
Project: HealthWatcher
Version: 10 (ExceptionHandling)

General comments:

Adivce data:

File Lines Source of Assumption (e.g., 
comment, interview, mailing list, 
interpretation of code, etc.)

Assumption Description Comment

hw.a.concurrency.HWLocalSynchronzation.aj 18--22 Interpretation of the code The advise assumes all methods (including non-
public) in all classes implementing the 
SynchronizedClasses tagger need to be 
synchronized.

Comment Phil: This uses a slight underspecification, assuming 
it is not going to do any harm.

hw.a.concurrency.HWLocalSynchronzation.aj 18--22 Interpretation of the code The advise assumes that synchronisation has to 
happen on the target object of the call itself rather 
than on a separate monitor. This implies that other 
threads may also synchronise on the same monitor 
introducing additional mutexes or potentially even 
deadlocks.

Check if this has ever been discussed. Phil: Not sure if it has. 
However, it is likely. In any case, it is an assumption made by 
the system.

hw.a.concurrency.HWManagedSynchronization.aj 25--30, 32--37 Interpretation of the code ConcurrencyManager does not perform any analysis 
of why a certain key is in the keys database. As a 
consequence, there is an assumption in this advice 
combination that there is never an attempt to lock 
the same key twice within the same cflow (as in 
lock(k), lock(k), unlock(k), unlock(k)). Doing so would 
lead to deadlock on the second lock(k).

This is not a problem for the aspect in its current context as it 
only applies to three 'insert' operations and we can, thus, 
make sure through inspection of these three operations that 
this will never be invoked in a nested fashion.
However, as soon as the implementation of these functions is 
touched, we would need to establish this again.
Comment Phil: This was not an explicit assumption, but 
should have been. The developers could have used 
cflowbelow constructs to avoid this causing any trouble.

hw.a.concurrency.HWLocalSynchronzation.aj, 
hw.a.concurrency.HWManagedSynchronization.aj

Interview Phil Greenwood The system assumes either one of these two 
aspects to be deployed. HWLocalSynchronisation is 
related to the in-memory implementation of data 
storage whereas HWManagedSynchronisation is 
related to the database-based implementation of 
data storage.

hw.a.concurrency.HWTimeStamp.aj 41--43, 46--49, 
52--93

Interpretation of the code These pieces of advice assume that insert, update, 
and search are the only places where a complaint 
record is modified. Interestingly, they do not take 
into consideration removal of a complaint record. 
ComplaintRepositoryRDB.remove is currently 
implemented as an empty method, but if it were to 
do anything, this would probably cause a problem.

The HW Application does not allow removing complaints once 
registered. Thus, there is an assumption that removal will 
never happen. This is probably an unimplemented 
requirement, not having support for it in the aspect is part of 
the experimental (rather than productive) setup of the 
system.

hw.a.concurrency.HWTimeStamp.aj 159--163 Comment This advice is needed because of distribution. When 
the client side makes an update, the server side 
complaint is updated, but the client side is not. 
Thus, we need also to update the client side object 
(hence the cflow) and increment it. 
Note that this was not needed before the Observer 
pattern, because we would update the object just 
once per request. Now we update it more than once 
and this synchronization is needed.

This really shows that the advice above was making additional 
assumptions about its usage context, namely that each 
complaint record's timestamp would only be incremented 
once per request regardless of how many individual updates 
to the record this request entailed. This issue was caught 
manually and a fix was implemented for a special situation. 
The new assumption is now that each complaint record's 
timestamp is only modified once per request, except where 
the record is involved in an observer pattern (where the 
timestamp will be incremented once per update of the 
record).

hw.a.distribution.HWClientDistribution.aj 21 Interpretation of the code Assumes that all communication between client and 
server always happens through an IFacade instance. 
This is an architectural rule that is not made explicit 
in the code.

hw.a.distribution.HWServerDistribution.aj 21 Interpretation of the code Assumes that all data that is ever exchanged 
between server and client is implemented in classes 
in hw.model.*.

