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Abstract. As model-driven software development covers additional parts of the
development process, the complexity of software models increases as well. At
the same time, however, many modelling languages do not provide adequate sup-
port for modularising models. For this reason there has been an increasing in-
terest in the topic of model modularisation, often under the heading of aspect-
oriented modelling (AOM). The approaches range from techniques that closely
mimic concepts from aspect-oriented programming (AOP), such as AspectJ, to
very powerful composition techniques for specific types of models—for exam-
ple, state machines.

We believe that AOM is more than just copying the concepts of AOP at
the modelling level and should rightly include a large number of other model-
composition techniques. Developing model composition techniques and tooling
is costly, however. To minimise the effort required, this paper presents a generic
technique for model composition. The technique is based on invasive software
composition and our Reuseware tooling and can be used with arbitrary mod-
elling languages. The basic technique itself is language independent, but it can be
adapted to construct language- and purpose-specific composition techniques for
specific modelling languages and situations. Hence, it can be used both as a tool
for developing specific model-modularisation techniques and as an instrument of
research for studying basic properties and concepts of model modularisation. The
paper gives a detailed description of our approach and evaluates it using a number
of examples.

1 Introduction

Model-driven development (MDD) [1] is increasingly viewed as one way of dealing
with the complexity of modern-day software. Its promise is that by making models our
primary development artefacts and generating the final application code from them, we
can achieve a higher level of abstraction in development and, thus, achieve an improved
understanding of more complex systems. MDD requires all models to completely de-
scribe the specific part and property of a system for which they have been constructed.
This completeness requirement leads to an increasing size of models used. Therefore, it
is often no longer possible to provide and use one single monolithic model of a system.
Rather, we need to be able to split complex models into less complex, partial models
that can be independently developed, maintained, and studied.



Modern modelling notations used in the context of MDD, such as the Unified
Modeling Language (UML) [2], already provide some modularisation support. This
support—for example UML’s packages, hierarchical classifiers and hierarchical state
machines—however, typically follows a dominant decomposition of the system to be
developed. For some formal specification techniques—for example, state machines [3]
or Petri nets [4]—other decomposition techniques are defined, but these are not typi-
cally supported by modern modelling languages. Even worse, in the context of MDD
often domain-specific modelling languages (DSMLs) for very specific purposes are de-
veloped in one or a number of projects.

This situation has led to a lot of interest in model-modularisation techniques apart
from the dominant decomposition of a system. As the model modules studied in this
context often cross-cut the dominant decomposition this research has typically been
performed under the heading of aspect-oriented modelling (AOM) [5, 6]. AOM covers a
quite large range of approaches, from those, for example [7], mimicking aspect-oriented
programming (AOP) approaches (such as, for example, AspectJ [8]) to those, for exam-
ple [9, 10], providing very powerful composition techniques for specific purposes and
languages using specific properties of modelling languages.

Developing such modularisation techniques and the supporting technology is costly
and error prone. At the same time, it needs to be repeated for every new DSML to be en-
riched with such concepts. Therefore, a generic approach is required that can be applied
efficiently to realise different specific model modularisation techniques. We discuss ex-
isting approaches that support modularisation techniques for DSMLs in Sect. 7.

To close this gap, in this paper we present such a generic approach based on Invasive
Software Composition (ISC) [11] and implemented in our tool Reuseware [12]. ISC is
a generic, grey-box composition technique based on rewriting source code. It was for-
malised in the Reuseware approach [11, 13] to be applicable to arbitrary context-free,
textual languages. In this paper, we extend that work to cover graph-structured, possi-
bly graphical languages. This paper is an extension of [14]. In that paper, we enhanced
Reuseware by introducing the notion of fragment queries to group model or source
code fragments. This enabled us to implement the concept of quantification [15], which
is at the heart of aspect orientation. Fragment queries and standard Reuseware com-
position concepts, however, provide a rather crude set of tools for expressing model
compositions. This paper extends and refines these simple concepts by adding the no-
tions of ports, port groups and composition steps, greatly reducing the complexity of
composition programs and enhancing the flexibility and expressiveness of the language-
independent composition technique. Furthermore, we discuss how arbitrary modelling
languages can be extended to integrate with our approach and how such an extension
can be designed such that existing tooling for the language can still be used.

The rest of this paper is structured as follows: We begin in the following section
by giving two motivating examples. Section 3 discusses requirements on a language-
independent solution for model modularisation. This is followed by a presentation of
our proposed solution in Sect. 4. In Sect. 5, we briefly discuss our tool Reuseware,
which implements the concepts presented in this paper. Section 6 shows how our initial
examples can be solved by our approach to support our claim of language independence.



2 Motivating Examples

This section introduces two examples that we will use in the paper to explain our ap-
proach. The first example is based on UML activity diagrams, outlining a real-world
scenario. The second example is based on a toy DSL, explaining modularisation issues
in DSLs in an illustrative manner. It should be noted that we not only present examples
of concrete models but also of languages in which they are written. Our approach can
be applied to any language expressible by a metamodel.

2.1 Business process extension

Business processes can be described by behaviour modelling—for instance using UML
activity diagrams. Often, general processes (e.g., a process for ordering goods in a shop-
ping system) can be defined once and specialised for a concrete system with special
requirements.

Although UML activity diagrams can be modularised into partitions in single mod-
els, reusing and combining parts of activities modelled separately is not well-supported
by UML itself. We would like to define general processes with activity diagrams and
keep them extensible with specific activities for concrete application use-cases.

As an example, we look at the order processing activity modelled in Fig. 1. The
process contains a checking activity (the CustomerDataCheck action together with the
decision node below) that determines whether certain data (here customer data) is con-
sistent. We want to keep the order processing activity extensible such that additional
checks can be inserted in parallel to the customer data check.

To perform the extension, a developer should not need to know anything about the
ordering process, but that check activities can be inserted. What this developer needs
to know is that a check activity has to have one incoming control flow (from the check-
Fork node) and two outgoing flows (to the checkMerge and checkJoin nodes). With this
knowledge, the developer can design additional check activities—for instance, the one
from Fig. 2 that determines the customer’s credit card liquidity.

Such extensibility can be realised by thinking about models as components. Treating
the ordering process model (cf. Fig. 1) as a model component, almost the whole activity
should be encapsulated. Only the checkFork, checkMerge, and checkJoin nodes (grey
boxes), to which the incoming and outgoing flows of additional checks can connect,
should be reflected in the composition interface. Looking at the credit card check (cf.
Fig. 2) as a model component, we can again hide the internal activity. We only think
of the initial (InitialNodeCREDIT) and final nodes (FINISH and CHANCEL) as open
spots in the model which need to be manipulated through the composition interface.

Our approach will enable us to look at UML models as model components by util-
ising UML language specifics to define composition interfaces on UML models. With
our language-independent composition tooling we can then easily define and execute a
composition of both presented activities resulting in the model shown in Fig. 3, where
only parts belonging to the composition interface of the model components (grey boxes)
were manipulated.



Fig. 1. An activity diagram for the control flow of an order process

Fig. 2. An activity diagram for credit-card checks that can extend the order process with an addi-
tional check.



