
Page 1 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

l.m.alternative.AbstractAlternativeFeature.aj No relevant assumptions as far as I can
tell.

l.m.alternative.MusicSelector.aj 49--62 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

l.m.alternative.MusicSelector.aj 49--62 Interpretation of the Code Assumes
Display.getDisplay(controller.midlet).g
etCurrent() returns a list, and in
particular a list that shows a selection
of different media that are marked up
as 'Music' or sth else.

l.m.alternative.MusicSelector.aj 49--62 Interpretation of the Code Assumes setMusicController has been
invoked on controller from outside
this aspect.

This is an inter-aspect dependency: It
assumes that either
l.m.alternative.PhotoAndMusicAndVideo
or
l.m.alternative.photoMusic.PhotoAndMu
sicAspect have been deployed, as they
are setting the value in after advice for
the startApp pointcut.

l.m.alternative.MusicSelector.aj 49--62 Interpretation of the Code Assumes setMusicAlbumData has
been invoked on controller from
outside this aspect.

This is an inter-aspect dependency: It
assumes that either
l.m.alternative.PhotoAndMusicAndVideo
or
l.m.alternative.photoMusic.PhotoAndMu
sicAspect have been deployed, as they
are setting the value in after advice for
the startApp pointcut.

l.m.alternative.MusicSelector.aj 49--62 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.alternative.OneAlternativeFeature.aj 18--20 Interpretation of the Code Assumes that no other code adds an
'Exit' command to the menu.

l.m.alternative.PhotoAndMusicAndVideo.aj 23--24 Why does this not inherit from
AbstractAlternativeFeature?

l.m.alternative.PhotoAndMusicAndVideo.aj 26--57 Interpretation of the Code Assumes intertype declarations from a
number of other aspects.

MusicSelector, PhotoSelector,
VideoSelector, but also some others yet
to be determined.

l.m.alternative.PhotoAndMusicAndVideo.aj 65--76 Interpretation of the Code Assumes that the advice after
startApp is always executed before
this advice in any run of the
application.

l.m.alternative.PhotoSelector.aj 25--38 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

l.m.alternative.PhotoSelector.aj 25--38 Interpretation of the Code Assumes
Display.getDisplay(controller.midlet).g
etCurrent() returns a list, and in
particular a list that shows a selection
of different media that are marked up
as 'Photos' or sth else.

l.m.alternative.PhotoSelector.aj 25--38 Interpretation of the Code Assumes presence of imageController
declaration and that it has been set
appropriately before this advice is
invoked.

This is an inter-aspect dependency: It
assumes that
l.m.alternative.TwoAlternativeFeatures
and
l.m.alternative.PhotoAndMusicAndVideo
or PhotoAndMusicAspect have been
deployed.

l.m.alternative.PhotoSelector.aj 25--38 Interpretation of the Code Assumes imageAlbumData has been
declared and set appropriately.

This is an inter-aspect dependency: It
assumes that
l.m.alternative.TwoAlternativeFeatures
and either
l.m.alternative.PhotoAndMusicAndVideo
or
l.m.alternative.photoMusic.PhotoAndMu
sicAspect have been deployed, as they
are setting the value in after advice for
the startApp pointcut.

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

Page 2 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.alternative.PhotoSelector.aj 25--38 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.alternative.TwoAlternativeFeaturs.aj 32--34 Interpretation of the Code Assumes that no other code adds an
'Back' command to the menu.

l.m.alternative.VideoSelector.aj 49--56 Interpretation of the Code Assumes that the return value of
handleCommandAction is not
important and that video selection
should always take priority.

Apart from this, also makes a lot of
assumptions similarly to the other
XYSelector aspects above. However, this
one is interesting as it is different from
the assumptions up there and it is not
immediately clear why this would be so.

l.m.alternative.music.AbstractMusicAspect.aj No relevant assumptions as far as I can
tell.

l.m.alternative.music.MusicAspect.aj 64--78 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

l.m.alternative.music.MusicAspect.aj 64--78 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.alternative.music.MusicAspect.aj 64--78 Interpretation of the Code Assumes that the 'Play' command has
been added to the menu, that is that
the advise at lines 156--161 and 167--
171 has been run.

