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Abstract. Domain-specific languages are constructed to provide mod-
elling capabilities tailored to a specific domain. Sometimes, languages are
developed many times, typically to support application in a new context.
In doing so, recurring patterns and commonalities as well as variations
across the evolving set of languages can be identified. This paper intro-
duces the concept of a domain-specific metamodelling language, which
codifies such commonalities and provides concepts and logic for express-
ing the variations. The challenges and difficulties of using domain-specific
metamodelling languages are identified. We illustrate the concept with
examples from different domains.

1 Introduction

Domain-specific languages (DSLs) for software engineering are custom- and
purpose-built languages that target a specific domain. These languages are of-
ten smaller than general-purpose languages (GPLs), providing fewer and more
focused language constructs and, ideally, a simpler and more rigorous semantics.
The intent with DSLs is to provide a concise, tailored language that is easier for
engineers and domain experts to learn, understand and apply for a specific class
of problem.

Engineers build DSLs when they detect recurring patterns in the programs or
models that they are constructing using a GPL (e.g., Java or UML). The concepts
and logic in these patterns are then encoded in a new DSL that promotes these
patterns to first-class language constructs. From a technical perspective, the
DSL is typically implemented atop a standardised metamodelling infrastructure,
such as EMF/Ecore [20], which provides reflective mechanisms to encode its
abstract syntax (i.e. the language constructs, their properties and relationships).
A number of different approaches can be used to define DSL semantics [4], as
well as their graphical or textual concrete syntaxes.

With the growing adoption of DSLs in Model-Driven Engineering (MDE),
the phenomenon of families of DSLs has started to appear. A family of DSLs
is a set of languages, each of them targeting a concrete instance of a common
problem domain. We have encountered this phenomenon in our previous work



on diverse domains. For example, in [18] we proposed constructing a new DSL
for capturing traceability between each set of metamodels of interest, and in
[48] a new DSL is implemented for every Software Product Line of interest, to
enable engineers to precisely capture the mappings between features and model
elements. Other authors have encountered similar phenomena too. For example
in [5] a new DSL needs to be specified for each metamodel of interest to enable
users and tools to capture differences of models that conform to this metamodel.

The contributions of this paper are threefold:

1. We identify the key challenges involved in developing families of DSLs. This
consolidates the experience obtained from the existing work on families of
DSLs mentioned above.

2. We introduce the idea of domain-specific metamodelling languages (DSM2Ls)
and demonstrate a translational approach for automating the construction
of the syntax, semantics and tool-support of families of DSLs.

3. We demonstrate the approach by showing how a number of real-world fami-
lies of DSLs can benefit (and have done so in the past) from its application.

The rest of the paper is structured as follows. In Sect. 2 we identify chal-
lenges in developing families of languages. We then introduce, in Sect. 3, the
concept of domain-specific metamodelling languages, and show how employing
DSM2Ls makes it possible to fully generate the complete language family in-
frastructure, including the abstract concrete syntax, editors, and other tools.
Section 4 presents examples of applying the approach. Finally, we consider re-
lated work before concluding.

2 Challenges for Developing Families of DSLs

In principle, domain-specific languages are more useful the more closely they are
aligned with their target domain. However, despite the advance in tool support
for defining the abstract and concrete syntaxes of DSLs, developing DSLs that
are closely aligned with the problem domain still requires a significant amount
of effort and expertise. In some cases, we have found ourselves developing very
similar DSLs to target similar instances of a problem within marginally different
domains. In particular, we have experience with two such families of languages: a
family of languages for expressing traceability links between model artefacts [18],
and a family of languages for variability management in product-line develop-
ment [48]. In both cases, for each language of the family we needed to specify the
abstract and concrete syntaxes as well as implement supporting infrastructure,
such as editors, analysers, or code generators.

Having developed several DSLs of each family manually, we realized that all
DSLs within a family shared a common core and demonstrated specific types of
variations that propagated in a predictable manner to their syntax, semantics
and tool-support. In the example of languages for tracing, there is a notion of
a TraceLink, which needs to be specialised for each pair of language concepts
for which trace links should be established. Specific types of trace links are



associated with specific types of constraints. All other language concepts are
essentially the same for all tracing languages.