Fig. 3. A composition of the order process and the credit card check activity

2.2 Modular Ship and Cargo Distribution

In this example we utilise the toy DSL TaiPan1 that was created to demonstrate features
of the Eclipse Graphical Modeling Framework [16]. Figure 4 shows a model defined in
the TaiPan language. The language can be used to model a configuration of an Aquatory
consisting of Ports, Routes between ports, and Ships that may hold Items as cargo. Ships
travel on a Route and have a Port as destination. A special kind of ship is a Warship that
has the additional ability to execute EscortOrders (escorting another ship on its route)
or AttackOrders (besieging a port).

Let us assume that Ports, Ships, and Items are complex model parts that consist of
several model elements and that there are many relations (Routes) between ports and
many relations (EscortOrders) between Ships. Then it becomes obvious that certain
parts of a model can be reused in other models: the ports on the sea are always the
same, while the ships on it can be different. The part that models a certain item can be
reused everywhere it represents the cargo of a ship. We identified three different model
parts in a TaiPan model which can be individually reused in other TaiPan models.

1. Port model (Fig. 5) Here the ports and routes between them are modelled. The
number of ports and routes and their names seldom change in this model. However,
details of the ports (e.g., its size and capacity) can change over time.

2. Flotilla model (Fig. 6) This models a flotilla of ships with their specifics and rela-
tions between them. Again, the number of ships and their names do not change so
often in one flotilla, while the escort orders between ships might do so often.

1 Available from: http://wiki.eclipse.org/index.php/GMF Tutorial#Quick Start



Fig. 4. A TaiPan model



3. Cargo model (Fig. 7) Here individual items of cargo are modelled. Assuming that
the model of a single item is not simple, this separation makes sense: only one item
type needs to be modelled once and can be reused for several ships.

We want to look at these partial models as model components and compose them
into a single TaiPan model, like the one in Fig. 4. We identify the following three com-
ponents:

1. The port model should encapsulate details about the ports and routes, such as the
size of the ports. It should offer an interface which allows access to the port and
route names, such that they can be assigned to ships.

2. The flotilla model should encapsulate details about the ships and the relations be-
tween them (e.g., which war ship escorts which cargo ship). It should offer a com-
position interface which allows modification of port and route assignments, as well
as a composition interface to fill the load of a cargo ship.

3. The cargo model should encapsulate details about the different cargo types. It
should offer a composition interface that allows access to extract specific items
from the cargo model.

Through such a component-oriented way of thinking about the models, benefits are
gained over conventional model integration approaches (like model transformations).
Through encapsulation two advantages are gained: First, it ensures that certain elements
are not changed during composition which increases the understanding of relations be-
tween the components and the composition: The author of a component knows and
can control which elements are changed during composition through defining the com-
position interface together with the component. Second, by knowing the encapsulated
details, the component author can change them without risk of breaking the composi-
tion. Through the clearly defined interfaces, composition becomes easier. One only has
to bother about the interface and not the internals of the models (in contrast to model
transformations, where extensive knowledge about the details of the involved models is
often required).

Our model composition approach will allow to easily introduce the notion of com-
position interfaces into the TaiPan language and use our language-independent compo-
sition tooling to quickly define compositions of TaiPan model components. Thus, we
can extend the language with new features that were not originally supported.

Were we to implement support for the two kinds of model compositions presented
above manually into the activity-diagram and the TaiPan language, we would face a
daunting task indeed. For each language, we would have to design a modularisation
mechanism, manually adjust the language metamodel, and implement the transforma-
tions necessary to make it work. Having done so for one language, we would not be able
to reuse the effort spent once we move on to another language. Furthermore, whenever
the original language changes (for example, when the representation of ships in Taipan
is modified to give more details of the internal structure of the ships), we would have
to manually redo the implementation of the modularisation mechanism—a sheer main-
tainance nightmare. In this paper, we will provide generic concepts that can be used to
easily implement a variety of composition approaches for arbitrary languages including
for the TaiPan and activity-diagram examples.



Fig. 5. A port model

Fig. 6. A flotilla model

Fig. 7. A cargo model
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Fig. 8. Terms relevant in describing composition systems

3 Requirements for a Language-Independent Modularisation
Technique

We can clearly see the need for generic support for implementing modularisation tech-
niques for arbitrary domain-specific languages. This section discusses the requirements
that such a generic support system needs to fulfil. We base our discussion on a classi-
fication defined in [11], where a composition system is sub-divided into a component
model, explaining what components and their interfaces are, a composition technique,
determining how components can be composed, and, finally, a composition language,
that allows composition programs to be formulated and concrete compositions to be
described. Following this classification—an extended overview of which can be seen in
Fig. 8—we will consequently discuss our requirements on the component model, the
composition technique and the composition language.

3.1 Requirements on the Component Model

The purpose of a component model in a composition system is to define the units of
composition that should be usable for modularising a program or model. This requires
that the component model defines the notions of components, composition interfaces,
and consistent compositions.

A definition of the term component identifies the units of composition. This can
range from a notion of binary, pre-compiled and immutable “black-box” components
as defined, for example, for Enterprise Java Beans [17] and CORBA Components [18]
to freely modifiable pieces of (structured) text (“white-box” components) as is, for ex-
ample, the case for some hypermedia document components [19]. As, in this paper,
we are looking for a composition system that is independent of specific component
description languages2, we, of course, require a component definition that is indepen-
dent of the specific language used in expressing components. In particular, components
should be editable, analysable, and maintainable by tools already available for the lan-
guage in which they are expressed, while also being recognizable as components to the
composition system.

A composition interface makes explicit what parts of a component can be accessed
during composition; that is what information about the internal structure of a component

2 A component description language is a language used to write components.



can be used when describing and executing compositions and how, if at all, this internal
structure can be adjusted. This is very much related to the different types of compo-
nents ranging from black-box to white-box. In particular, the composition interface of a
component defines whether the component is black-box or white-box or somewhere in-
between. For example, the interface of the black-box components of EJB is essentially
an operational interface; that is, a list of signatures of operations that can be invoked
on the component to interact with it plus a technique for resolving a component name
into a component reference. For white-box, structured-text components the interface is
defined by the structure of the text and the possibility to freely edit this text. We be-
lieve that a completely language-independent composition system must of necessity be
more open than a black-box system. Note that systems such as CORBA components
are language independent only to some degree in that they still restrict components to
those being expressed in programming languages that can be hidden behind an opera-
tional interface. We want to be more generic and also include modelling languages and
other techniques. At the same time, completely white-box systems give too little con-
trol to component authors so that we are requiring a “grey-box” approach; that is, an
approach where the structure of components can be inspected and manipulated during
composition, but where the component author can control, through explicitly defined
composition interfaces, the amount of inspection and manipulation possible. A similar
idea has recently been advocated in aspect-oriented programming (AOP) through the
concept of explicit pointcut interfaces (XPIs) [20].

Consistent composition refers to conditions that must be fulfilled for two compo-
nents to be composable in a certain manner. In effect this refines the constraints imposed
by composition interfaces, expressing not only what parts of a component’s structure
can be manipulated, but also how much these parts can be manipulated. We can dis-
tinguish syntactic and semantic consistency. For example, the structure of text in the
white-box hypermedia systems discussed above provides syntactic consistency by ask-
ing that the result of any composition (however much the individual components are
modified) must respect the structural constraints of the hypermedia language; that is,
the composition result must be syntactically well formed. Semantic consistency requires
that semantic constraints induced by one component must not be weakened when the
component is used in a composition. For example, for black-box operation components
(such as CORBA components) we require that no behaviours that are not acceptable for
a component in isolation become acceptable simply by the component being used in a
composition. Semantic consistency very much depends on the specific semantics of the
component language. As semantics can differ very widely, we will restrict ourselves to
syntactic consistency in this paper.