Comment Phil: This has been ensured by an initial refactoring 
of the code-base that was used to develop HW.

hw.a.distribution.HWServerDistribution.aj 21 Comment;
Interpretation of the code

Also, seems to assume that these only need to be 
made serialisable on the server side. However, this 
could also be an error in my interpretation: From 
the comment: "makes model classes serializable 
(actually this is also needed in the client)". Hence, it 
seems that this aspect is actually also meant to be 
woven into the client code, even though this is not 
strictly necessary. The assumptions about which 
part of the code this is to be woven into are not 
made explicit.

This assumption assumes that this aspect will only be woven 
for the server code. Looking at build.xml (and the comment 
above) I'm not sure this is actually the case. Need to check 
with developers. If it isn't the case it is somewhat unclean in 
the separation of concerns as the server aspect also contains 
client concerns.
Comment Phil: This aspect is deployed both on the client and 
the server. This is a bit unclean. It implies an assumption 
about deployment of aspects.

hw.a.distribution.RMIClientDistribution.aj 20 Comment;
Interpretation of the code

From the comment, this seems to assume that 
RMIClientDistribution is the only specialisation of 
HWClientDistribution (otherwise it should be 
within(RMIClientDistribution+) rather than 
within(HWClientDistribution+).

Comments Phil:
- RMIException is RMI specific, so would probably not occur in 
other subaspects anyway
- Even though this has been structured in super- and sub-
aspects, there always was an assumption that only RMI would 
actually be implemented
- Even if more than one sub-aspect were to be implemented, 
the assumption always was that only one of them would be 
deployed at the same time.

hw.a.distribution.RMIClientDistribution.aj 30--51 Interpretation of the code This assumes a remote server to be bound to "//" + 
healthwatcher.Constants.SERVER_NAME + "/" + 
healthwatcher.Constants.SYSTEM_NAME

This implies an assumption that a corresponding aspect 
(RMIServerDistribution) will be woven into the system on the 
server side that appropriately binds the name to a server 
instance before this lookup is evaluated.
So, in a way this is a constraint about the collaboration of two 
aspects (or rather, two separate pieces of advice) in a system.

hw.a.distribution.RMIServerDistribution.aj 20--34 Interpretation of the code Assumes that serverStart matches exactly 
HealthWatcherFacade.getInstance() (line 23 should 
really be 'proceed()').

This may really be a bit over-exacting for this particular 
example, but this assumption does have the potential of 
breaking the encapsulation provided by the explicit pointcut. 
So, as a consequence, we should be able to document what 
we assume about pointcuts inherited from super-aspects or 
expected to be defined in sub-aspects.

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the assumption. Coding and 
classification will be performed in a separate step.

HW was not designed with reuse in mind, so the aspects are often very specific to the concrete usage context. 
Sometimes, pointcut and binding will be combined within the same aspect, such as where marker interfaces 
are used, e.g. In HWLocalSynchroniszation.aj.
This version of this document contains updates based on my discussion with Phil Greenwood about the data 
originally collected mainly through manual inspection and interpretation of the code.



Project: HealthWatcher
Version: 10 (ExceptionHandling)

General comments:

Adivce data:

File Lines Source of Assumption (e.g., 
comment, interview, mailing list, 
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the assumption. Coding and 
classification will be performed in a separate step.

HW was not designed with reuse in mind, so the aspects are often very specific to the concrete usage context. 
Sometimes, pointcut and binding will be combined within the same aspect, such as where marker interfaces 
are used, e.g. In HWLocalSynchroniszation.aj.
This version of this document contains updates based on my discussion with Phil Greenwood about the data 
originally collected mainly through manual inspection and interpretation of the code.

hw.a.exceptionHandling.ExceptionHandlingPrecedence.aj 44 Interpretation of the code Assumes that there are no precedence conflicts 
other than with ServletCommanding.

I guess, this probably doesn't need any additional code, just 
checking that indeed there are none.

hw.a.exceptionHandling.HWDistributionExceptionHandler.aj 23 Interpretation of the code Really just seems to be here for laziness sake to avoid having 
to catch IOExceptions in the code below.
Comment Phil: Need to ask Nelio

hw.a.exceptionHandling.HWDistributionExceptionHandler.aj 25--48 Interpretation of the code Assumes that all HW servlets are subclasses of 
HWServlet; that is, no user interaction happens 
through any other channel.