This seems an interesting form of cross-
dependency. Formally expressing this as
an LTL formula requiring that we have
passed that other advice before entering
this advice doesn't make sense (it would
be almost vacously true as there is no
other way this advice could ever be
entered). Instead, it requires that for at
least one object that has been associated
with this advice, we have previously
registered the play command.

NEEDS MORE THOUGHT

l.m.alternative.music.MusicAspect.aj 85--118 Interpretation of the Code Assumes that the Save command is
indeed handled within
handleCommand already and will be
invoked also for musical media.

The first part can be checked by
inspecting the joinpoint shadows: If there
are none, then this assumption is invalid.
The second part seems more difficult. It
seems again to be an assumption on the
overall setup. LTL or similar can be useful
here again, but what would the
appropriate state predicates be?

l.m.alternative.music.MusicAspect.aj 116 Comment The comment states "This should be
the return value from method
handleCommandAction." indicating
that the developers didn't quite see
how they could express this in their
aspect. They could have used two
coordinated advices that hand the
return value over appropriately based
on the assumption that the value is
not changed in between. This
assumption is what I find interesting
about this example.

Note, there is another issue about the
duplication of exception handlers here. I
believe, they could have avoided that by
listing these exceptions as to be thrown
by the advice, thus effectively placing an
assumption on the weaving context that
the exception would be handled there.

l.m.alternative.music.MusicAspect.aj 156--161 Interpretation of the Code Assumes that no other code adds a
command labelled 'Play'.

l.m.alternative.music.MusicAspect.aj 167--171 Interpretation of the Code Assumes that no other code
introduces a screen type that has the
integer value 2.

Page 3 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.alternative.music.MusicAspect.aj 181--184 Interpretation of the Code Assunes that no other code will add a
"Type of media" input field.

It would seem a bit odd for this to be in
MusicAspect, as it certainly also is
relevant for something like video. So,
conversely, there is probably an
assumption here that Video will never be
used without Music?

l.m.alternative.music.MusicNotPhotoNotVideo.aj No relevant assumptions as far as I can
tell.

l.m.alternative.music.optional.CopyAndMusic.aj 21--22 Interpretation of the Code Not an assumption here, but one for
CopyMultiMediaAspect: This pointcut
refines the pointcut there, so we
should be able to express some more
assumptions about the pointcut in
CopyMultiMediaAspect already (e.g.,
the assumption about the meaning of
the return value).

l.m.alternative.music.optional.CopyAndMusic.aj 33--36 Interpretation of the Code Assumes that no other code will add a
"Copy" command.

Strangely enough, this is not inherited
from CopyMultiMediaAspect, which
assumes this label to be there...

l.m.alternative.musicvideo.MusicOrVideo.aj 17--32 Interpretation of the Code Assumes that some other code will
know of these introductions and use
them appropriately.

Such dependencies between aspects will
of course be checked by seeing that if
some code calls these methods this
aspect must be deployed. However, this
particular aspect doesn't add anything to
the system's behaviour unless its
introductions are invoked somewhere
else, as it doesn't actually use them in any
way anywhere else. So, assuming that
developers do not intentionally produce
dead code, this makes an assumption on
other code. In this case, this seems to
assume that the aspect is deployed
together with MusicMediaAccessor. An
error in the implementation of
MusicMediaAccessor seems to be that it
doesn't actually use the constants
defined in the aspect, but instead adds
the strings directly.

l.m.alternative.photo.AbstractPhotoAspect.aj No relevant assumptions as far as I can
tell.

l.m.alternative.photo.PhotoAspect.aj 56--72 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

l.m.alternative.photo.PhotoAspect.aj 56--72 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.alternative.photo.PhotoAspect.aj 56--72 Interpretation of the Code Assumes a command labeled 'View'
has been added to the list of available
commands.

l.m.alternative.photo.PhotoAspect.aj 101--106 Interpretation of the Code Assumes no other code adds a
command labelled 'View'.

l.m.alternative.photo.PhotoAspect.aj 101--106; 112--1Interpretation of the Code Assumes no other code defines a
screen type valued 1.

l.m.alternative.photo.PhotoNotVideoNotMusic.aj No relevant assumptions as far as I can
tell.

