user mean? In our
DSL, we avoid this problem by using distinct keywords where
similar concept are available in different nested scopes. For
example, both joints and general DOFs can have springs and
dampers attached. A joint_builder describes a connec-
tion between two frames and can have stiffness and damping
element to restrict the relative motion of these two frames in
the form of a parallel spring–damper. Any dof_builder,
defining a system state, can have a parallel spring–damper
system. To solve the problem of scopes we chose differ-
ent names for the methods that define these spring–damper
systems in each scope; both are translated to the .spring
and .damper sub-field of the struct-based interface. For
example, a spring element is named beam_stiffness in
the joint_builder class and parallel_spring in the
dof_builder class. Apart from resolving issues in scoping,
these names also better describe the purpose and functionality
of the elements in their respective context.

B. Improving accessibility through specialised keywords

In the structs-based approach, all transformations need to
be specified using axis index and value, vectors, quaternions
etc. This creates additional cognitive load when reading a
specification as the reader has to constantly back translate to
a more intuitive representation. In our DSL, we still offer
these ways of specifying transformations, but also provide
specialised operators for typical transformations, that allow for
better readability. For example, to specify a rotational degree
of freedom around the y-axis, one simply says .rot_y().
Similarly, to specify a fixed rotation around the same axis,
one simply provides a value parameter to the method call:
.rot_y(.5). Rotations and translations can be mixed ar-
bitrarily. The DSL will automatically generate an appropriate
number of tr records in the structs that are passed to the
underlying TMTDyn library at the end. This is done by
combining sequences of rotations (translations) and creating
new records whenever a translation is followed by a rotation.

Another such example is the specification of the initial
state of the mesh. Remember from Sect. II that we used an
initial value of nan to specify that the mesh should initially
be deformed to be connected to the arm according to the
overall configuration. This encoding clearly loses the intuition.
Instead, on Line 46 of Listing 2, we use a bespoke keyword
initial_state_from_configuration to express the
same thing in a more intuitive manner.

C. Improving maintainability

In the structs-based interface, the definition of what de-
grees of freedom exist (by using inf values for elements in
transformation vectors) and the specification of their properties
(damping, spring properties, etc) are contained in two separate
arrays, requiring users to track complicated links between
two sets of indexes. This makes changing the code very
error prone: adding or removing a degree of freedom in a
transformation somewhere in the structural specification means
tracking down the corresponding index in the dof vector and
updating it and all subsequent indexes accordingly. Mistakes
made in this process are very difficult to spot and correct; often
the only sensible way of fixing a problem is to reconstruct the
dof vector from scratch.

In our DSL, we choose a different approach: DOF details are
given directly in a sub-scope of a transformation-specification
that declares a new degree of freedom. For example, Lines 25–
28 in Listing 2 declare that the robot arm can be freely rotated
around the y-axis (DOF declaration, previously defined in
body.tr.rot) and immediately specify the behaviour of
the arm when rotated in this way (previously defined in dof
vector). As a result, maintainability is improved, because users
no longer need to maintain consistency between two separate
vector-index ranges. Instead, the correct vectors are generated
from the DSL specification.

D. Improving validation

Our fluent DSL improves validation in two ways:

1) Better use of Matlab checking mechanisms: Matlab is
a very dynamic language. Variables do not need to be
declared, but can be used straightaway. While this can
have many benefits, it also means that a small typo
in a name silently creates a new variable (or struct
member) rather than setting a required property. As a
result, TMTDyn will produce incorrect results, but this
can be very hard to spot and debug. In contrast, with
a fluent DSL only the methods explicitly defined in a
scope are available to be used. Any typos will be picked
up by Matlab when it tries to invoke the method and an
error will be thrown at this point, helping identify the
cause of the problem instantly. This can also be used to
ensure consistency constraints are satisfied. For example,
joints in a TMTDyn model can either connect two bodies
or can indicate where a body is connected to the base. In
the former case, two bodies must be specified, whereas
in the latter case only one body is required. We provide
the joint() keyword to define a standard joint while
using the connected_from() keyword for defining
joints that connect to the base. Both return a type of
joint builder, but only the one returned by joint()
has a method for defining the from_body(). For
connected_from(), the source body is automati-
cally set from the specification context.