Comment Phil: This is a very dangerous assumption! Actually, 
one of the first changes introduced into HW was the 
command pattern. The purpose of this was to decouple HW 
from its UI, so that it could be used with something other 
than servlets. No other UI has ever actually been 
implemented, but if it had been, this assumption here would 
have broken immediately.

hw.a.exceptionHandling.HWPersistenceExceptionHandler.aj 40--58 Interpretation of the code Assumes that all HW servlets are subclasses of 
HWServlet; that is, no user interaction happens 
through any other channel.

hw.a.exceptionHandling.HWPersistenceExceptionHandler.aj 62--73 Interpretation of the code Assumes that Statement.executeQuery does not 
internally modify the SQL code. Also assumes that 
there is at most one call to executeQuery within 
AddressRepositoryRDB.search.

hw.a.exceptionHandling.HWPersistenceExceptionHandler.aj 75--77 Interpretation of the code Assumes that all exceptions from 
AddressRepositoryRDB.search are wrapped into 
PersistenceMechanismExceptions. 

This advice seems to violate an implicit assumption of the two 
pieces of advice above that the message of 
PersistenceMechanismExceptions will actually be maintained. 
Instead, they are thrown away.

hw.a.exceptionHandling.HWPersistenceExceptionHandler.aj 81--102 Interpretation of the code Assumes a) that ComplaintRepositoryRDB.update 
invokes internal_update, b) that internal_update 
invokes at most once Statement.executeUpdate, c) 
that executeUpdate does not modify the SQL query 
passed to it, and d) that maintaining this query in an 
exception will actually have an impact on error 
handling.

The final assumption is violated by the first advice in the 
series, as it simply replaces any such exception with a 
standard RepositoryException.
Comment Phil: Interestingly, Phil seemed to recall that 
internal_update was explicitly introduced as scaffolding for 
this to enable picking up some parameter values. Further 
analysis of the code didn't support this, though. It remains 
unclear why internal_update exists at all.

hw.a.exceptionHandling.HWPersistenceExceptionHandler.aj 106--124 Interpretation of the code Assumes a) that ComplaintRepositoryRDB.insert 
invokes Statement.executeQuery at most once, b) 
that Statement.executeUpdate does not modify the 
SQL query passed to it, and ) that maintaining this 
query in an exception will actually have an impact 
on error handling.

The final assumption is violated by the first advice in the 
series, as it simply replaces any such exception with a 
standard RepositoryException.

hw.a.exceptionHandling.HWPersistenceExceptionHandler.aj 133--148, 
156--172

Interpretation of the code There may be additional assumptions about exception flow 
between this and other advice in the same aspect, but I 
cannot immediately understand this.
Comment Phil: Nelio may be able to help here.

hw.a.exceptionHandling.HWPersistenceExceptionHandler.aj 1--173 Interpretation of the code Assumes that these explicitly listed pointcuts cover 
all places where persistence-related exceptions are 
thrown in the system.

hw.a.exceptionHandling.HWTransactionExceptionHandler.aj 24--41 Interpretation of the code Assumes that all HW servlets are subclasses of 
HWServlet; that is, no user interaction happens 
through any other channel.

hw.a.exceptionHandling.HWUpdateObserverExceptionHandler.aj 60--72 Comment Note that this aspect needs a lot of knowledge 
about how the observer pattern affects the 
application and how the application should deal 
with its exceptions.

Comments Phil:
- Pointcut only addresses updates. This is so, because the 
observer pattern is only applied to update calls, too.
- Assumes requests are handled in HTML (returning error 
messages wrapped in an HTTP die()). This has been created 
against the command pattern, but still makes strong 
assumptions about this being implemented based on 
servlets. See above for problems with this.

hw.a.logging.HWLogging.aj 49--52 Interpretation of the code Assumes that in any run of the system, either a new 
HealthWatcherFacade instance is created or a 
servlet class is initialised. These are cross-
assumptions on the existence and weaving of other 
aspects (e.g., HWServerDistribution).