Page 4 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.alternative.photo.exceptionblocks.ScreensAspectEH.aj 16--17 Interpretation of the Code The fact that this doesn't select calls
to loadImage, but rather selects calls
to the constructor directly encodes an
assumption that loadImage is only
ever invoked from within this
constructor.

I'm really not quite sure why this is a
useful aspect in the first place. It seems to
introduce more dependencies than it
resolves.

Anyway, the only other relevant
assumption that I can identify is
somewhat reversed to the other ones:
PhotoViewScreen.new makes an
assumption that this aspect will be
deployed and will soften the two
exceptions for this particular constructor.

l.m.alternative.photo.optional.CopyAndPhoto.aj 26--27 Interpretation of the Code Assumes that there are no other
constructors in PhotoViewScreen.

l.m.alternative.photo.optional.CopyAndPhoto.aj 29--31 Interpretation of the Code Assumes that the constructor doesn't
itself add a command named 'Copy'.

l.m.alternative.photoMusic.PhotoAndMusicAspect.aj 35--36 Why is this aspect not simply derived
from AbstractAlternativeFeature?

l.m.alternative.photoMusic.PhotoAndMusicAspect.aj 38--64 Interpretation of the Code Assumes that MusicSelector and
PhotoSelector have also been
deployed, but VideoSelector
apparently has not.

Otherwise, I would assume this code
should also invoke stuff from
VideoSelector.

Really, of course, the assumption is not
on a particular aspect deployment, but on
the presence of particular methods.

l.m.alternative.photoMusic.PhotoAndMusicAspect.aj 72--83 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
goToPreviousScreen. Also assumes
that other handlers will return true
when they have handled
goToPreviousScreen.

l.m.alternative.photoMusic.PhotoAndMusicAspect.aj 72--83 Interpretation of the Code Assumes setMainMenu has been
invoked from somewhere before.

This is satisfied because setMainMenu is
invoked from within this aspect.

l.m.alternative.video.AbstractVideoAspect.aj No relevant assumptions as far as I can
tell.

l.m.alternative.video.VideoAspect.aj 28--40 One thing that will need further detailed
analysis (or maybe just a discussion with
Eduardo) is to understand how the
various setup code in advice for startApp
is meant to interact and form a
meaningful whole. I'm sure there are
interesting assumptions in here that
might be used to check the correctness of
precedence statements.

l.m.alternative.video.VideoAspect.aj 44--48 Interpretation of the Code Assumes that if this aspect is
deployed, AlbumData mediaAccessors
will always be VideoMediaAccessors.

Otherwise, there should be more
defensive programming that also covers
other cases.

l.m.alternative.video.VideoAspect.aj 56--71 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

l.m.alternative.video.VideoAspect.aj 56--71 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

Page 5 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.alternative.video.VideoAspect.aj 56--71 Interpretation of the Code Assumes that the 'Play Video'
command has been added to the
menu, that is that the advise at lines
110--115 and 120--124 has been run.

This seems an interesting form of cross-
dependency. Formally expressing this as
an LTL formula requiring that we have
passed that other advice before entering
this advice doesn't make sense (it would
be almost vacously true as there is no
other way this advice could ever be
entered). Instead, it requires that for at
least one object that has been associated
with this advice, we have previously
registered the play command.

NEEDS MORE THOUGHT

l.m.alternative.video.VideoAspect.aj 110--115 Interpretation of the Code Assumes that no other code adds a
command labelled 'Play Video'.

l.m.alternative.video.VideoAspect.aj 120--124 Interpretation of the Code Assumes that no other code
introduces a screen type that has the
integer value 3.

l.m.alternative.video.VideoNotPhotoNotMusic.aj 20--23 Interpretation of the Code Assumes that some instance of
AbstractVideoAspect has also been
deployed.

Otherwise, it would need to extend that
aspect.

l.m.alternative.video.optional.CopyAndVideo.aj 31--34 Interpretation of the Code Assumes that no other code adds a
command labelled 'Copy'.

Implicitly assumes that
l.m.alternative.photo.optional.CopyAndP
hoto is not deployed.

l.m.aspects.exceptionblocks.ControllerAspectEH.aj 27--34 Interpretation of the Code Assumes AlbumData.deleteAlbum is
only ever invoked from
AlbumController.handleCommand.