3.2 Requirements on the Composition Language

The composition language of a composition system provides means of expressing com-
position programs; that is, of describing concrete compositions of concrete compo-
nents. Therefore, it needs to provide syntactic constructs denoting components and
their interfaces as well as for denoting individual steps in a composition. As other for-
mal languages, composition languages can be either declarative or imperative in nature.



Because they allow more freedom in actually executing the composition, we prefer
declarative composition languages.

Composition languages can be sub-divided into two parts:

1. Component Description Language: This is a language used to describe components
and their interfaces. It can be used either in addition to the component language or it
can be used as an extension of the component language. In any case, because we are
looking for a technique independent of the component language, it must provide its
constructs with minimum impact on the component language. In particular, if tools
exist for analysing, editing, or compiling components, these must not be affected
by the component description language.

2. Composition Description Language: This language is used to describe composi-
tions of existing components. It should provide generic constructs for referencing
components and their externally visible interfaces, and for expressing their compo-
sition. When using a composition description language, it should not be necessary
to know what language components are expressed in. As a relaxation of this re-
quirement, in this paper, we restrict ourselves to compositions of components that
are all written in the same language. In the future it should also be possible to
compose components of different languages.

3.3 Requirements on the Composition Technique

The purpose of a composition technique in a composition system is to provide semantics
to the composition language. The composition technique defines the basic composition
operators that can be used in the composition description language and explains their
effects in terms of the composition result. Furthermore, it explains how composition
programs are interpreted.

We need a composition technique that can be defined independently of the language
in which components are written. We find that, in this case, it is easiest to provide a
composition technique based on rewriting of components.

4 Extending Invasive Software Composition for Model
Composition

This section presents our solution to the requirements for a language-independent sys-
tem for model composition described in the previous section.

4.1 A Language-Independent Component Model for Model Composition

As indicated in Sect. 3.1, a component model needs to define what the components and
their interfaces are. Additionally, a generic component model needs to do so indepen-
dently of the language used for expressing the individual components. Our component-
model definition is based on concepts from ISC [11–13]. Figure 9 gives a graphi-
cal overview of the main concepts of our component model. In the following, we
will present and discuss these concepts. We will begin by discussing our notion of
components—fragments or fragment components—followed by a discussion of the in-
terface of such components.
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Fig. 9. Component model. These are the concepts available for describing components and their
interfaces.

Fragment Components We introduce the concept of a fragment component—or frag-
ment for short—as our notion of a component. A fragment is a partial expression in
some formal language. This underlying language is called the core language. A frag-
ment can be partial in two ways:

1. A fragment can be incomplete. For textual languages, this means the fragment is
derived from a non-terminal other than the start symbol of the core-language gram-
mar. For a graphical language with a metamodel whose instances are not necessar-
ily trees, incompleteness means that the fragment only represents a sub-graph of
a valid metamodel instance. In our activity-diagram example, any combination of
activities and transitions would be an incomplete fragment unless they were also
embedded in an activity diagram and had at least one start and one stop activity.

2. A fragment can be generic. This means that some part of the fragment (whether
incomplete or not) is (intentionally) missing. For textual core languages, we can
potentially leave open any non-terminal defined in the core-language grammar. For
graphical languages, we can make almost any metamodel class generic.

To express genericity of a fragment, we introduce variation points. These are ele-
ments within a fragment that can be used as place-holders for other fragments leaving
some part of a fragment unspecified. Further, we also need to be able to address frag-
ments or parts thereof. To this end, we introduce fragment reference points. Reference
points address fragments or sub-fragments and give them a name so that they can be
used in compositions. Hence, in general a composition occurs when a variation point in
one fragment is replaced by another fragment addressed through some reference point.
Thus, variation points can be likened to formal parameters of procedures in imperative



programming, while reference points are similar to actual parameters for a composition.
Taking this analogy one step further, we need to distinguish between two cases that are
very similar to the passing of parameters ‘by value’ or ‘by reference’ that we often
find in imperative programming: We introduce the following two pairs of variation and
reference points:

1. Hook–Prototype This corresponds to the intuitive notion of binding a fragment to a
variation point: The fragment, addressed by a prototype reference point, is copied
and then replaces the hook variation point.

2. Slot–Anchor In analogy to the concept of passing by reference, no new copies of
any fragment are created when an anchor is bound to a slot. Instead, references to
the slot are replaced by references to the anchor.

It should be noted that when we say ‘replace’ above, this does not necessarily imply that
the variation point is removed from its fragment. Whether a variation point is removed
after a composition step depends only on the maximum multiplicity of the references
pointing at it. A variation point is only removed after its maximum multiplicity has
been reached. Therefore, variation points can be bound multiple times as long as their
maximum multiplicity allows it.

Composition Interfaces A fragment is addressed during composition through its com-
position interface. Before we describe the details of fragment composition interfaces,
we have to be aware that these interfaces are seen from two different perspectives.

1. Fragment developer viewpoint The fragment developers (persons who write frag-
ments) look at the interfaces from “inside” of the fragment components. They de-
fine the interfaces and link them to the fragment’s contents.

2. Fragment user viewpoint The fragment user (persons who reuse fragments defined
earlier) look at the composition interfaces from the “outside”. They address the
fragments in composition programs, without looking at the internal details of the
fragments.

A fragment composition interface is a collection of ports. Fragment developers de-
fine the ports and assign them unique names. Furthermore, they link each port to a set
of variation and reference points in the fragment. Fragment users can then write com-
position programs in which they describe a composition by linking ports of different
fragments.

In addition to the grouping of addressable points into ports, ports can be organised
in port groups. A port group indicates to the fragment user that a set of ports should
be addressed together in a composition program. Fragment developers can decide how
they apply the two abilities of grouping addressable points according to the task at hand.
The more addressable points are grouped into a port, the more abstract the interface
becomes: details are hidden from the fragment user. If the grouping is shifted into port
groups with several ports, the interface becomes less abstract and more responsibility is
transferred to the fragment developer, but also more flexibility.

The two important properties of a fragment’s composition interface are that it is
quantifying and typed. The former supports the high abstraction of interfaces, the latter
the consistent composition:



– Quantifying refers to the fact that a port collects a set of variation and reference
points that are handled together during composition. The linkage between ports
and addressable points can be expressed by explicitly assigning points to a port but
also by giving a quantifying query expression over the set of addressable points in a
fragment. This grouping is independent of any structure dictated by the fragment’s
content.

– The typing of a port is determined by the typing of its associated addressable
points. These are typed in two dimensions: First, as discussed above, we distin-
guish four different types of addressable points; namely hooks, prototypes, slots,
and anchors. Since these types are given by the generic component model we call
this the language-independent type of the addressable point. Second, each varia-
tion point represents a specific metaclass and each reference point references an
instance of a specific metaclass; hence, all addressable points are also typed by
the metaclass they are associated with. Such a metaclass is given by a concrete
language and is therefore the language-dependent type of the addressable point.
The language-independent (language-dependent) type of a port is the set of all
the language-independent (language-dependent) types of its associated addressable
points.