Really, this seems to be a stupid aspect that would much 
better be implemented by modifying LogMechanism and 
setting the default value for logFile to Constants.LOG_PATH. 
Not sure why this wasn't done in this manner.

hw.a.patterns.RepositoryFactory.aj 26--35 Interpretation of the code Assumes that all code will use the 
getRepositoryFactory() method of 
AbstractRepositoryFactory to access specific 
repository factories. This seems to imply that all 
relevant code is aware of the presence of this 
aspect, as the method isn't actually in the interface 
of AbstractRepositoryFactory.

The key thing seems to be the implication this has for code 
using the abstract factories, namely that such code is aware 
of the presence of this aspect and the opportunity of (and 
need for) calling getRepositoryFactory. At the very least, there 
is an assumption about layering here that should be 
documented in the code.
Comment Phil: This seems to be a general problem with 
ITDs. Maybe the solution here is really to provide better 
tooling, that can check for the presence of such methods 
etc. dynamically during development.

hw.a.patterns.ServletCommanding.aj 105--140 Interpretation of the code Assumes HWServlet is only initialised once (as this is 
a singleton aspect and commandTable is a member 
of the aspect).

Note that the servlet specification doesn't actually state that 
this is the case. Servlet engines are free to maintain pools of 
servlets or even instantiate a new servlet for every 
connection. This implies the servlet engine would invoke init() 
multiple times. Of course, this is not a big problem, all that 
happens is that unneeded objects are instantiated, but it is 
still a potential waste of resources.



Project: HealthWatcher
Version: 10 (ExceptionHandling)

General comments:

Adivce data:

File Lines Source of Assumption (e.g., 
comment, interview, mailing list, 
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the assumption. Coding and 
classification will be performed in a separate step.

HW was not designed with reuse in mind, so the aspects are often very specific to the concrete usage context. 
Sometimes, pointcut and binding will be combined within the same aspect, such as where marker interfaces 
are used, e.g. In HWLocalSynchroniszation.aj.
This version of this document contains updates based on my discussion with Phil Greenwood about the data 
originally collected mainly through manual inspection and interpretation of the code.

hw.a.patterns.ServletCommanding.aj 182 Interpretation of the code Assumes the presence of the (apparently unrelated) 
pointcut on lines 159--162 and advise in the super 
aspect CommandProtocol dealing with this pointcut 
and executing a particular command. Furthermore, 
assumes that the advise in CommandProtocol will 
be executed after commandTrigger, because the 
information about which command to invoke will 
only be available after the call to setCommand.

This seems a very roundabout way of doing things. It would 
have been easier not to refer back to the abstract aspect for 
CommandProtocol and to implement command invokation on 
Line 182 directly rather than using this indirect call.
Comment Phil: This is an interesting assumption. However, all 
the assumptions are essentially true by construction. Still, it 
may help to have explicit documentation of these 
assumptions.

hw.a.patterns.ServletCommanding.aj 172--183 Interpretation of the code This code is a critical section (threads potentially 
share and co-modify the command object). It is not 
appropriately guarded here, so it makes strong 
assumptions about the weaving context to be 
appropriately synchronised.

In fact, if I understand the servlet specification correctly, 
there is no such guarantee, so this could actually lead to a 
race condition when two clients send the same command to 
the server at the same time. With a bit of bad luck in code 
interleaving, in such a situation the response to one of the 
clients could be based (completely or partially) on the request 
data from the other client. If the command servlets 
themselves are programmed badly, this may even lead to 
data corruption.

hw.a.patterns.ServletCommanding.aj 172--183 Interview Phil Greenwood Also, there is an assumption about the existence of 
the 'operation' parameter in the URL and that it is 
correct and refers to an existing command.

hw.a.patterns.UpdateStateObserver.aj 24--28 Interpretation of the code Together with the way the subjectChange pointcut 
is phrased (namely that it mentions Subject+.set* 
instead of referring to the classes directly) this 
makes an assumption that no other code in the 
system uses the ObserverProtocol aspect and 
makes other classes implement Subject.