Note that this could be fixed by changing
the pointcut to a general
call(AlbumData.deleteAlbum) without the
explicitly added withincode. Not sure I
fully understand why the exception
handling performed needs to add this
specific constraint. In the current code
base, deleteAlbum is only ever called
from that handleCommand method
anyway.

CLARIFY WITH EDUARDO (above is
another similar case)

l.m.aspects.exceptionblocks.DataModelAspectEH.aj 108--116 Interpretation of the Code Assumes MediaAccessor.loadAlbums
is only ever invoked from
AlbumData.getAlbumNames.

Similar to above. Here, though it would
have made sense to have a negative
withincode to exclude the case where
loadAlbums is recursively invoked.

CLARIFY WITH EDUARDO

l.m.aspects.exceptionblocks.UtilAspectEH.aj 19--21 Interpretation of the Code Assumes that
MediaUtil.readMediaAsByteArray is
only used to read in images; that is,
that the class is not reused for videos
or music.

In fact, though, it is at least also used for
music, which may lead to slightly
misleading error messages.

On the other hand, the pointcut here is a
good example of where it does make
sense to use withincode for an exception
handling aspect: The advise handles
exceptions from
Class.getResourceAsStream and, thus,
does need the context to determine how
to correctly interpret them.

l.m.aspects.exceptionblocks.UtilAspectEH.aj 29--37 Interpretation of the Code Assumes that
internalReadMediaAsByteArray is only
invoked from readMediaAsByteArray

This is probably true, as it is a private
operation, but then why is the withincode
clause needed in the first place?

l.m.optional.MusicAndOptionalFeatures.aj No relevant assumptions as far as I can
tell.

l.m.optional.OptionalFeaturesButVideo.aj No relevant assumptions as far as I can
tell.

l.m.optional.OptionalFeatureAspect.aj No relevant assumptions as far as I can
tell.

l.m.optional.SortingAndFavorites.aj No relevant assumptions as far as I can
tell.

l.m.optional.SortingAndFavoritesAndCopy.aj No relevant assumptions as far as I can
tell.

l.m.optional.SortingAndFavoritesAndCopyAndSMS.aj No relevant assumptions as far as I can
tell.

l.m.optional.VideoAndOptionalFeatures.aj No relevant assumptions as far as I can
tell.

l.m.optional.capturephoto.CapturePhotoAspect.aj 23--42 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

Page 6 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.optional.capturephoto.CapturePhotoAspect.aj 23--42 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.optional.capturephoto.CapturePhotoAspect.aj 23--42 Interpretation of the Code Assumes that the 'Capture Photo'
command has been added to the
menu, that is that the advise at lines
134--139 has been run.

This seems an interesting form of cross-
dependency. Formally expressing this as
an LTL formula requiring that we have
passed that other advice before entering
this advice doesn't make sense (it would
be almost vacously true as there is no
other way this advice could ever be
entered). Instead, it requires that for at
least one object that has been associated
with this advice, we have previously
registered the play command.

NEEDS MORE THOUGHT

l.m.optional.capturephoto.CapturePhotoAspect.aj 59--73 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

l.m.optional.capturephoto.CapturePhotoAspect.aj 59--73 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.optional.capturephoto.CapturePhotoAspect.aj 59--73 Interpretation of the Code Assumes that the 'Take Photo'
command has been added to the
menu, that is that the advise at lines
84--90 has been run.

This seems an interesting form of cross-
dependency. Formally expressing this as
an LTL formula requiring that we have
passed that other advice before entering
this advice doesn't make sense (it would
be almost vacously true as there is no
other way this advice could ever be
entered). Instead, it requires that for at
least one object that has been associated
with this advice, we have previously
registered the play command.