Ports are categorised into three different categories by their language-independent
types:

1. Configuring Ports contain only slots and anchors. They are used to configure a frag-
ment (by re-routing references from slots to anchors) and not to extend it with addi-
tional model elements. Notice that using only configuration ports in a composition
description makes no sense, as they can only be used to configure the composition
result.

2. Contributing Ports contain prototypes (but no hooks). They offer content (i.e., ad-
dition model elements) as extension to a fragment. They may also contain slots or
anchors for configuration.

3. Receiving Ports contain hooks (but no prototypes). They allow a fragment to be
extended with additional model elements. They may also contain slots or anchors
for configuration.

The distinction made above has conceptual and technical reasons. Conceptually, the
fragment user can easily recognise whether a port contributes new elements or expects
a contribution of elements without looking at the addressable points behind the port.
Since slots and anchors cannot be used to add new model elements to fragments, they
do not influence the contributing/receiving character of a port. The technical reason for
the distinction is that our composition technique needs to know, at each point of the
composition process between two fragments, which fragment is contributing and which
one is receiving model elements. The reasons for this will be explained in the context
of our composition technique in Sect. 4.3.

Configuring ports should be grouped with receiving or contributing ports into port
groups. The reason is that configuration (i.e., cross-referencing) makes no sense before
fragments are actually integrated. Thus, addressing configuring ports independently in
a composition program is not useful. Furthermore, the more abstract the interface, the



less often configuring ports are required—the slots and anchors are contained directly
in the contributing and receiving ports.

4.2 A Generic Composition Language for Model Composition

As stated in Sect. 3.2 the composition language can be split into the Component De-
scription Language and the Composition Description Language. A component descrip-
tion language is used by the fragment developer to describe fragments and their inter-
faces. A composition description language is used by the fragment user to define frag-
ment composition programs. Thus, both languages inherit concepts of the component
model defined in the last section.

In our setting, the component description language can be any existing (or just de-
veloped) modelling language (a core language), extended to support the definition of
fragment composition interfaces. We call such an extended language a reuse language.
If this extension is done following the same formalism for any language the compo-
sition description language can be defined independently of any specific component
description language. This is because the composition description language only re-
lies on the extended part of the reuse language, which is based on the concepts of the
language-independent fragment component model.

This section first describes the possibilities and the formalism to extend a core lan-
guage by extending its metamodel to make it usable as a component description lan-
guage. It then describes the (language-independent) composition description language.

Component Description Language To turn an arbitrary core language into a reuse
language, which is usable as a component description language in our approach, we
need to perform a language extension. Two methods are applicable for this:

1. Extending the Core Language Metamodel. This method can be used to inject con-
structs for variation and reference point definitions into the core language. This
enables the fragment author to declare the interface of each fragment individually
by defining variation points and marking model elements as reference points. A
drawback, in some cases, is that tools which are already implemented on basis of
the original metamodel might break.3 For example, models containing variation
points may not be accepted by tooling based on the original metamodel. Alterna-
tively such new metamodel constructs may be ignored by the tooling, or in the
worst case even removed from the model.

2. Defining OCL Expressions over the Component Language Metamodel. In this ap-
proach, we define how the composition interface is extracted from fragments de-
fined in the core language. This approach can be used for two purposes: First, it
avoids the need for language extension because original language concepts can be
selected to represent addressable points (e.g., through naming conventions). Sec-
ond, it can be used to define a default interface for fragments which does not re-
quire explicit declaration by the fragment developer. Note that structural queries

3 As we will explain below, the extension is restricted and does not harm existing language con-
structs. If the language tools are build openly and allow for extension, the language extension
approach may still be feasible.
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over metamodel instances, as enabled by OCL, are sufficient because we only con-
sider static compositions of development artefacts.

Effectively, both approaches extend the core language. The first one syntactically
and semantically—by introducing new meaningful constructs into the core language.
The second one only semantically—by giving additional meaning to existing constructs.
In the following, we will refer to the first approach as a syntactic language extension
and to the second approach as a semantic language extension. Both concepts can also
be combined when extending a metamodel.

We call all such metamodel extensions reuse extensions. Figure 10 shows the meta-
model of a small language we use to describe reuse extensions. Reuse extensions can
be performed to provide constructs for expressing each of the four types of addressable
points. Hence, a ReuseExtension collects four sets of ReuseMetaclassEx-
tensions, one for each type of addressable point (hook, prototype, slot, and
anchor). Each ReuseMetaclassExtension defines the extension on the basis
of a metaclass of the core metamodel.4

For each type of metamodel extension, there is a specific subclass of ReuseMeta-
classExtension. Semantic language extensions are captured by the Semantic-
Extension metaclass. The specific extension is defined by the following four at-
tributes, of which two are mandatory and two optional:

1. isAddressablePoint (required) This is a constraint expressed on instances of the
core metaclass. It results in true for those instances which should be interpreted
as addressable points. Note that the language-independent type of the addressable
point is already determined by the association from ReuseExtension.

2. portNameExpression (required) If the isAddressablePoint constraint holds, this ex-
pression is used to extract the name of the port this addressable point belongs to.

3. pointNameExpression (optional) If the addressable point has a specific name, this
expression is used to extract it.

4 Throughout the paper we refer to the core metamodel as the metamodel representing the core
language
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Fig. 11. Steps of the language extension algorithm.

4. groupNameExpression (optional) If the addressable point and its port should belong
to a specific port group, this expression is used to extract the name of the group.

Syntactic language extensions are more involved, because we also need to modify
the metamodel of the core language itself. Specifically, we need to introduce specific
metaclasses to be used for expressing addressable points. Such addressable-point meta-
model instances should be substitutable for their corresponding core metaclass every-
where in the extended language. For example, in the TaiPan example, we want to be
able to place a cargo hook wherever we would be able to place a specific piece of cargo.
At the same time, however, addressable points should not share any features specific to
core language elements. For example, for a cargo hook we should not need to express
a cargo name and amount. Typically, in metamodels, we use inheritance to express
substitutability. However, we also use inheritance to share features between language
elements. Therefore, simply inserting new elements into the inheritance structure of the
core language would not fit our requirements. Instead, we need to use a slightly more
involved algorithm. Figure 11 illustrates the steps of this algorithm using a symbolic
example. In the following, we explain each step in turn:

1. Type hierarchy extraction To separate the use of inheritance for substitutability from
its use for feature sharing, we duplicate the hierarchy of metamodel elements of the
core metamodel. For each core metaclass, we create a new abstract metaclass and
call it the type metaclass of the core metaclass. For each inheritance relationship
between two core metaclasses, an inheritance relationship between the correspond-
ing type metaclasses is introduced (This is represented in Fig. 11 by simple lines
connecting two boxes. The upper box represents the super class of the lower box).
In Step 1 of Fig. 11, we show a symbolic core metamodel on the left and the derived
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Fig. 12. Common metamodel that is integrated into reuse languages with syntactical extensions.

corresponding type hierarchy on the right-hand side. Notice that the type hierarchy
contains only classes and inheritance relations, but no references or other features
within these classes.