This may be a lesser problem, as the advise on Lines 30--32 
probably ensures that the subject--observer bindings are still 
set up reasonably, but there may be circumstances where this 
leads to problems. In any case, the assumption is not made 
explicit. 

Really, I would probably classify this as a programming error 
or bad smell at least, as the proper thing to do would 
probably be to create a protected sub-interface of Subject 
and use this in the declare parents code.

Comment Phil: There is an assumption here, but it is very 
much implicit.

hw.a.patterns.complaintState.AnimalComplaintStateAspect.aj 33--47 Interpretation of the code This relies on the fact that setStatus in 
ComplaintState is empty and that the state in fact is 
a constant based on the particular sub-class of 
Complaint that is being used. Furthermore, this 
code relies on the fact that even though 
AnimalComplaintState has no way of returning its 
status, AnimalComplaintState.setStatus is called 
obediently and AnimalComplaint.setSituacao is 
never called directly even though it is public.

This is an example of using an empty method as 
scaffolding to enable advise to be triggered.

This code had me quite confused for a while. It took some 
time and digging around the code to fully understand what 
was going on. A good argument for why such assumptions 
should be made explicit.

Below is my initial comment for this (now obsolete, but left in 
to record my train of thought to some degree):
To be honest, I'm confused about this aspect as a whole:

1. It doesn't seem to do anything useful in terms of 
modularisation. The code in the aspect would be better 
placed inside AnimalComplaint itself. It would be more 
localised and easier understood this way.

2. It would appear to me that even if the advise on lines 33--
47 is woven into the system, it contains dead code only 
because its condition will never be true (it is only ever 
referenced from AnimalComplaint.setStatus, which first sets 
the situacao...).

Comment Phil: This is not so much an assumption as a really 
bad implementation. This should really be using around 
advice and not bother about picking up state from the 
joinpoint object.

hw.a.patterns.complaintState.ComplaintStateAspect.aj 49--67 Interpretation of the code This relies on the fact that setStatus in 
ComplaintState is empty and that the state in fact is 
a constant based on the particular sub-class of 
Complaint that is being used. 

This is an example of using an empty method as 
scaffolding to enable advise to be triggered.

Related to above and below

hw.a.patterns.complaintState.FoodComplaintStateAspect.aj 35--49 Interpretation of the code see above see above
hw.a.patterns.complaintState.SpecialComplaintStateAspect.aj 31--43 Interpretation of the code see above see above
hw.a.persistence.HWDataCollection.aj Interpretation of the code Makes an assumption that repositories are a core 

concept in the application regardless of persistence. 
So, all that is needed is to provide a different 
repository implementation and this will be used to 
store data explicitly by the individual business object 
classes.

Not sure why this would use an aspect at all. It seems to me 
that the key thing is the abstract factory pattern, which would 
have been more easily added in without aspects.
Comment Phil: This could have come about through the 
particular order in which changes were introduced in 
different releases. In attempting to minimise changes to 
existing code, developers would have introduced a new 
aspect to encapsulate an increment for a particular release.

hw.a.persistence.HWPersistence.aj 61--62 Interpretation of the code This seems to make the assumption that 
HealthWatcherFacade.new is invoked only once in 
an application or if not it is at least invoked in 
separate critical sections appropriately mutexed.

If this is not true, there is a danger of creating a connection in 
the persistence mechanism that is never actually used due to 
a race condition.
Comment Phil: This seems to be an explicit assumption, as 
HWFacade 47--52 is synchronised and HWFacade is a 
singleton.

hw.a.persistence.HWTransactionManagement.aj No relevant assumptions as far as I can see
lib.patterns.CommandProtocol.aj No relevant assumptions as far as I can see
lib.patterns.ObserverProtocol.aj 152--157 Interpretation of the code Assumes that calls to updateObserver do not lead to 

calls to add/removeObserver
If they do, a ConcurrentModificationException will be thrown, 
so the error will be spotted at runtime.


	Sheet1