For all of these cases, there is an alternative solution, which is to develop
one generic language rather than a whole family of languages, each customised
for its specific context of use. For some cases, this may be the better solution.
However, for other languages we have found a number of reasons that can make
developing customised languages more appropriate. Section 4 discusses examples
of language families and also discusses the specific reasons for each language.
Typically, these fall into the following categories:

– Context-specific constraints. Customising languages for a specific context of
use enables the definition of context-specific constraints. For the traceabil-
ity example, each context-specific type of trace link can be associated with
context-specific constraints on the number and type of elements that can be
connected by such a link.

– Context-specific terminology. A generic language will invariably use generic
terms. In certain situations, it is preferable to use terms customised for the
specific context of use. For example, in the product-line languages, we cus-
tomised the actions available for manipulating target models so that they
would be immediately familiar to product-line engineers accustomed to us-
ing these target languages for modelling their product line rather than using
generic terminology that would be immediately understandable only to lan-
guage designers.

– Enhancing existing languages with new functionality. Especially some tech-
nical concerns, such as modularisation, need to be supported by any DSL,
but are costly to develop. Hence, it would be beneficial to be able to reuse
one realisation of such a concern for different languages. This requires the
language concepts supporting the concern to be re-implemented in different
contexts, one for each DSL for which to support the technical concern.

If, for a given domain, for one or more of the above reasons we decide to
develop customised DSLs for different contexts of use, efficiency of DSL devel-
opment becomes an issue. Repeatedly redeveloping the language from scratch
is not only inefficient, but also error prone. To increase efficiency and reduce
error-proneness, we have to address the following challenges:

1. Systematic reuse of DSL constructs and infrastructure elements. We require
a reuse mechanism that goes beyond simple “copy&paste” and covers all
aspects of a DSL’s support infrastructure: metamodels, grammars, parsers,
interpreters, compilers, editors, etc.

2. Systematic support for specifying variability between the DSLs. At the same
time, we need to be able to easily specify differences between the DSLs. In
particular, we should not need to make a number of co-ordinated changes
throughout different aspects of the DSL’s support infrastructure just to mod-
ify one feature of the language. We will need to support variability in the
following forms:



(a) Addition/Removal of concepts. This implies changes to all aspects of
the language infrastructure, but in particular to grammars, metamodels,
editors, parsers, code generators, and verification tools.

(b) Integration with different additional languages. This requires changes to
metamodels, type checkers, and evaluation strategies (e.g., compilers or
interpreters).

One way to address these issues would be, in the spirit of MDE, to specify
languages within each family at an even higher level of abstraction than that pro-
vided by general-purpose metamodelling languages such as MOF/ECore where
their commonalities could be ignored and only their variations would need to be
specified. This higher-level specification could then be used to automatically gen-
erate all the artefacts of the DSL with reduced effort and enhanced consistency.
The next section discusses this approach in more detail.

3 Domain-Specific Metamodelling Languages

To raise the level of abstraction in the construction of families of languages, we
propose the use of Domain Specific Metamodelling Languages (DSM2Ls). We
present the following working definition for the concepts of family of languages
and use it to define the concept of DSM2L:

Definition 1: A family of languages is a set of languages that demonstrate
a common core of constructs and a well-defined set of types of variation.

Definition 2: A Domain-Specific Metamodelling Language (DSM2L) is a
language used to define syntax, semantics, and tooling aspects3 of languages
belonging to a specific family of languages.

In the same sense that a tailored DSL is more concise and efficient for cap-
turing models of a specific domain than a GPL (such as UML), a DSM2L is
more concise and efficient than a general-purpose metamodelling language, such
as MOF, for specifying the syntax, semantics and tooling aspects of languages of
a particular type. Unlike general-purpose metamodelling languages, a DSM2L is
not capable of capturing every metamodel—instead, it is tailored for capturing
only specific types of metamodels of interest by providing first-class support for
the allowed types of variation within the family.