2. Addressable point introduction For each ReuseMetaclassExtension we in-
troduce an addressable point metaclass into the type hierarchy. The addressable
point metaclass inherits from the type metaclass of the core metaclass that is ex-
tended. In the figure, we show how one core metaclass (the grey one) is extended.
To this end, we introduce a new class in the type hierarchy, represented by a hashed
box in the figure.
Additionally, we integrate into each reuse language the metamodel from Fig. 12 in-
troducing the different types of addressable points available. Depending on the type
of addressable point that is to be introduced for the core metaclass, the new class
in the type hierarchy also inherits from the corresponding class from Fig. 12. For
our TaiPan example from above, this would be the Hook metaclass. For prototype
and anchor metaclasses, additionally, a reference (content) to the core metaclass is
added to hold the actual model element that is referenced.

3. Reference redirection Finally, the two hierarchies of metaclasses need to be inte-
grated, so that the new metaclasses from the type hierarchy are used instead of the
original core metaclasses. To this end, every reference to an extended core meta-
class (or to a superclass of an extended core metaclass) is redirected to the corre-
sponding type metaclass. Each core metaclass to which references existed that have
been redirected is made a subclass of its type metaclass. As a result, instances of
the extended core metaclass are substitutable by addressable points.

After the metamodel extension for a specific core language was performed, frag-
ments can be written and their interfaces can be defined in the extended language. A
composition system can extract interfaces from the fragments to make them explicit by
analysing the model elements of the fragment. All elements that are either instances of
a subclass of a metaclass from Fig. 12 or on which an isAddressablePoint constraint
holds, define the composition interface of the fragment.
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Fig. 13. Metamodel of the Composition Description Language.

Composition Description Language Figure 13 depicts the concepts of our Composi-
tion Description Language. A CompositionProgram consists of several Fragments and
their composition interface that is represented by Ports. A Port can either be a Con-
figuringPort, a ContributingPort, or a ReceivingPort. Composition is realised through
different CompositionSteps where each CompositionStep consists of CompositionLinks
between two ConfiguringPorts (a ConfigurationLink) or one ContributingPort and one
ReceivingPort (a ContributionLink).

We defined a graphical syntax for expressing compositions of fragments that in-
cludes concepts for representing fragments, their composition ports and composition
links between those. Additionally, means for defining composition steps are provided.
This syntax is supported by a graphical editor that is built on top of the Eclipse Platform
[21] and the Graphical Modeling Framework (GMF) [16]. An example of a fragment
composition program written in our editor is shown in Fig. 14. The pallette on the right
offers means to create composition links, composition steps, participations of composi-
tion links in composition steps and so-called fragment queries, which will be examined
later.

In our editor, a fragment is represented by a rectangle that has its composition ports
attached as circles, where contributing ports are depicted as black circles, receiving
ports as white circles and configuring ports as white circles with a dashed line. The
composition ports are automatically extracted from the fragment when the fragment
is dropped onto the editor canvas. Composition links are represented as lines between
composition ports. A configuring link is shown as a dashed line and a contributing link,
which defines a direction of composition from the contributing to the receiving port, as
an arrow visualising this direction. Within the fragment, a composition port group—
represented by a small rectangle—is connected to its participating composition ports.
To allow for grouping of composition links to steps, syntax for defining composition
steps is necessary. A composition step is represented by an ellipse that references all
associated composition links by dashed lines.

Sometimes, multiple fragments need to be composed in essentially similar ways.
In our activity-diagram example, there may be more than one check activity fragment



Fig. 14. Fragment Composition Editor.

to be woven into the core activity. Although we could express each such composition
individually, this would require a lot of duplication in the composition code. To avoid
such duplication, we introduce the syntactical concept of fragment queries. An example
of a fragment query is the dashed box named FragmentA.* in Fig. 14. Note that
this is purely a concept of the composition language as every composition including a
fragment query can be transformed into a set of compositions without queries.

Fragment queries group a set of fragments and treat the complete group like a single
fragment. Figure 15 shows an overview of the essential syntactical concepts involved
in expressing fragment queries. It can be seen that fragment queries can be nested hier-
archically inside each other. An elemental fragment as defined in the component model
is represented by the PhysicalFragment class in the figure.

Fragment queries can be defined in essentially two ways: a) by enumerating the
fragments to be encompassed by the query, and b) by providing an expression describ-
ing the set of fragments to be included. Both approaches are supported by our com-
position language using regular expressions as query expressions. Fragment queries
add an additional level of quantification to the composition. It is interesting to see that
this enables us to distinguish quantification introduced by fragment developers (using
groupings between variation and reference points) and fragment users (using fragment
queries). This adds a new level of control not supported by typical AOP/AOM realisa-
tions in the literature.

To be able to view a fragment query as a fragment again, we need to define how
the fragment query’s composition interface is determined. Basically, the composition
interface of a fragment query reflects the interfaces of its element fragments. However,
variation and reference points of the same name and type that occur in different element
fragments are merged into one variation or reference point for the fragment query and
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1 c o n t e x t A d d r e s s a b l e P o i n t : : matches ( ap : A d d r e s s a b l e P o i n t ) : Boolean
2 pos t : r e s u l t = ( typeMatch ( ap ) ) and
3 ( pointName = ap . pointName ) and
4 ( apElemen t s . t y p e−>f o r A l l ( t 1 |
5 ap . apElemen t s . t y p e−>f o r A l l ( c2 | c2 = c1 )
6 ) )
7
8 c o n t e x t A d d r e s s a b l e P o i n t : : typeMatch ( ap : A d d r e s s a b l e P o i n t ) : Boolean
9 pos t : r e s u l t = ( s e l f . oclIsKindOf ( P r o t o t y p e ) and ap . oclIsKindOf ( P r o t o t y p e ) ) or

10 ( s e l f . oclIsKindOf ( Anchor ) and ap . oclIsKindOf ( Anchor ) ) or
11 ( s e l f . oclIsKindOf ( S l o t ) and ap . oclIsKindOf ( S l o t ) ) or
12 ( s e l f . oclIsKindOf ( Hook ) and ap . oclIsKindOf ( Hook ) ) or
13 ( s e l f . oclIsKindOf ( M e r g e d A d d r e s s a b l e P o i n t ) and
14 s u b P o i n t s−>f o r A l l ( ape | ap . typeMatch ( ape ) ) ) or
15 ( ap . oclIsKindOf ( M e r g e d A d d r e s s a b l e P o i n t ) and
16 ap . e l e m e n t s−>f o r A l l ( ape | s e l f . typeMatch ( ape ) ) )

Listing 1. Definition of matching between addressable points. Two addressable points
should be merged if they have the same name, are of the same type, and the type of the
elements they are associated with is the same

similarly for ports and port groups. To define precisely how the composition interface of
a fragment query is derived from the composition interfaces of its element fragments,
we need to introduce a few helper concepts. To do so, in the following, we use the
Object Constraint Language (OCL) [22] to formally express additional concepts for
our metamodel classes. The OCL constraints we will show in Listings 1 to 5, are hence
an integral part of the metamodel of our composition description language.