2) Localised consistency checks: In the existing TMTDyn
library all consistency checks are only undertaken once
the complete struct has been defined. This makes it
difficult to provide error messages clearly locating the
source of a problem. Because every declaration is done
through a method call, we can distribute consistency
checks throughout the model creation. For example, we
are easily able to check the correct format of any vector
provided at the point that it is defined.

V. DISCUSSION

The DSL we have presented in this paper is the current
endpoint of a language-design journey. We originally started
our collaboration on a Matlab package for deriving EOMs for
primarily rigid-body robots. This package had already some
of the features of the current TMTDyn package, but had a
much more basic interface, where every aspect of the system
to be modelled was captured in a different vector, with no
meaningful naming conventions, validation, etc. We initially
experimented with an external DSL—written in Xtext [34]—
that allowed fairly comfortable high-level specification of
robot structures with clean syntax and good tool support, in-
cluding an amount of in-editor error checking and validation5.
While using an external DSL enabled very clean syntax and
some fairly powerful features, including the easy specification
of model variants, this external DSL struggled to be accepted
by users and we eventually gave it up. The main challenge
was that the external DSL required users to become familiar

5The last version of this DSL we explored can still be found at https:
//github.com/szschaler/RigidBodies/

https://github.com/szschaler/RigidBodies/
https://github.com/szschaler/RigidBodies/

with a separate tool set, which was perceived as a hurdle too
high. However, the design of that original DSL informed the
redesign of the current, struct-based interface of TMTDyn.
While this improves on the original interface, and in parts
already reads like a DSL, it leaves substantial challenges
to accessibility, maintainability, and validation as we have
discussed in this paper. This is also supported by informal
feedback received from some of the users of that interface,
who highlighted the difficulty of specifying basic relative
rotations (for which our DSL now has introduced dedicated
keywords) or complex geometry (which can now be imported
directly using IGES format). There was also feedback indicat-
ing that the struct-based interface requires substantial initial
training; we hope that the DSL-based approach has improved
this situation. With the current, Matlab-internal DSL, we feel
we are getting closer to a design sweet spot that balances reuse
of existing tooling infrastructure against the strengths of DSLs
in improving accessibility, maintainability, and validation.

An internal DSL in Matlab has many benefits, not least the
ability to reuse Matlab’s rich and flexible mathematical ex-
pression language. However, Matlab also makes it difficult in
some regards to create a seamless language experience from a
fluent interface. Most annoyingly, Matlab requires continuation
markers (. . .) to indicate a line of code that continues on the
next line of input. This can add substantial syntactic clutter.
Fluent interfaces are often praised for their discoverability [31]
as they integrate nicely with code-completion functionality
offered by modern development environments. Unfortunately,
discoverability is limited in a Matlab-based fluent interface
because the Matlab language is highly dynamic, making it
near impossible to predict statically what methods might be
invoked in a particular place. However, using fluent interfaces
at least provides a fail-fast capability that reports any mistyped
keywords as soon as the code is executed.

VI. CONCLUSIONS

We have presented a Matlab-based DSL enabling the speci-
fication of hybrid rigid–continuum robots so that EOMs for
these robots can be derived automatically by the TMTDyn
package. The new DSL improves accessibility, maintainability,
and validation of robot models using our approach. The
examples from this paper are available online6.

This is not the first DSL developed for the robotics domain.
In [27], Nordmann et al. provide a detailed survey of the
growing landscape of literature in this field. They also define
a set of dimensions enabling the classification of existing and
new DSLs. We classify our work in these terms as follows:

• Functional dimension. We are focusing on kinematics and
dynamics. While there are a good number of DSLs in this
space already, ours is the first supporting hybrid systems
and soft robots.

• Process stage. We cover a number of process stages as
listed by [27]:

6https://github.com/hadisdt/TMTDyn_hll

1) Capability building has been implemented: full
equations of motion are derived for any system
specified in our DSL;

2) Platform building is partially addressed through the
support for importing mesh definitions and IGES
files enabling modelling of platforms such as con-
tinuum arms or deformable 2D structures.