Expressing a family of DSLs using a custom DSM2L enables the definition
of generators that automatically generate editors, constraints, transformations
and other supporting infrastructure by exploiting knowledge of the family of
languages for which the DSM2L has been defined (see Fig. 1). For example, by
using the Traceability Metamodelling Language (TML) [18], which is a DSM2L
language for expressing traceability DSLs, we are able to automatically gener-
ate a set of correctness constraints for each TraceLink. One example of such a
3 Here, we include parsers, editors, code generators, etc.
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Fig. 1. Generating language support infrastructures from a DSM2L

constraint is the so called ForAll constraint, which guarantees that at least one
traceability link of a particular kind exists for all instances of a model-element
type. In general, the generated constraints in TML guarantee the semantic in-
tegrity of TraceLink. Further examples of DSM2Ls can be found in Sect. 4.

Implementing DSM2Ls in the context of metamodelling architectures—such
as, for example, the OMG metamodelling architecture—faces the problem that
these architectures typically only allow for one metamodelling language. The
generative nature of the DSM2L approach can be used here as well. For every
DSM2L, we can define a generator that takes an instance of the DSM2L and
elevates it to a proper metamodel by expanding the domain-specific modelling
constructs and replacing them by equivalent (if more verbose) representation in
the standard metamodelling language of our choice (see Fig. 1).

The proposed approach addresses the challenges identified in Sect. 2 by au-
tomating the construction process of the DSL metamodel, as well as the respec-
tive constraints and required tooling:

1. It supports systematic reuse of DSL constructs and infrastructure elements
by allowing language engineers to specify a core of reusable elements that
will be used by the generators to create a language-specific infrastructure.

2. At the same time, it provides systematic support for specifying variability
between the DSLs by allowing language designers to specify a well-defined
set of variation points that can be then supported consistently in the dif-
ferent parts of the infrastructure (e.g. constraints, transformations). The
DSM2L provides explicit concepts for each of these variation points and the
generators encode the implementation of each variation.

4 Examples

In this section, we discuss three different families of languages and show how
DSM2Ls have been used to implement these language famuilies.



4.1 TML

The Traceability Metamodelling Language is a language whose purpose is to
enable the construction and maintenance of traceability metamodels as well as
their accompanying correctness constraints.

Two main approaches for storing and maintaining traceability information
can be found in the literature [32]. The first approach is to embed traceability
information in the models it refers to, while in the second approach distinct
traceability models are used to capture the traceability information. As argued
in [17, 32], the second approach is to be preferred, since it does not pollute the
models involved with information of secondary importance.

A trace metamodel can be either of a generic or of a case-specific nature. In
the case of a generic trace metamodel, a set of traceability concepts is identified
and it is represented in the metamodel as meta-classes. An assumption related to
this approach is that the identified concepts apply to every traceability scenario.
Due to the generic nature of such a metamodel, trace links can relate any number
of model elements of any type in any model. Although this approach provides
great flexibility and freedom, it has two main shortcomings. First, it can allow
the establishment of illegitimate links. Additionally, models which conform to
a generic trace metamodel cannot capture case-specific traceability information
with rigorously defined semantics [18]. To overcome these shortcomings, case-
specific trace metamodels are proposed.

Despite the benefits gained from the use of case-specific trace metamodels,
the extra effort and time required for the development of such metamodels is
an area of concern. Through experimentation with defining a number of case-
specific trace metamodels, we have observed that although all of them are differ-
ent, they are quite similar in several aspects. For example, all of the traceability
metamodels contain the concepts of TraceLink and TraceLinkEnd. However,
for each particular traceability scenario the types of those two constructs differ
and this is the area of variability among the different traceability metamodels.
Additionally, a set of constraints are common in different traceability metamod-
els. For example, a particular TraceLink can link elements of a particular type
only or it can also link to instances of all the subtypes of the type. To reduce
the time and effort required for the development of traceability metamodels, we
have identified a number of recurring patterns in terms of the structure as well
as in terms of the correctness constraints that guarantee the semantic integrity
and completeness of the trace models, and we have promoted those patterns into
first-class metamodel elements.

TML can be considered as a DSM2L for trace metamodels. The core of the
TML metamodel is illustrated in Fig. 2. In addition, the semantics of TML are
specified in a translational manner using two formal and executable transforma-
tions that can transform a TML model into an ECore metamodel and a set of
constraints expressed using the Epsilon Validation Language (EVL) [16] which
is an extension of OCL [18]. We have evolved and refined the syntax and the
semantics of TML over a number of diverse case studies. In its current form,



Fig. 2. Core of the TML (from [18])

TML is capable of capturing complex traceability metamodels and to our view
the language is well-balanced between expressiveness and domain specificity.

