
Project: GlassBox
Version: 2.0, downloaded 18/02/2010, focusing on monitor subproject; AOP@Work articles

Adivce data:

File Lines Source of Assumption (e.g., comment, interview,
mailing list, interpretation of code, etc.)

Assumption Description Comment Ron's Comments

g.agent.ErrorContainment.aj 39--48 AOP@Work article; Interpretation of Code Assumes any around advice will be
suitably enclosed in subaspects named
'*..*Around' so that it will not be
matched by this pointcut.

See AOP@Work article for an
explanation why we do not
want to contain exceptions in
around advice.

This is a work-around for an AspectJ compiler limitation
that you can't exclude around advice in the AspectJ
pointcut language.

g.config.EagerConfiguration.aj 14--17 Comment This aspect is packaged with the monitor
but is NOT deployed by default.

g.config.extension.api.PluginTracking.aj No relevant assumptions as far
as I can see.

g.monitor.resource.AbstractFtpMonitor.aj 19--20 Interpretation of Code Assumes the super aspect
AbstractMonitor uses the monitorPoint
pointcut to identify the behaviour to be
monitored.

g.monitor.resource.AbstractFtpMonitor.aj 22--24 Interpretation of Code Assumes that the object exposed by
monitorPoint will also be handed as a
parameter to getKey()

g.monitor.resource.BerkeleyDbMonitor.aj 14--16;
18--20;
22--24

Interpretation of Code Assumes implementing MonitoredType
will ensure Glassbox is started when an
instance of this type is created.

This assumes
bootstrap/glassbox.config.Auto
Initialization.aj to be deployed

It is also possible to initialize Glassbox through other
means; in fact that's the norm. So this aspect only depends
on having initialized the system. In general, Glassbox is
coded to allow it to run without effect until the system has
been properly initialized, although until initialization, it has
no effect (the aspects are disabled). Bugs are possible, of
course. This same comment applies to all the cases below
of the same assumption.

g.monitor.resource.BerkeleyDbMonitor.aj 14--16;
18--20;
22--24

Comment; Interpretation of Code Assumes MonitoredType will be used as
a marker interface by
LogManagement.aj to switch off
logging, if logging is deployed.

This is an interesting
assumption, because a marker
interface that has been defined
explicitly for one aspect is
implicitly used by another
aspect. However, given the
specific comment '/*don't
manage logging for this*/' in
BerkeleyDbMonitor, this is an
explicitly made assumption
rather than something that
happens and that the base code
(i.e., this aspect) can be
oblivious of.

g.monitor.resource.BerkeleyDbMonitor.aj 51--53;
55--59;
61--63;
with
46--47

Interpretation of Code Assumes that monitorEnd() is advised to
endNormally/endException for the
current response created via
createResponse

This doesn't use the
monitorStart()/monitorPoint()
abstract pointcuts defined in
the super aspect, because they
have bundled all handling of
BerkeleyDB stuff into one
aspect.

g.monitor.resource.BerkeleyDbMonitor.aj 82--84 Not sure why this has been
overridden at all. It would
appear it is never called. In any
case, the layer returned isn't
exactly what is needed anyway.

Yes it is older code that could be deleted.

g.monitor.resource.BerkeleyXmlDbMonitor.aj 32--34;
36--38;
40--41

Comment; Interpretation of Code Assumes MonitoredType will be used as
a marker interface by
LogManagement.aj to switch off
logging, if logging is deployed.

This is an interesting
assumption, because a marker
interface that has been defined
explicitly for one aspect is
implicitly used by another
aspect. However, given the
specific comment '/*don't
manage logging for this*/' in
BerkeleyDbMonitor, this is an
explicitly made assumption
rather than something that
happens and that the base code
(i.e., this aspect) can be
oblivious of.

g.monitor.resource.BerkeleyXmlDbMonitor.aj 32--34;
36--38;
40--41

Interpretation of Code Assumes implementing MonitoredType
will ensure Glassbox is started when an
instance of this type is created.

This assumes
bootstrap/glassbox.config.Auto
Initialization.aj to be deployed

g.monitor.resource.BerkeleyXmlDbMonitor.aj 94--100;
108--114;
122--134;
150--154;
156--172

Interpretation of Code Assumes that monitorEnd() is advised to
endNormally/endException for the
current response created via
createResponse

This doesn't use the
monitorStart()/monitorPoint()
abstract pointcuts defined in
the super aspect, because they
have bundled all handling of
BerkeleyXmlDB stuff into one
aspect.
Particularly interesting for the
advice on lines 156--172, as this
actually doesn't create a
response for every join point.
Some interesting use of if-
pointcut in the definition of
monitorEnd here!

g.monitor.resource.BerkeleyXmlDbMonitor.aj 174--176 Not sure why this has been
overridden at all. It would
appear it is never called. In any
case, the layer returned isn't
exactly what is needed anyway.

g.monitor.resource.BufferFlushMonitor.aj 23--25 Interpretation of Code Assumes super aspect to
endNormally/endException after
monitorEnd

This might be a bit nitpicky.
However, it still is an
assumption on how the super-
aspect works.