In future work, we will explore further useful features to be
added to the DSL. For example, more complex configuration
patterns could be incorporated as pre-defined keywords for
typical recurring model elements (spherical joints, for exam-
ple) that would further improve the efficiency of specifying
robot models in our Matlab package. We will apply this
new DSL to model further examples, which will help further
refine and improve the modelling capabilities offered. We also
plan to undertake an empirical study to evaluate and further
improve the usability of our DSL in terms of productivity and
reliability.

ACKNOWLEDGEMENTS

S.M.H. Sadati and C. Bergeles are funded by ERC Starting
Grant No. 714562.

REFERENCES

[1] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, 2015. [Online].
Available: http://dx.doi.org/10.1038/nature14543

[2] M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer,
P. Dasgupta, and A. Menciassi, “Soft Robotics Technologies to Address
Shortcomings in Today’s Minimally Invasive Surgery: The STIFF-FLOP
Approach,” Soft Robotics, vol. 1, no. 2, pp. 122–131, 2014. [Online].
Available: http://online.liebertpub.com/doi/abs/10.1089/soro.2014.0001

[3] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum Robots
for Medical Applications: A Survey,” IEEE Transactions on Robotics,
vol. 31, no. 6, pp. 1261–1280, Dec. 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7314984/

[4] M. Cianchetti and A. Menciassi, “Soft Robots in Surgery,” in
Soft Robotics: Trends, Applications and Challenges, 1st ed., ser.
Biosystems & Biorobotics. Springer International Publishing, 2017,
vol. 9, pp. 75–85. [Online]. Available: http://link.springer.com/10.1007/
978-3-319-46460-2_10

[5] I. D. Walker, H. Choset, and G. S. Chirikjian, “Snake-Like and
Continuum Robots,” in Springer Handbook of Robotics. Cham:
Springer International Publishing, 2016, pp. 481–498. [Online].
Available: http://link.springer.com/10.1007/978-3-319-32552-1_20

[6] R. K. Katzschmann, A. D. Marchese, and D. Rus, “Autonomous
Object Manipulation Using a Soft Planar Grasping Manipulator,” Soft
Robotics, vol. 2, no. 4, pp. 155–164, Dec. 2015. [Online]. Available:
http://online.liebertpub.com/doi/abs/10.1089/soro.2015.0013

[7] L. He, N. Herzig, S. d. Lusignan, and T. Nanayakkara, “Granular
Jamming Based Controllable Organ Design for Abdominal Palpation,”
in 2018 40th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Jul. 2018, pp. 2154–2157.

[8] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M.
Whitesides, J. A. Lewis, and R. J. Wood, “An integrated design
and fabrication strategy for entirely soft, autonomous robots,” Nature,
vol. 536, no. 7617, pp. 451–455, Aug. 2016. [Online]. Available:
http://www.nature.com/nature/journal/v536/n7617/full/nature19100.html

[9] S. I. Rich, R. J. Wood, and C. Majidi, “Untethered soft robotics,” Nature
Electronics, vol. 1, no. 2, p. 102, 2018.

[10] I. S. Godage, T. Nanayakkara, and D. G. Caldwell, “Locomotion with
continuum limbs,” IEEE International Conference on Intelligent Robots
and Systems, pp. 293–298, 2012.

https://github.com/hadisdt/TMTDyn_hll
http://dx.doi.org/10.1038/nature14543
http://online.liebertpub.com/doi/abs/10.1089/soro.2014.0001
http://ieeexplore.ieee.org/document/7314984/
http://link.springer.com/10.1007/978-3-319-46460-2_10
http://link.springer.com/10.1007/978-3-319-46460-2_10
http://link.springer.com/10.1007/978-3-319-32552-1_20
http://online.liebertpub.com/doi/abs/10.1089/soro.2015.0013
http://www.nature.com/nature/journal/v536/n7617/full/nature19100.html

[11] M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi,
“Bioinspired locomotion and grasping in water: the soft eight-arm
OCTOPUS robot,” Bioinspiration & Biomimetics, vol. 10, no. 3, p.
035003, May 2015. [Online]. Available: http://stacks.iop.org/1748-3190/
10/i=3/a=035003?key=crossref.7e7a029ec68cfb24c606d395db7d7611