First, we need to define which variation or reference points should be merged. To
this end, in Fig. 15, we have introduced the operation matches() on addressable
points, that returns true if two addressable points are sufficiently equal to be merged
into one. Listing 1 shows the definition of matches(). Note that these functions make
use of a—previously unshown—association from addressable points to elements of a
fragment. This association is accessed through its association end apElements.



1 c o n t e x t A d d r e s s a b l e P o i n t : : merge ( aps : S e t ( A d d r e s s a b l e P o i n t ) ) : A d d r e s s a b l e P o i n t
2 pre : aps−>f o r A l l ( ap | s e l f . ma tches ( ap ) )
3 pos t : ( typeMatch ( r e s u l t ) ) and
4 ( r e s u l t . oclIsKindOf ( M e r g e d A d d r e s s a b l e P o i n t ) ) and
5 ( r e s u l t . pointName = pointName ) and
6 ( r e s u l t . s u b P o i n t s = aps−>c o l l e c t ( ap |
7 i f ( ap . oclIsKindOf ( M e r g e d A d d r e s s a b l e P o i n t ) ) then
8 ap . s u b P o i n t s
9 e l s e

10 ap
11 e n d i f
12 )−>un ion (
13 i f ( s e l f . oclIsKindOf ( M e r g e d A d d r e s s a b l e P o i n t ) ) then
14 s e l f . s u b P o i n t s
15 e l s e
16 s e l f
17 e n d i f
18 ) ) and
19 ( r e s u l t . apE lemen t s = r e s u l t . s u b P o i n t s . apE lemen t s )

Listing 2. Merge operation defined for addressable points

1 c o n t e x t P o r t : : matches ( p : P o r t ) : Boolean
2 pos t : r e s u l t = ( portName = p . portName ) and
3 ( a d d r e s s a b l e P o i n t−>s i z e ( ) = p . a d d r e s s a b l e P o i n t−>s i z e ( ) ) and
4 ( a d d r e s s a b l e P o i n t−>f o r A l l ( ap | p . a d d r e s s a b l e P o i n t
5 −>e x i s t s ( ap2 | ap . match ( ap2 ) ) ) ) and
6 ( p . a d d r e s s a b l e P o i n t−>f o r A l l ( ap | a d d r e s s a b l e P o i n t
7 −>e x i s t s ( ap2 | ap . match ( ap2 ) ) ) )

Listing 3. Definition of matching between ports. Two ports should be merged if they
have the same name and group matching addressable points

The merging of matching addressable points is represented by another operation:
merge(). Listing 2 shows its specification. This operation always creates a Merged-
AddressablePoint collecting all the merged addressable points. Note that anchors
can only be merged with anchors, slots with slots, hooks with hooks, and prototypes
with prototypes. The introduction of a MergedAddressablePoint allows compo-
sition interfaces of fragment queries to be viewed in two ways:

1. From the outside, the addressable points in the composition interface of a fragment
query look just like any other addressable point. In particular, the elements they
refer to can be accessed through the apElements association end.

2. The composition system can further inspect merged addressable points and identify
for each sub-point the fragment it came from and the elements it refers to. This will
be used in describing the composition technique later in this section.

Based on these definitions of how to merge addressable points, we can now define
how ports are to be merged: We begin, again, by defining which ports may be merged.
We do so in the matches() operation of Port. Its definition can be seen in Listing 3.

Merging ports is done by merging all matching addressable points in the ports and
creating a new MergedPort of the same name and with all the merged addressable
points inside it. We refrain from expressing this in OCL as it is quite straight forward.
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There are various ways of defining a fragment query’s composition interface from
the composition interfaces of its element fragments:

1. Maximal interface. Intuitively, the maximal interface is the union of all composi-
tion interfaces of all element fragments where matching ports have been merged as
defined by the merge() operation.

2. Minimal interface. The minimal interface contains only those ports that exist in all
element fragments. Merging applies as for the maximal interface.

3. Merging function. Such a merging function allows to merge ports fulfilling some
condition into one port, possibly with a new name. This approach can be combined
freely with the two above.

Figure 16 shows the additional metamodel elements required for supporting merge
functions and minimal vs. maximal fragment-query interfaces. For each fragment query,
we can provide one additional merge function, which will handle all port merges for
this query. The merge function provides two query operations: matchPort is used to
determine if a given port is to be subject to treatment by the merge function. mapPort
is used to identify the port that is the result of applying the merge function.

Listing 4 shows how the composition interface of a fragment query is derived from
the composition interfaces of its element fragments. Lines 4–19 produce the maximal
interface, with Lines 5–10 taking into account an optional merge function. The remain-
der from Line 20 restricts the interface to the minimal interface if required. Finally, we
need to ensure that merged ports in a fragment query respect all the rules imposed by
any port groups in the participating fragments. This is shown formally in Listing 5.

Fragment queries expressed in our prototypical graphical composition description
language will always use the minimal composition interface. Additionally, a merging
function can be provided, using regular expressions over port names to express the
matchPort operation. mapPort is implemented implicitly by creating a port with a
generated name. Fragment queries are represented by a rectangle with dashed lines (cf.
Fig. 14). Accompanying query expressions can be edited via a properties view in the
editor.

4.3 A Language-Independent Composition Technique for Model Composition

Once a composition program is defined over a set of fragments, it can be executed,
merging the involved fragments into bigger fragments or complete models. In this pro-
cess, each composition step is executed individually, transforming the fragments in-
volved. We will first look at the overall processing of composition programs and steps



1 c o n t e x t FragmentQuery
2 inv c o m p o s i t i o n I n t e r f a c e =
3 e l e m e n t F r a g m e n t s . c o m p o s i t i o n I n t e r f a c e
4 −> i t e r a t e ( p : P o r t ; c m p I n t f : S e t ( P o r t ) = S e t{} |
5 i f ( mapping−>notEmpty ( ) and mapping . m a t c h P o r t ( p ) ) then
6 −− merge u s i n g merging f u n c t i o n
7 c m p I n t f−>r e j e c t ( p1 | p1 . matches ( mapping . mapPort ( p ) ) )
8 −>i n c l u d i n g ( p . merge (
9 c m p I n t f−>s e l e c t ( p1 | p1 . matches ( mapping . mapPort ( p ) ) ) )

10 . rename ( mapping . mapPort ( p ) . name ) )
11 e l s e
12 i f ( c m p I n t f−>e x i s t s ( p1 | p . matches ( p1 ) ) ) then
13 −− merge i m p l i c i t l y match ing p o r t s
14 c m p I n t f−>e x c l u d i n g ( p1 | p . matches ( p1 ) )
15 −>i n c l u d i n g ( p . merge ( c m p I n t f−>s e l e c t ( p1 | p . matches ( p1 ) ) ) )
16 e l s e
17 c m p I n t f−>i n c l u d i n g ( p )
18 e n d i f
19 )
20 −>r e j e c t ( p : P o r t |
21 ( not u s e M a x i m a l I n t e r f a c e ) and
22 e l e m e n t F r a g m e n t s−>e x i s t s ( f | not f . c o m p o s i t i o n I n t e r f a c e−>e x i s t s (
23 p1 | p . matches ( p1 ) or
24 ( mapping−>notEmpty ( ) and mapping . m a t c h P o r t ( p1 ) and
25 p . matches ( mapping . mapPort ( p1 ) ) )
26 )
27 )
28 )

Listing 4. Composition interface of a fragment query.