With respect to the challenges identified in Sect. 2, we can critically evaluate
TML as follows:

1. Systematic reuse of DSL constructs and infrastructure elements. We man-
age to achieve systematic reuse of the various traceability DSL constructs
and infrastructure elements by promoting the recurring patterns among the
various traceability metamodels into first-class entities in TML.

2. Systematic support for specifying variability between the DSLs. We man-
age to specify the variability among the various traceability metamodels,
namely the different types of TraceLinks and TraceLinkEnds. One limita-
tion of our approach is that we are not able to automatically generate all
the relevant constraints for a traceability metamodel. Using TML, we can
automatically generate constraints which apply to all types of TraceLinks
and TraceLinkEnds. However, in our experiments with specifying various
traceability metamodels, we have encountered constraints which apply only
in particular cases. In our approach such constraints have to be specified
manually.

4.2 VML*

A software product line (SPL) is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core



assets in a prescribed way [13]. Apart from sharing a common set of features,
every system also has features that are specific to this system and not shared
with other systems in the SPL. An important part of managing the features of a
product line and the individual systems (often called products) is to model the
available features and their dependencies (e.g., if feature A is selected, feature B
also must be selected) in an abstract form, called a feature model (e.g., [27]).
While these models express what features there are and what products can be
formed from them, they do not express how a specific feature is realised and,
thus, how any specific product is realised. Feature models are strictly problem-
space models. The realisation of the product line is designed in a different set of
models using a different set of modelling languages.

This leads to a mapping problem: For each feature in a feature model we need
to identify and specify the solution-space models and model elements associated
with it to be able to systematically construct products given a selection of fea-
tures. A number of different approaches for such mappings have been proposed
[14, 21, 24, 48]. Most of the approaches propose a generic modelling language for
expressing simple relations between features and model elements. In contrast,
our VML* approach [48] proposes to construct customised languages for each
solution-space modelling language used in an SPL. The main benefit of such an
approach is the ability of providing more sophisticated mapping relations that
have been custom designed for the specific solution-space modelling language.
For example, if activity diagrams are used as part of the solution-space mod-
els, we can provide a mapping that merges additional steps into an activity if
a certain feature has been selected. For class-diagram models we may provide
a mapping relation that introduces package-merge dependencies in a model. A
more detailed discussion of the respective benefits and drawbacks of these ap-
proaches can be found in [48].

All of these languages are relatively similar. Still, without support for reuse,
it can be tedious and error prone to develop the support infrastructure for a new
VML language. As a solution, we developed VML*, which is a DSM2L for VML
languages. This is possible, because all VML languages share a common core
metamodel, which can be seen in Fig. 3. The metamodel highlights in dark grey
those metaclasses which must be adapted for each specific VML language. Most
importantly, new subclasses of Action must be created defining the different spe-
cific mapping relations (called actions in VML*) available. The implementation
of each such action is provided as a model-transformation snippet.

To enable language designers to define these variations between VML lan-
guages while reusing as much as possible of the commonalities shared by all VML
languages, VML* defines a DSM2L for so-called language-instance descriptors.
The metamodel for this DSM2L can be seen in Fig. 4. From instances of this
metamodel, we can then generate the complete infrastructure for a VML lan-
guage, including a metamodel expressed in EMF/Ecore, an editor with syntax
highlighting, code completion and checking of static semantics, and evaluation
engines for different evaluations of a VML specification (e.g., automatic gener-



Fig. 3. Common core metamodel for VML languages (from [48])

ation of product models based on a selection of features, or generation of trace
links between features and model elements).

We have used VML* to develop a number of languages already. Most im-
portantly, we have developed VML4Arch [35]—a language for mapping from
feature models to architecture models—and VML4RE [3]—a language for map-
ping from feature models to requirements models. Other languages for mapping
to model-transformation workflows or project-specific DSLs are currently under
development.