NEEDS MORE THOUGHT

l.m.optional.capturephoto.CapturePhotoAspect.aj 84--90 Interpretation of the Code Assumes no other code introduces a
command labelled 'Take photo'.

l.m.optional.capturephoto.CapturePhotoAspect.aj 84--90 Interpretation of the Code Assumes no other code introduces a
screen type with ordinal value 1 for
CaptureVideoScreen.

l.m.optional.capturephoto.CapturePhotoAspect.aj 134--139 Interpretation of the Code Assumes no other code introduces a
command labelled 'Capture photo'.

l.m.optional.capturevideo.CaptureVideoAspect.aj 26--32 Interpretation of the Code Assumes no other code introduces a
screen type with ordinal value 2 for
CaptureVideoScreen.

l.m.optional.capturevideo.CaptureVideoAspect.aj 74--79 Interpretation of the Code Assumes no other code introduces a
command labelled 'Capture Video'.

l.m.optional.capturevideo.CaptureVideoAspect.aj 87--101 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

Page 7 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.optional.capturevideo.CaptureVideoAspect.aj 87--101 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.optional.capturevideo.CaptureVideoAspect.aj 87--101 Interpretation of the Code Assumes that the 'Capture Video'
command has been added to the
menu, that is that the advise at lines
74--79 has been run.

This seems an interesting form of cross-
dependency. Formally expressing this as
an LTL formula requiring that we have
passed that other advice before entering
this advice doesn't make sense (it would
be almost vacously true as there is no
other way this advice could ever be
entered). Instead, it requires that for at
least one object that has been associated
with this advice, we have previously
registered the play command.

NEEDS MORE THOUGHT

l.m.optional.copy.CopyAspect.aj 36--41 Interpretation of the Code Assumes that PhotoViewController is
an appropriate controller for
implementing copying and will not be
advised by other aspects to change
this behaviour.

l.m.optional.copy.CopyAspect.aj 53--74 Interpretation of the Code Again, an inverse assumption: Code
that invokes this method (which is not
invoked from CopyAspect!) assumes
CopyAspect has been deployed.

l.m.optional.copy.CopyMultiMediaAspect.aj 46--48 Interpretation of the Code Assumes CopyAspect to also be
deployed.

Not so exciting here, as the two aspects
at least reside in the same package.

l.m.optional.copy.CopyMultiMediaAspect.aj 55-57 Interpretation of the Code Assumes that mediaName is not
changed between invokation of this
advice and of the advice on lines 61--
116.

Not a problem for a single-threaded
phone application, but will become
problematic in a multi-threaded
environment.

l.m.optional.copy.CopyMultiMediaAspect.aj 61--116 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

l.m.optional.copy.CopyMultiMediaAspect.aj 61--116 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.optional.copy.CopyMultiMediaAspect.aj 61--116 Interpretation of the Code Assumes that the 'Copy' and 'Save
Item' commands have been added to
the menu.

This is an interesting variant of the
theme: The two commands are not
introduced within this aspect, but
otherwise.

l.m.optional.favourites.FavouritesAspect.aj 40--76 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

Page 8 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.optional.favourites.FavouritesAspect.aj 40--76 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.optional.favourites.FavouritesAspect.aj 40--76 Interpretation of the Code Assumes that the 'Set Favorite' and
'View Favorites' commands have been
added to the menu; that is that the
advice on lines 144--148 hs been run.

This seems an interesting form of cross-
dependency. Formally expressing this as
an LTL formula requiring that we have
passed that other advice before entering
this advice doesn't make sense (it would
be almost vacously true as there is no
other way this advice could ever be
entered). Instead, it requires that for at
least one object that has been associated
with this advice, we have previously
registered the play command.

NEEDS MORE THOUGHT

l.m.optional.favourites.FavouritesAspect.aj 40--76 Interpretation of the Code Assumes (on line 69) that favorite will
be maintained appropriately per
controller instance.

This works for single-threaded phone
applications, but may become
problematic with multi-threaded
contexts.

Actually, there seem to also be a few
typos in the ITDs dealing with favorite.

l.m.optional.favourites.FavouritesAspect.aj 144--148 Interpretation of the Code Assumes no other code introduces
commands labelled 'Set Favorite' and
'View Favorites'.

l.m.optional.favourites.FavouritesAspect.aj 144--148 Interpretation of the Code Assumes
l.m.optional.favourites.PersisteFavorit
esAspect.aj has been deployed also
and has been used for serialising the
media data read.

An interesting assumption as it may span
a number of runs of the application.

l.m.optional.favourites.PersisteFavoritesAspect.aj 22--32 Interpretation of the Code Relies on consistent aspect ordering
between aspects serialising and
deserialising media data.