1 c o n t e x t FragmentQuery
2 inv : subFragmen t s . po r tGroup−>f o r A l l ( pg |
3 s e l f . po r tGroup−>e x i s t s ( pg2 |
4 pg2 . p o r t . oclAsType ( MergedPor t ) . s u b P o r t s−>c o n t a i n s A l l ( pg . p o r t )
5 )
6 )

Listing 5. Port merges must additionally maintain any port groups set up on any
contained fragments

and then look into the details of how fragments are merged. The processing of a com-
position is sketched in Figure 17 to support the explanations below. At the end we will
shortly discuss the interpretation of fragment queries.

Executing composition steps and programs A composition program consists of com-
position steps; each of them is executed individually. Before this can be done, the exe-
cution order of the steps has to be determined. This order is controlled by the contribu-
tion links. Such a link gives a certain role to the two fragments involved: one fragment
(defining the receiving port of the link) is the receiving fragment, the other (defining
the contributing port of the link) is the contributing fragment. Receiving fragments can
be compared to cores and contributing fragments to aspects in AOP. This means that
we can weave in a contributing fragment into several receiving fragments. In each com-
position step the role of each fragment (involved through one or several links) has to
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Fig. 17. Stepwise processing of a composition program.

be clear. Otherwise, the composition step is invalid. The following restrictions for a
composition step can be derived from this:

1. The involvement of a fragment in a composition step has to be defined through at
least one contribution link. The other way around: A fragment cannot be involved in
a composition step through configuration links only. If it would be, it would neither
be receiving nor contributing.

2. If a fragment is involved in a composition step through more than one composition
link, all these links have to have the same direction, because a fragment cannot be
contributing and receiving within one composition step.

The composition program CP in Figure 17 defines a composition of the three frag-
ments F1, F2 and F3 by declaring two composition steps, Step1 and Step2. F2 is
involved in both steps, because both have links to ports of F2. In the context of Step1,
F2 is a receiving fragment while F3 is a contributing fragment (and F1 is not involved).
In the context of Step2, however, F2 is a contributing fragment while F1 is a receiving
fragment (and F3 is not involved).

Executing a composition step means that all contributing fragments are integrated
into the receiving fragments—resulting in a new set of composed fragments of similar
size as the set of receiving fragments. During this process, the contributing fragments
are not directly integrated, but a fragment copy of them. Thus, the original contributing
fragments remain available as contributions for other steps executed at a later point.



When a composition step was successfully executed it is removed from the pro-
gram and the receiving fragments of the step are replaced by the composed fragments.
Thus, the processing of the whole composition program is an iterative process in which
eventually all steps have been executed and the set of composed fragments of the last
executed step is the result set.

When Step1 of CP (cf. Figure 17) is executed the result can be visualised as a
modified composition program CP ′: The content of F3 (the only contributing frag-
ment) is copied and integrated into F2 (the only receiving fragment) leading to F2′.
F2 is replaced by F2′ and Step1 is removed.

As we have seen, only receiving fragments are modified and contributing ones re-
main unchanged by the execution of a step. This property determines the execution
order of steps. The next step to execute is always one where all contributing fragments
are not receiving fragments of any other remaining step in the composition program.
Thus, they can be safely copied because further modification cannot occur. Note that—
because the execution of a step modifies its receiving fragments and removes the step
from the program—fragments that were receiving at the beginning of the composition
process lose this property at some point.

In the composition program CP of Figure 17, Step1 can be executed, because
its only contributing fragment F3 is never a receiving fragment in the context of any
step of CP . Step2 on the other hand cannot be executed, because its only contributing
fragment F2 is a receiving fragment in the context of another step (Step1). In CP ′

however, where Step1 has been removed, Step2 can be executed resulting in CP ′′.
F1′ in CP ′′ is the resulting model of the complete composition.

It is obvious that invalid composition programs can be defined where no step ful-
fils the required property—which basically means that they define cyclic dependencies
between the fragments. It might also be that such a situation is reached during the iter-
ative execution process if the program is not analysed beforehand. We believe that such
invalid programs are counter intuitive and will seldom occur in practice. Should they
occur, however, invalid programs can be detected by our tool.

Matching addressable points and merging fragments Until now we have described
the general process of executing composition steps. What we have not discussed yet is
how receiving and contributing fragment are merged concretely when a step is executed.

A merging is done per composition link and involves only the addressable points be-
hind the two ports the link connects. The first thing that has to be done, before the actual
merge, is to determine which variation point of a port can be replaced by which refer-
ence point of the other port. The first requirement is that anchors can only replace slots
and prototypes can only replace hooks (this is the language-independent typing). The
second necessary requirement for such a replacement is that the language-dependent
types (i.e., the metaclasses for which the addressable points were introduced) of both
points match. This means the language-dependent type of a reference point has to be the
same as, or a subclass of, the language-dependent type of variation point. This ensures
that the composed model, where the reference points replaced the variation points, is
still a syntactically valid instance of the metamodel of the used component description
language.



If for each prototype involved in a composition step a hook with a matching type
can be found, the composition is executable. This is necessary to physically integrate
the fragments. If some hooks, anchors, or slots are not addressed this is in general
no problem. It is also possible to address the same hook or slot multiple times if the
multiplicity of the affected references allow it. Sometimes also different matches are
possible. In such non-deterministic situations the composition step is not valid.

To increase determinism, further matching strategies for addressable points are
needed. We use the naming of addressable points for this purpose: if a reference point
could be bound to different variation points, the names of the points are taken into
account. This was sufficient for the examples we inspected so far. However, with re-
spect to reuse, the names of the points might not match directly, additional matching
strategies—for example based on regular expressions—could be used.

For some compositions it might well be required that not only the binding of proto-
types but also of other kinds of addressable points should be enforced when two ports
are linked. These questions, however, very much depend on the concrete language and
modularisation approach at hand. Therefore, further experiences are needed to learn
about the problems and requirements.

Once all pairs of hook–prototype and slot–anchor bindings are determined, the
merging of fragments is simple. For a hook–prototype pair, the containing reference5

to the hook is re-routed to the prototype or, in cases where the prototype concept was
introduced by a syntactic metaclass extension, to the element referenced in the content
reference of the prototypes (cf. Sect. 4.2). This effectively adds content to the fragment
that contains the hook. A slot–anchor pair is resolved by taking all non-containment
references to the slot and re-routing them to the anchor (or to the element referenced in
its content reference). It should be noted that re-routing references means that a hook
or slot can stay referenced for further addressing, if the multiplicities of all affected
references allow that.

Note that in the composition illustrated in Figure 17, each port has only one ad-
dressable point. Thus the matching is straightforward. It is assumed in the figure that
the language-dependent types match in all three cases. When Step1 and Step2 are ex-
ecuted, variation points are replaced with reference points.

Our implementation of the composition technique also enforces that all ports ad-
dressed on a contributing fragment in one composition step must be grouped into one
port group. While this is redundant for the execution of the composition—the group-
ing can be assumed by the fact that the ports are addressed together in one step—it is
essential information for the developer. If a fragment comes with a large composition
interface where different ports should be addressed in different composition steps, the
developer would have little chance to know which configuring ports are to be addressed
together with which contributing ports.