Figure 5 shows excerpts from key artefacts for VML4RE. Figure 5 a) shows
an excerpt from the language-instance descriptor (i.e., an instance of the VML*
DSM2L). This has a number of sections defining different parts of the lan-
guage. The first two sections are concerned with the connection to feature
models and target models, respectively. They define what VariabilityUnits
and ModelElements VML4RE supports and how to extract them from a given
model. The next section defines the syntax of the different Actions supported by
VML4RE; all that is needed here is the name of each action and the types of its
parameters. Finally, the aspects section defines the different evaluation aspects
of VML4RE; that is, its different semantics for different usages of the language. In
the example, we show a semantics for deriving a model transformation for prod-
uct instantiation and a semantics for deriving trace links from a VML4RE specifi-
cation. For the former, for each action we provide an implementation as a model-
transformation function realised in xTend (see Fig. 5 b) for an example function).
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Fig. 4. Domain-specific metamodelling language for VML* (from [48])

For the tracing semantics we define which of these operations create or remove
model elements. Trace links will then be created automatically to link selected
features with created and removed model elements. Finally, Fig. 5 c) shows an ex-
cerpt from a VML4RE specification. The language’s metamodel, concrete syntax,
and evaluation infrastructure have been completely generated from the specifi-
cations exemplified in Fig. 5 a) and b). The example VML4RE specification ex-
cerpt states that when the feature Security has been selected for a product, two
new use cases SecureTheHouse and ActivateSecureMode are created and that
SecureTheHouse includes the existing use cases SendSecurityNotification
and OpenAndCloseWindowsAutomatically.

Effectively, for VML* we have developed a DSM2L for specifying individual
VML languages. With respect to the challenges from Sect. 2, we can make the
following evaluation:

1. Systematic reuse of DSL constructs and infrastructure elements. The gen-
erator infrastructure built to support the DSM2L supports full reuse of all
shared concepts and infrastructure parts for all VML languages.

2. Systematic support for specifying variability between the DSLs. At the same
time, it enabled us to specify differences between the languages in one place;
the generators then ensure that all required co-ordinated changes to the
infrastructure are performed consistently. For VML*, we have not been able
to fully support the specification of individual languages in the DSM2L only.
Instead, semantics of actions and adapters to feature and target models must
be written as rules in a separate model-transformation language4. However,

4 The prototype uses openArchitectureWare’s xTend language, but any other could
have been used as well.
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// Define a new language called vml4req
vml instance vml4req {

// This section defines the type of variability model and how to access it
features {

metamodel "/bin/fmp.ecore"
// Extracts all variability units from a variability model
function "getAllFeatures"

}

// This section defines the type of target model and how to access it
target model {

metamodel "UML2"
type "uml::Package" // Metamodel type of a model
// Function to interpret pointcut designators
function "dereferenceElement"

}

// Importing plugins and external specifications
...

// Syntactical definition of available actions
actions:

createInclude {
params "List[uml::UseCase]" "List[uml::UseCase]"
}
insertUseCase {
params "String" "uml::Package"
}
...

// Definition of available evaluation aspects
aspects:

transformation { // Evaluation for product derivation
// Defines adapter for product-configuration access
features {

type "String"
function "getAllSelectedFeatures"

}
// Definition of the semantics of actions as model transformations
createInclude {

function "createIncludes"
}
insertUseCase {

function "createUseCase"
}
...

}
tracing {

createOps “create* (*)”
removeOps “remove* (*)”

}
}

01
02
03
04
05
06
07
08
09

// xTend function creating a new include relationship between 
// usecase1 and usecase2
create uml::Include createIncludes(uml::UseCase usecase1, 

uml::UseCase usecase2):
// this is automatically set to the newly created include. 
// We only need to set the parameters
this.setIncludingCase (usecase1) ->
this.setAddition (usecase2)->
this;

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

// Importing feature model and core target model
import features <"/SmartHome.fmp">;
import core <"/SmartHome.uml">;

…

// Define mapping for Security feature
variant Security {

…
insertUseCase ("SecureTheHouse", "Security");
insertUseCase ("ActivateSecureMode", "Security");
createInclude ("Security::SecureTheHouse",

or (
"Notification::SendSecurityNotification",
"WindowsManagement::OpenAndCloseWindowsAutomatically"));

}

a

b

c

Fig. 5. Example files for VML4RE [3]: a) language instance descriptor (DSM2L in-
stance), b) model-transformation code implementing the createInclude action, and
c) excerpt of a VML4RE script specifying the modifications required when the Security
feature has been selected. From [48]

as each of these rules is well encapsulated and is referenced from exactly one
place in the DSM2L, the situation is sill better than having to make multiple
co-ordinated changes in multiple places in the VML support infrastructure
for each action.