[12] M. A. McEvoy and N. Correll, “Shape-Changing Materials Using
Variable Stiffness and Distributed Control,” Soft Robotics, Oct. 2018.
[Online]. Available: https://www.liebertpub.com/doi/abs/10.1089/soro.
2017.0147

[13] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Exploiting the
Dynamics of Soft Materials for Machine Learning,” Soft Robotics, Apr.
2018. [Online]. Available: https://www.liebertpub.com/doi/full/10.1089/
soro.2017.0075

[14] ——, “Information processing via physical soft body,” Scientific
Reports, vol. 5, p. 10487, May 2015. [Online]. Available: https:
//www.nature.com/articles/srep10487

[15] R. M. Füchslin, A. Dzyakanchuk, D. Flumini, H. Hauser, K. J.
Hunt, R. H. Luchsinger, B. Reller, S. Scheidegger, and R. Walker,
“Morphological Computation and Morphological Control: Steps Toward
a Formal Theory and Applications,” Artificial Life, vol. 19, no. 1, pp.
9–34, Nov. 2012. [Online]. Available: https://doi.org/10.1162/ARTL_a_
00079

[16] T. G. Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control
Strategies for Soft Robotic Manipulators: A Survey,” Soft Robotics,
vol. 5, no. 2, pp. 149–163, Apr. 2018. [Online]. Available:
https://www.liebertpub.com/doi/10.1089/soro.2017.0007

[17] L. Blanc, A. Delchambre, and P. Lambert, “Flexible Medical Devices:
Review of Controllable Stiffness Solutions,” Actuators, vol. 6, no. 3,
p. 23, Jul. 2017. [Online]. Available: http://www.mdpi.com/2076-0825/
6/3/23

[18] M. Cianchetti, T. Ranzani, G. Gerboni, I. De Falco, C. Laschi, and
A. Menciassi, “STIFF-FLOP surgical manipulator: Mechanical design
and experimental characterization of the single module,” in IEEE Inter-
national Conference on Intelligent Robots and Systems (IROS). Tokyo,
Japan: IEEE, 2013, pp. 3576–3581.

[19] A. D. Kapadia, I. D. Walker, D. M. Dawson, and E. Tatlicioglu,
“A Model-based Sliding Mode Controller for Extensible Continuum
Robots,” in Proceedings of the 9th WSEAS International Conference on
Signal Processing, Robotics and Automation, ser. ISPRA’10. Stevens
Point, Wisconsin, USA: World Scientific and Engineering Academy
and Society (WSEAS), 2010, pp. 113–120. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1807817.1807840

[20] F. Renda and L. Seneviratne, “A Geometric and Unified Approach for
Modeling Soft-Rigid Multi-Body Systems with Lumped and Distributed
Degrees of Freedom,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA), May 2018, pp. 1567–1574.

[21] F. Renda, F. Boyer, J. Dias, and L. Seneviratne, “Discrete Cosserat Ap-
proach for Multisection Soft Manipulator Dynamics,” IEEE Transactions
on Robotics, pp. 1–16, 2018.

[22] C. Della Santina, D. Lakatos, A. Bicchi, and A. Albu-Schäffer, “Using
Nonlinear Normal Modes for Execution of Efficient Cyclic Motions in
Soft Robots,” arXiv:1806.08389 [cs], Jun. 2018, arXiv: 1806.08389.
[Online]. Available: http://arxiv.org/abs/1806.08389

[23] S. Sadati, L. Sullivan, I. Walker, K. Althoefer, and
T. Nanayakkara, “Three-Dimensional-Printable Thermoactive Helical
Interface With Decentralized Morphological Stiffness Control for
Continuum Manipulators,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 2283–2290, Jul. 2018. [Online]. Available:
http://ieeexplore.ieee.org/document/8288847/

[24] L. Paternò, G. Tortora, and A. Menciassi, “Hybrid Soft–Rigid Actuators
for Minimally Invasive Surgery,” Soft Robotics, Oct. 2018. [Online].
Available: https://www.liebertpub.com/doi/full/10.1089/soro.2017.0140

[25] S. Sadati, A. Shiva, L. Renson, C. Rucker, K. Althoefer, T. Nanayakkara,
C. Bergeles, H. Hauser, and I. Walker, “Reduced Order vs. Discretized
Lumped System Models with Absolute and Relative States for Con-
tinuum Manipulators,” in Robotics: Science and Systems, Freiburg,
Germany, 2019, p. 10.