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe
the assumption. Coding and classification will be performed in a separate step.

Project: GlassBox
Version: 2.0, downloaded 18/02/2010, focusing on monitor subproject; AOP@Work articles

Adivce data:

File Lines Source of Assumption (e.g., comment, interview,
mailing list, interpretation of code, etc.)

Assumption Description Comment Ron's Comments

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe
the assumption. Coding and classification will be performed in a separate step.

g.monitor.resource.CommonsHttpMonitor.aj 18--24 Comment; Interpretation of Code Assumes MonitoredType will be used as
a marker interface by
LogManagement.aj to switch off
logging, if logging is deployed.

This is an interesting
assumption, because a marker
interface that has been defined
explicitly for one aspect is
implicitly used by another
aspect. However, given the
specific comment '/*don't
manage logging for this*/' in
BerkeleyDbMonitor, this is an
explicitly made assumption
rather than something that
happens and that the base code
(i.e., this aspect) can be
oblivious of.

g.monitor.resource.CommonsHttpMonitor.aj 18--24 Interpretation of Code Assumes implementing MonitoredType
will ensure Glassbox is started when an
instance of this type is created.

This assumes
bootstrap/glassbox.config.Auto
Initialization.aj to be deployed

g.monitor.resource.CommonsHttpMonitor.aj 44--56 Interpretation of Code Assumes all responses thus opened will
be closed correctly by the advice for
monitorEnd. In particular, here this
seems to assume that
executeOnMethod1 and
executeOnMethod2 are a complete
decomposition of executeOnMethod.

Interesting: This could have
been made safe by simply
removing the explicit advice
and renaming monitorEnd into
monitorPoint (providing the
parameters and using
executeOnMethod1 and
executeOnMethod2 explicitly).
Has this not been done because
the implementor of
CommonsHttpMonitor didn't
know this was an option? Or is
there another reason?

Are you suggesting code like this:
 protected pointcut monitorPoint(Object httpMethod) :
 topLevelExecuteOnMethod() && (args(httpMethod, ..)
&&
!args(org.apache.commons.httpclient.HostConfiguration,
..) ||

args(org.apache.commons.httpclient.HostConfiguration,
httpMethod, ..));

Unfortunately, the AspectJ compiler won't accept that,
giving an error:

ambiguous binding of parameter(s) identifier across '||' in
pointcut CommonsHttpMonitor.aj

The only way executeOnMethod can match but not 1 or 2
is a no-arg method. I've now fixed this issue by requiring at
least 1 argument in executeOnMethod (thereby changing
from an assumption to a tautology), since it's better to
have consistent advice on begin/end if the base system
evolves in unanticipated ways.

g.monitor.resource.EjbCallMonitor.aj 36--50 Interpretation of Code Assumes all responses thus opened will
be closed correctly by the advice for
monitorEnd.

This is essentially the case.
monitorEnd() adds '&&
this(Object)', which excludes
static calls, similarly, the two
before advices include this(ejb)
which excludes static calls.

Basically this is assuming that javax.ejb.EJBObject and
javax.ejb.EJBHome extend java.rmi.Remote, which has
been true for more than 12 years and is unlikely to change.

g.monitor.resource.EjbOperationMonitor.aj 32--38 Interpretation of Code Assumes all responses thus opened will
be closed correctly by the advice for
monitorEnd.

g.monitor.resource.EjbOperationMonitor.aj 24 Interpretation of Code Assumes request enabling is required at
this level.

This is both an assumption on
the behaviour of topLevelPoint
in the super aspect and on the
control flow in the base that
implies that this is the right
point to do this.

g.monitor.resource.EmailMonitor.aj 16--17 Interpretation of Code Assumes that monitorPoint() defines
points to be monitored using a response
structure.