Finally, as an interesting side effect of using a DSM2L for VML* we had to
streamline some of the syntax of the original VML languages from which the
language family was constructed. For example, VML4Arch used to have an ac-
tion whose syntax was connect Component1, Component2 using Interface.
In VML* all actions must follow an operation call syntax, so this had to be
changed to connect (Component1, Component2, Interface).

4.3 Reuseware Reuse Extension Language

Reuseware [22] is a metamodel-agnostic approach to aspect-oriented modelling
(AOM). It is based on interpreting some elements of a model written in some
modelling language as special—addressable—points. Addressable points can be
used to specify either fragments of a model or points to be replaced by a fragment
from some other model. Reuseware’s composition engine can interpret these
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Fig. 6. Metamodel of addressable points. From [22]

addressable points and use them to perform aspect-oriented compositions of
models. Figure 6 shows the metamodel of addressable points used by Reuseware.

To make Reuseware’s AOM concepts available to a language X (called the
component language in [22]), we need to generate a new language X’ weaving
the metamodel from Fig. 6 into the metamodel of X. Not every concept from
X needs to be made available as an addressable point. In fact, language design-
ers need to carefully choose, which concepts to make available as which form
of addressable points, and which concepts not to expose as addressable points
at all. To express these choices, Reuseware provides a Reuse-Extension Lan-
guage, the metamodel of which can be seen in Fig. 7. For the moment, we focus
on SyntacticExtension only. These effectively enumerate the model elements
from X that are to be exposed as addressable points. Based on such a specifi-
cation, [22] defines an algorithm for deriving a new language X’ that includes
these addressable points and can be successfully interpreted by Reuseware’s com-
position engine to describe aspect-oriented model compositions. In effect, the
Reuse-Extension Language is a DSM2L for AOM languages constructed with
Reuseware. SemanticExtension is an interesting variation on our concept of
DSM2Ls: Similarly to SyntacticExtensions, these identify model elements to
be exposed as addressable points. However, instead of physically generating a
new language, SemanticExtensions define a new interpretation of X; that is,
the diverse OCL expressions of a SemanticExtension are interpreted by Reuse-
ware’s composition engine for every instance of X that is used in a composition
program. The effect is similar to SyntacticExtensions, however, more fine-
grained adjustements are possible.

With respect to the challenges from Sect. 2, we can evaluate the Reuseware
Reuse-Extension Language as follows:

1. Systematic reuse of DSL constructs and infrastructure elements. The DSL
constructs that are reused are defined in their own metamodel (cf. Fig. 6),
which is woven into the component-language metamodel by a standard al-
gorithm defined in [22]. The complete support infrastructure is implemented
in the Reuseware composition engine independently of concrete component
languages. Furthermore, existing editors for the component language are in-
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Fig. 7. Metamodel of the Reuse-Extension Language, the DSM2L defined by Reuse-
ware [22]

tegrated into the composition infrastructure transparently. Note, however,
that this is only possible for semantic extensions. Syntactic extensions modify
the metamodel of the component language, meaning that model components
may not be accessible to existing editors for the component language.

2. Systematic support for specifying variability between the DSLs. The different
DSLs vary in two dimensions:
(a) The component language used. This variation is supported because all

reusable elements of the infrastructure are implemented without refer-
ence to any specific component language. Thus, a reuse specification can
be written for any Ecore-based component language.

(b) The model elements that are exposed as addressable points. The allowed
variations along this dimension are captured by the Reuse-Extension
Language. An interesting difference to the other examples of DSM2Ls
above is that this variability can be bound in two different forms: Syntac-
tic extensions physically create a new language, binding the variability
at the metamodelling level. Semantic extensions are interpreted and log-
ically create a new language, binding the variability at the modelling
level.

5 Related Work

In this section we discuss an approach to model differences representation that
shares many characteristics with the approach proposed in this paper and pro-
vide an overview of related work in the broader field of DSL development and
families of DSLs.