Otherwise, fields added by other aspects
might be mistaken for fields added by this
aspect, as they are only referenced by
their relative order.

l.m.optional.sms.SMSAspect.aj 23--25 Interpretation of the Code SmSOrCapturePhoto assumes this
method is there.

l.m.optional.sms.SMSAspect.aj 27--29 Interpretation of the Code SMSReceiverController assumes this
method is there.

l.m.optional.sms.SMSAspect.aj 27--29 Interpretation of the Code Assumes the image will additionally be
passed to the constructor of
PhotoViewScreen in the usual manner
so that it will be displayed.

An alternative would seem to be to only
maintain an appropriate flag or to use
loadImage to ensure the image was
copied/referenced appropriately.

l.m.optional.sms.SMSAspect.aj 37--39 Interpretation of the Code Assumes no other code introduces a
command labelled 'Send Photo by
SMS'.

l.m.optional.sms.SMSAspect.aj 47--49 Interpretation of the Code SMSReceiverController assumes this
method is there.

l.m.optional.smsorcapturephoto.SmSOrCapturePhoto.aj No relevant assumptions as far as I can
tell.

l.m.optional.smsorcapturephotoorvideo.SmsOrCapturePhotoOrVideo.aj Interpretation of the Code Seems to assume that someone will call
this. Not sure how it relates to methods
such as getImage introduced in
SMSAspect

l.m.optional.sorting.SortingAspect.aj 65--83 Interpretation of the Code Assumes all user interaction is treated
by handleCommandAction.

This may be encoded in the architecture,
but is certainly not clarified as a
dependency for this advice.

Page 9 of 9

Project: MobileMedia l.m.X stands for lancs.mobilemedia.X
Version: 7

Adivce data:

File Lines Source of Assumption (e.g.,
comment, interview, mailing list,
interpretation of code, etc.)

Assumption Description Comment

RIVAR -- Rich Interfaces for Verifiable Aspect Reuse

Collection of empirical data on assumptions made by aspect programmers about the context in which their aspects will be woven.

In the table below, enter information for each advise on a separate line. Use additional lines for different assumptions. Enter assumptions in English text giving as much detail as needed to completely describe the
assumption. Coding and classification will be performed in a separate step.

l.m.optional.sorting.SortingAspect.aj 65--83 Interpretation of the Code Assumes that returning true will stop
other potential aspects handling
command. Also assumes that other
command handlers will return true
when they have eaten an command.

This is a bit nitpicky. It seems a pretty
standard protocol, but it is currently not
documented (only informally in
l.m.core.ui.controller.ControllerInterface,
but not as an assumption of the aspect).
Sometimes this sort of protocol is
implemented one way (true for 'yes I'm
done'), sometimes the opposite way (true
for 'command still up for grabs'), so
making this assumption explicit should
certainly help with reuse or base-code
evolution.

l.m.optional.sorting.SortingAspect.aj 65--83 Interpretation of the Code Assumes that the 'Sort by View'
command has been added to the
menu; that is that the advice on lines
171--174 has been run.

This seems an interesting form of cross-
dependency. Formally expressing this as
an LTL formula requiring that we have
passed that other advice before entering
this advice doesn't make sense (it would
be almost vacously true as there is no
other way this advice could ever be
entered). Instead, it requires that for at
least one object that has been associated
with this advice, we have previously
registered the play command.

NEEDS MORE THOUGHT

l.m.optional.sorting.SortingAspect.aj 65--83 Interpretation of the Code Assumes (on line 76) that sort will be
maintained appropriately per
controller instance.

A potential for issues in synchronisation.

l.m.optional.sorting.SortingAspect.aj 171--174 Interpretation of the Code Assumes no other code introduces a
command labelled 'Sort by Views'.

l.m.optional.sorting.SortingAspect.aj 183--201;
209--215

Interpretation of the Code Makes an assumption about correct
relative ordering of serialising and
deserialising aspects.

An interesting assumption as it may span
a number of runs of the application.
Different from the case above, however,
here the code for serialising and
deserialising is in the same aspect, which
may make ordering quite difficult.

	Sheet1