An assumption on the super
aspect.

g.monitor.resource.JakartaFtpMonitor.aj 13--18 Interpretation of Code Assumes defining this pointcut will
define a monitor point

An assumption on the super
aspect.

g.monitor.resource.JakartaFtpMonitor.aj 24--26 Interpretation of Code Assumes openConnection will
appropriately be used to close
responses as well.

g.monitor.resource.JakartaFtpMonitor.aj 28 Interpretation of Code Assumes the super aspect uses
monitorPoint rather than
monitorStart/monitorEnd to define
points to be monitored.

g.monitor.resource.JaxmMonitor.aj 19 Interpretation of Code Assumes that monitorPoint() defines
points to be monitored using a response
structure.

g.monitor.resource.JaxmMonitor.aj 21--23 Interpretation of Code Assumes the argument of monitorPoint
will be passed on to getKey()

g.monitor.resource.JdbcMonitor.aj 35--52 Comment; Interpretation of Code Assumes MonitoredType will be used as
a marker interface by
LogManagement.aj to switch off
logging, if logging is deployed.

This is an interesting
assumption, because a marker
interface that has been defined
explicitly for one aspect is
implicitly used by another
aspect. However, given the
specific comment '/*don't
manage logging for this*/' in
BerkeleyDbMonitor, this is an
explicitly made assumption
rather than something that
happens and that the base code
(i.e., this aspect) can be
oblivious of.

g.monitor.resource.JdbcMonitor.aj 35--52 Interpretation of Code Assumes implementing MonitoredType
will ensure Glassbox is started when an
instance of this type is created.

This assumes
bootstrap/glassbox.config.Auto
Initialization.aj to be deployed

g.monitor.resource.JdbcMonitor.aj 153--215 Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

g.monitor.resource.JndiMonitor.aj 30--31 Interpretation of Code Assumes that monitorPoint() defines
points to be monitored using a response
structure.

Project: GlassBox
Version: 2.0, downloaded 18/02/2010, focusing on monitor subproject; AOP@Work articles

Adivce data:

File Lines Source of Assumption (e.g., comment, interview,
mailing list, interpretation of code, etc.)

Assumption Description Comment Ron's Comments

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe
the assumption. Coding and classification will be performed in a separate step.

g.monitor.resource.JxtaOperationMonitor.aj 11--12 Interpretation of Code Assumes super aspect will use
classControllerExecTarget

g.monitor.resource.JxtaSocketMonitor.aj 22--23 Interpretation of Code Assumes that monitorPoint() defines
points to be monitored using a response
structure.

g.monitor.resource.JxtaSocketMonitor.aj 25--31 Interpretation of Code Assumes JxtaSocketMonitor has
precedence over AbstractMonitor
(otherwise the implementation of
getKey would not work)

Note that this is standard
AspectJ semantics, so the real
assumption here is that this
precedence relations is not
changed by any other aspect
through an explicit declare
precedence.

Good point. It's safer to make the assumption an explicit
requirement, so I added
declare precedence: JxtaSocketMonitor, AbstractMonitor;

g.monitor.resource.JxtaSocketMonitor.aj 37--43 Interpretation of Code Assumes the argument of monitorPoint
will be passed on to getKey()

g.monitor.resource.LogMonitor.aj 18 Interpretation of Code Assumes that
monitoredPublicMethods() defines
methods to be monitored.

g.monitor.resource.RemoteCallMonitor.aj 37--41 Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

Interesting case, because
monitorEnd potentially
matches more joinpoints as it
also includes static calls.

Good point. Improved by changing the relevant code to
avoid assumptions, like so:

 public pointcut remoteExecution(Remote remote) :
 within(Remote+) && execution(public * *(..) throws
RemoteException) && this(remote);

 public pointcut endPoint(Remote remote) :
 !within(javax.ejb.EJBObject+) &&
!within(javax.ejb.EJBHome+) &&
remoteExecution(remote);

 protected pointcut monitorEnd() : endPoint(*);

 before(Remote remote) : endPoint(remote) {

g.monitor.resource.SftpMonitor.aj 17--19 Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

g.monitor.resource.SftpMonitor.aj 17--21 Interpretation of Code Assumes AbstractFtpMonitor uses
monitorPoint to define its own
measurements rather than
monitorBegin/monitorEnd

g.monitor.ui.DwrMonitor.aj 41--47 Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

g.monitor.ui.GwtMonitor.aj 28--34 Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

Interesting case, because
monitorEnd potentially
matches more joinpoints as it
also includes static calls.

Also fixed by requiring this in the base pointcut.

g.monitor.ui.MvcFrameworkMonitor.aj 53--63 Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

g.monitor.ui.PortletMonitor.aj 24--34 Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

g.monitor.ui.ServletRequestMonitor.aj 70 Comment; Interpretation of Code Assumes MonitoredType will be used as
a marker interface by
LogManagement.aj to switch off
logging, if logging is deployed.