5.1 DSM2L for Model Differences Representation

In [5], a metamodel-independent approach is presented for the representation of
model differences. Given two models, M1 and M2, which conform to an arbi-
trary metamodel MM, their difference conforms to another metamodel MMD,



derived from the former by an automated transformation. MMD has to provide
the constructs able to express the modifications that have to be performed on
the initial version of a given model in order to obtain the final one. Cicchetti
suggests that although the constructs in the MMD metamodel are case specific,
i.e. depend on the metamodel MM under consideration, there is a common set
of constructs shared across all metamodels, to which difference models conform.
Hence, he defines a base metamodel for representing differences, and then all
the case-specific difference metamodels are derived as an adaptation of the base
metamodel to the given precise domain. This is achieved by generating the re-
quired case-specific difference meta-elements as specializations of the difference
meta-elements defined in the base metamodel. This specialization of the base
metamodel towards a given language is achieved by specifying a Higher Order
Transformation [43], i.e. a transformation which takes as input and/or generates
as output model transformations.

Similar to our notion of DSM2Ls, Cicchetti’s approach is also based on gen-
erating context-specific metamodels. However, there is no explicit notion of a
DSM2L. Instead, the generation can be generically applied to any metamodel
expressed in a generic metamodelling language such as MOF. This is possible,
because the relation between the generated metamodels (or languages) to their
contexts of use is different from the cases discussed in our paper: In Cichetti’s
case [5], the contexts are the individual metamodels for which difference meta-
models are to be derived. The specific difference metamodels are then standard-
ised derivations of the metamodel for which they are created. Instead, for the
DSM2L case, the languages to be created are customised in an open manner for
each context; that is, just given the context we cannot automatically derive the
customised metamodel of our DSL. Additional input from the language developer
is required. This input is provided using the DSM2L. Hence, if [5] provided some
means for selecting the metaclasses for which to generate difference-representing
elements (similarly to the Reuseware example from Sect. 4.3), we would classify
this as a DSM2L.

5.2 Development of DSLs

The development of a DSL typically involves the following steps [6]:

1. Analysis. The problem domain is identified, the relevant domain knowledge
is gathered and an appropriate DSL is designed.

2. Implementation. A suitable implementation approach is chosen and used to
realise the DSL and its supporting infrastructure.

3. Use. Programs are written in the new DSL, and if necessary feedback on
design and implementation is provided.

The focus of this paper is on DSL implementation, where we discuss an
interesting pattern for implementing families of DSLs that exhibit certain char-
acteristics. Consequently, we will first discuss a number of key approaches to
DSL implementation, before giving an overview of some other work on particu-
lar families of languages.



Klint et al. propose a more systematic approach to the development of lan-
guages (or grammarware as they call it), called Grammarware Engineering [29].
Our work fits right into this research agenda, as we have identified a pattern
for systematic development of families of DSLs. Among other things Klint et
al. identify meta-grammarware as a term to “[. . . ] refer to any software that
supports concrete grammar use cases by some means of meta-programming,
generative programming or domain-specific language implementation [. . . ]” [29].
In this sense, our work can be classified as meta-grammarware.

Language Implementation The direct approach to DSL (and GPL) imple-
mentation is the development of a compiler or interpreter for the DSL under
consideration. There is a wide variety of tools and frameworks for the devel-
opment of compilers and interpreters such as [1, 6, 34]. The main advantage of
such an approach is that the implementation can be tailored completely towards
the DSL. In addition, error detection, static analysis, and optimizations can be
performed at the domain level. The main disadvantage of this approach is the
high cost of implementation.

Designing DSLs as embedded languages is one way to avoid the complexity
of building a complete compiler or interpreter. Embedded languages [41] are
DSLs that are used inside larger programs written in a host language. Expres-
sions in the DSL are translated into the host language producing a new program
completely expressed in the host language that is then evaluated using the stan-
dard tools for the host language. Different implementations of this concept have
been proposed in the literature—for example, [10, 19, 37]. Other proposals to
simplifying language implementation involve extensible compilers (e.g., the del-
egating compiler objects approach [25]), grammar extension and inheritance (e.g,
[36, 38]), and pre-processing (such as, macro-processing [9] or source-to-source
transformations [44]).