[26] S. Sadati, S. E. Naghibi, A. Shiva, M. Brendan, L. Renson, M. Howard,
C. Rucker, K. Althoefer, T. Nanayakkara, S. Zschaler, C. Bergeles,
H. Hauser, and I. D. Walker, “TMTDyn: A Matlab package for
modeling and control of hybrid rigid–continuum robots based on
discretized lumped system and reduced order models,” (under review).
[Online]. Available: https://bit.ly/2XvcgiI

[27] A. Nordmann, N. Hochgeschwende, D. Wigand, and S. Wrede, “A
survey on domain-specific modeling and languages in robotics,” Journal
of Software Engineering for Robotics, vol. 7, no. 1, pp. 75–99, Jul. 2016.

[28] B. Michael and M. Howard, “Activity recognition with wearable
sensors on loose clothing,” PLOS ONE, vol. 12, no. 10, p. e0184642,
Oct. 2017. [Online]. Available: https://journals.plos.org/plosone/article?
id=10.1371/journal.pone.0184642

[29] ——, “Gait Reconstruction From Motion Artefact Corrupted Fabric-
Embedded Sensors,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1918–1924, Jul. 2018.

[30] S. M. H. Sadati and T. Williams, “Toward Computing with
Spider Webs: Computational Setup Realization,” in Biomimetic
and Biohybrid Systems, ser. Lecture Notes in Computer Science.
Springer, Cham, Jul. 2018, pp. 391–402. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-95972-6_43

[31] M. Fowler and R. Parsons, Domain-Specific Languages. Addison-
Wesley Professional, 2010.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, ser. Professional Com-
puting Series. Addison Wesley Professional, 1995.

[33] A. F. Kaupe, “A note on the dangling else in ALGOL 60,” Commun.
ACM, vol. 6, no. 8, pp. 460–462, Aug. 1963. [Online]. Available:
http://doi.acm.org/10.1145/366707.367585

[34] S. Efftinge, J. Köhnlein, and S. Zarnekow, “Xtext language development
framework,” http://www.eclipse.org/Xtext/, last visited 06 June, 2018.

http://stacks.iop.org/1748-3190/10/i=3/a=035003?key=crossref.7e7a029ec68cfb24c606d395db7d7611
http://stacks.iop.org/1748-3190/10/i=3/a=035003?key=crossref.7e7a029ec68cfb24c606d395db7d7611
https://www.liebertpub.com/doi/abs/10.1089/soro.2017.0147
https://www.liebertpub.com/doi/abs/10.1089/soro.2017.0147
https://www.liebertpub.com/doi/full/10.1089/soro.2017.0075
https://www.liebertpub.com/doi/full/10.1089/soro.2017.0075
https://www.nature.com/articles/srep10487
https://www.nature.com/articles/srep10487
https://doi.org/10.1162/ARTL_a_00079
https://doi.org/10.1162/ARTL_a_00079
https://www.liebertpub.com/doi/10.1089/soro.2017.0007
http://www.mdpi.com/2076-0825/6/3/23
http://www.mdpi.com/2076-0825/6/3/23
http://dl.acm.org/citation.cfm?id=1807817.1807840
http://arxiv.org/abs/1806.08389
http://ieeexplore.ieee.org/document/8288847/
https://www.liebertpub.com/doi/full/10.1089/soro.2017.0140
https://bit.ly/2XvcgiI
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184642
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184642
http://link.springer.com/chapter/10.1007/978-3-319-95972-6_43
http://doi.acm.org/10.1145/366707.367585
http://www.eclipse.org/Xtext/

	Introduction
	Motivating Example
	Pendulum with Fabric Sleeve Setup
	Modelling Assumptions & Program Input

	TMTDyn specification
	Drawbacks of current specification interface

	Background
	A Matlab-internal DSL
	Using Matlab OO to support fluent interfaces
	Improving accessibility through specialised keywords
	Improving maintainability
	Improving validation

	Discussion
	Conclusions
	References