This is an interesting
assumption, because a marker
interface that has been defined
explicitly for one aspect is
implicitly used by another
aspect. However, given the
specific comment '/*don't
manage logging for this*/' in
BerkeleyDbMonitor, this is an
explicitly made assumption
rather than something that
happens and that the base code
(i.e., this aspect) can be
oblivious of.

g.monitor.ui.ServletRequestMonitor.aj 70 Interpretation of Code Assumes implementing MonitoredType
will ensure Glassbox is started when an
instance of this type is created.

This assumes
bootstrap/glassbox.config.Auto
Initialization.aj to be deployed

g.monitor.ui.ServletRequestMonitor.aj 76 Interpretation of Code Assumes all points measured also are
top-level entry points

g.monitor.ui.ServletRequestMonitor.aj 78--85;
107--139

Interpretation of Code Assumes all responses thus opened will
also be closed by the super aspect again.

g.monitor.ui.SpringMvcRequestMonitor.aj 32--33;
41--42

Interpretation of Code Assumes setting these pointcuts will lead
to desirable logging

An assumption on the super
aspect.

g.monitor.ui.StrutsRequestMonitor.aj 45--49 Interpretation of Code Assumes setting these pointcuts will lead
to desirable logging

An assumption on the super
aspect.

g.monitor.ui.TemplateOperationMonitor.aj 23--24;
28--29

Interpretation of Code Assumes setting these pointcuts will lead
to desirable logging

An assumption on the super
aspect.

g.monitor.AbstractHandlerTracking.aj 9 Interpretation of Code Assumes that subaspects will define
scope such that this does not conflict
with other exception handling,
especially where this uses
recordException, too.

This is a bit vague at the
moment and needs more
analysis

If more than one method handles exceptions, it will just
record the state more than once - that might be valid,
although the assumption would be that a subaspect
overriding the base knows what it's doing.

g.monitor.AbstractMonitor.aj 33--35;
44--50

Interpretation of Code Assumes monitorBegin() and
monitorEnd() are matched up so that as
many Resources are created as are
removed within one control flow. Also
assumes that this match up leads to
correct nesting.

There's some rudimentary
checking takes place in
AbstractMonitorClass.getValidR
esponse, but it doesn't actually
enforce proper nesting
completely.

Indeed, I don't think there are good options for adding
more explicit checking of paired begin/end responses It
might be better to require explicit identification of a unique
id for a given type of response that is begun or ended,
adding some programming overhead to the monitor
interface to reduce the risk of mismatch. In practice, this
assumption is problematic and has been a significant
source of problems, both in system initialization scenarios
and in debugging new monitors. Any other thoughts for
how to avoid such assumptions?

g.monitor.AbstractMonitorControl.aj No relevant assumptions as far
as I can see.

Project: GlassBox
Version: 2.0, downloaded 18/02/2010, focusing on monitor subproject; AOP@Work articles

Adivce data:

File Lines Source of Assumption (e.g., comment, interview,
mailing list, interpretation of code, etc.)

Assumption Description Comment Ron's Comments

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe
the assumption. Coding and classification will be performed in a separate step.

g.monitor.MethodMonitor.aj No relevant assumptions as far
as I can see. They just go and
ignore almost all the super
aspect provides. However, this
makes the above assumption
about nesting of resources even
more interesting, as it is now
completely out of the control of
AbstractMonitor

Yes the method monitor replaces the machinery of the
AbstractMonitor to provide for a lower overhead
monitoring mechanism. However, it assumes that
subaspects will use its pointcuts rather than directly
invoking begin/end methods, since getValidResponse isn't
used here. That is a design flaw that should be addressed.

g.monitor.NativeMonitor.aj No relevant assumptions as far
as I can see.

g.policy.ApiPolicy.aj No relevant assumptions as far
as I can see.

g.policy.ContractChecking.aj No relevant assumptions as far
as I can see.

g.response.DefaultResponseFactory.aj No relevant assumptions as far
as I can see.

g.response.ResponseFactory.aj No relevant assumptions as far
as I can see.

g.response.ResponseInvariants.aj No relevant assumptions as far
as I can see.

g.thread.context.MonitorContextLoaderManagement.aj No relevant assumptions as far
as I can see.

g.util.jmx.JmxManagement.aj No relevant assumptions as far
as I can see.

g.util.jmx.MonitorJmxManagement.aj No relevant assumptions as far
as I can see.

g.util.logging.api.LogManagement.aj 65--136 Interpretation of Code Expects base code to be aware of this
aspect so that it knows it can call these
ITDs.

g.util.SimpleObserverProtocol.aj No relevant assumptions as far
as I can see.

The base code needs to be aware of this aspect to be able
to call these ITDs, also.

	Sheet1