Model-driven development can benefit greatly from the use of DSLs. Here, a
DSL is typically developed using an abstract-syntax metamodel (sometimes also
called domain-definition metamodel [8]), one or more concrete-syntax definitions
(textual or graphical) and a specification of language semantics (often defined
using model transformations). A number of frameworks to support such language
development have been proposed—for example, [7, 11, 23, 28, 30, 33, 12, 38, 39, 42,
47]. We have previously proposed an approach for simplifying the development
of the model transformations involved in defining such DSLs [26].

All of these approaches focus on the manual development of a single DSL. In
contrast, the approach presented in this paper aims to support the development
of families of languages by generating their implementation from a specification
in a DSM2L. It is, thus, complementary to the approaches discussed above and
can be combined with any one of them depending on the circumstances. Using
an approach that already supports modular language definition may simplify
the code generators to be written for interpreting the DSM2L. Apart from using
these approaches in the result of the code generator, we of course also make use
of them in developing the DSM2L in the first place. In particular, the model-



driven approaches with their focus on model transformation and generation as
the means of providing semantics to a DSL are useful for implementing DSM2Ls.

Families of Languages Families of languages have been presented in the re-
search literature for a range of domains: Voelter presents an approach for a
family of languages for architecture design at different levels of abstraction [46],
Akehurst et al. [2] present a redesign of the Object Constraint Language as a
family of languages of different complexity, Visser [45] presents WebDSL, a fam-
ily of interoperating languages for the design of web applications. All approaches,
including ours presented in this paper, use very different kinds of technologies
for their specific case: Voelter uses conditional compilation to construct an ap-
propriate infrastructure, Akehurst et al. use a special parser technology that
enables modular language specification, Visser uses rewriting of abstract syntax
trees and our approach generates a monolithic infrastructure for each language.

6 Outlook and Conclusions

This paper has identified an important issue with the design and implementa-
tion of sets or families of DSLs: that there are common recurring patterns and
variations across families of DSLs. This issue led us to define a set of challenges
for building language families, which in turn led to the introduction of a new
concept: that of domain-specific metamodelling languages. We described how
to implement domain-specific metamodelling languages, via a transformational
approach that eliminates difficulties with instantiation of metamodels. The ap-
proach was then evaluated based on three examples: a traceability metamodelling
language, a metamodelling language for variability, to be exploited in the devel-
opment of software product lines, and a language for describing aspect-oriented
language extensions.

In this evaluation, we have identified limitations in our current approach to
domain-specific metamodelling that we will address in the future. In particular,
in the VML* example, we were not able to fully specify all language properties
using the domain-specific metamodelling language alone—semantics of actions,
for example, had to be encoded separately using a model transformation lan-
guage. As we go on to apply the notion of DSM2Ls, it will be interesting to see
if a similar pattern emerges for other language families as well. Additionally, in
the TML case, although we were able to capture all structural constructs of the
traceability metamodels as well as some of the accompanying corectness con-
straints, we were unable to generate via the use of the DSM2L the case-specific
constraints, which had to be specified manually. This indicates that TML might
need to provide appropriate extension mechanisms for those cases. In the AOM
example, reuse of the component-language infrastructures was sometimes ham-
pered by the fact that we had generated a new language. An alternative approach
was to interpret the DSM2L information instead of generating a new language.
In general, the issue of when and how to bind variability in languages of a family
of DSLs deserves further research attention.



We are in the process of further evaluating our approach in a different do-
main and context: that of model management. Specifically, we are attempting to
apply the concept of domain-specific metamodelling languages to the redesign
of the Epsilon model management framework [40]. Epsilon5 is a platform of
task-specific languages for model management; it includes languages for model-
to-model transformation, model-to-text transformation, model merging, model
validation and inter-model consistency checking, model comparison, and model
refactoring, all based on a core navigation and modification language (which
combines language features of OCL and Javascript). The languages in Epsilon
are inter-related, and interoperate [31]; for example, the model merging lan-
guage reuses the model-to-model transformation language, and can use the out-
put from a program expressed in the comparison language. In effect, Epsilon
forms a family of integrated languages for model management; however, they
have been developed and implemented without applying domain-specific meta-
modelling concepts (see [15] for details of how Epsilon is currently implemented
based on grammar inheritance and by using virtual machines). Epsilon thus pro-
vides a rich conceptual and technical domain in which to further evaluate the
domain-specific metamodelling approach, and our future efforts will focus on
re-engineering Epsilon along these lines.
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