Executing fragment queries As mentioned, fragment queries are solely constructs of
the composition definition language to ease composition program development. In the

5 A containing reference is a reference that holds the actual definition of an element. Each ele-
ment in a model (with the exception of one root node) has exactly one. Which references are
containing is defined in the metamodel.



general composition program execution process, fragment queries are treated as usual
fragments (i.e., they have a receiving or contributing character).

If a composition step is to be executed that involves a fragment query the query
is expanded. One can think of this process as drawing each fragment that is grouped
by the query individually into the composition program and then defining composition
steps for all possible compositions of the single fragments. If we define, for instance,
a composition step that involves one fragment query, which groups k fragments, as
receiving “fragment” and another fragment query, which groups l fragments, as con-
tributing “fragment” the transformation would produce l ∗k composition steps. Each of
these steps composes one fragment from the first query with one from the second query.
Then all the steps are executed.

If receiving fragments belonged to a fragment query, the corresponding composed
fragments are again grouped into a fragment query that replaces the original query in
the composition program.

In this section we have demonstrated our language-independent model composition
approach in detail. In the next section we explain how the approach and its concepts
have been implemented in a tool that can be used to solve the problems shown in the
introductory examples: the Reuseware Composition Framework.

5 Tooling: The Reuseware Composition Framework

The last section demonstrated our language-independent model composition approach
and its concepts. These concepts were implemented in the Reuseware Composition
Framework, available from [12]. The implementation is based on the Eclipse Modelling
Framework (EMF) [23]. In this section we briefly describe the architecture of the tool,
which we use in the next section to realise concrete solutions for the problems shown
in the introductory examples.

The tooling is split into a developer kit, which is used to instantiate the framework
for concrete languages, and runtime tooling, which is used by the end-users of com-
position systems. Section 5.1 describes the developer tooling and Sect. 5.2 the runtime
functionality.

5.1 CoMoGen: The Reuseware Development Kit

The development kit is named CoMoGen, which stands for Component Model Gener-
ator. The name was given by the central functionality provided by the tool—generating
a new component model for a given language based on its metamodel. CoMoGen offers
the reuse extension metalanguage in which a developer can express syntactic as well as
semantic reuse extensions (cf. Sect. 4.2) .

Figure 18 shows the architecture of CoMoGen. On the lowest layer, it uses the func-
tionality of EMF: EMF’s resource management is used to load and store metamodels;
EMF’s code generation is applied to generate metamodel code; EMF’s metamodeling
facilities—arranged around the metalanguage Ecore6—are utilised to construct, modify
and annotate metamodels.

6 Ecore implements the OMG’s EMOF standard [24]



Fig. 18. Overview of the Reuseware Development Kit (CoMoGen) architecture

Next, CoMoGen interacts with other EMF-based metamodeling tools that provide
metamodels and other specifications, for instance about a language’s syntax. Examples
of such tools are: Ecore metamodel editors (like the one contained in [25]), the men-
tioned GMF [16] or tools for defining textual syntax (like EMFTextEdit [26]).

Our implementation then offers facilities to define composition systems (e.g., an ed-
itor for the reuse extension language) and the component model generator itself, which
modifies Ecore metamodels following the algorithm from Sect. 4.2 and adds annota-
tions with OCL expressions to the metamodels using Ecore’s annotation mechanism.

5.2 CoCoNut: The Reuseware Runtime

CoCoNut, the Composition Core Runtime, implements the composition algorithm and
provides tooling to define concrete model compositions. Due to the language indepen-
dence of our approach, the tooling, which is based on the language-independent con-
cepts only, can be reused in any composition system defined with Reuseware.

The CoCoNut architecture is shown in Figure 19. Again we use EMF’s model re-
source management and Ecore-based model manipulation facilities to load, save and
compose model fragments. On top of this, CoCoNut implements an extended resource
management which explicitly knows about model fragments. This means that it can
identify fragments by unique identifiers and can present them—for instance in a frag-
ment browser—by showing only their composition interfaces. Furthermore, CoCoNut
includes composition program development tools like the editor presented in Sect. 4.2.
The composition engine implements the composition algorithm described in Sect. 4.3
by using EMF facilities to copy and compose fragments in-memory.



Fig. 19. Overview of the Reuseware Runtime (CoCoNut) architecture

All components of CoCoNut are aware of the concepts of our composition ap-
proach. They know that a certain element of a model fragment belongs to the fragment’s
composition interface by inspecting its metaclass and evaluating OCL expressions an-
notated to the fragment’s metamodel. Thus, a new composition system can be plugged
into CoCoNut by providing a metamodel that has been extended and annotated by Co-
MoGen. No additional implementation effort is required.

Latest information about the Reuseware Composition Framework and the available
tooling can be found on the Reuseware website [12].

6 Examples

In this section we take up the examples introduced in Sect. 2. For each example, we
will demonstrate how the language extension (cf. Sect. 4.2) is performed to make the
applied modelling language a suitable component description language. Next, we show
how the composition interfaces for the example components are defined and discuss the
composition programs producing the desired results. Then, we briefly look at possible
variations of the composition programs to highlight the advantages of using fragment
model components rather than monolithic models.

6.1 Implementation of a Simple Business Process Extension System

To extend the UML activity diagram language we perform only semantic extensions to
maintain tool support. However, to give the fragment developer control over defining
addressable points, we apply a small UML profile and use semantic extensions to map



(1) hook extension: ActivityNode
isAddressablePoint self = self.activity.node–>any (true)
portNameExpression self.activity.name.concat(’ExtensionPoint’)
(2) prototype extension: ActivityNode
isAddressablePoint self.getAppliedStereotype(’reuseuml::Slot’).oclIsUndefined()
portNameExpression self.activity.name.concat(’Definition’)
groupNameExpression self.activity.name
(3) hook extension: ActivityEdge
isAddressablePoint self = self.activity.edge–>any (true)
portNameExpression self.activity.name.concat(’ExtensionPoint’)
(4) prototype extension: ActivityEdge
isAddressablePoint true
portNameExpression self.activity.nam.concat(’Definition’)
groupNameExpression self.activity.name
(5) slot extension: ActivityNode
isAddressablePoint not self.getAppliedStereotype(’reuseuml::Slot’).oclIsUndefined()

portNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Slot’), ’portName’)

groupNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Slot’), ’groupName’)

pointNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Slot’), ’pointName’)

(6) anchor extension: ActivityNode
isAddressablePoint not self.getAppliedStereotype(’reuseuml::Anchor’).oclIsUndefined()

portNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Anchor’),’portName’)

groupNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Anchor’),’groupName’)

pointNameExpression self.getValue(self.getAppliedStereotype(’reuseuml::Anchor’),’pointName’)

Table 1. Semantic UML language extension in the following format: (ref. number) (type of vari-
ation point) extension: (metaclass)

applied stereotypes to addressable points. The profile (reuseuml) is tailored for the ac-
tivity diagram scenario and simplistic: it defines two stereotypes Anchor and Slot each
with the tagged values portName, groupName, and pointName.

Table 1 enumerates all semantic extensions we defined. In (1) and (3) we define that
each activity offers an implicit extension point: one of the nodes (edges) is, in addition
to its native semantics, also a hook. We group them together into a port named after
the activity’s name such that they appear as a single extension point for the activity (a
receiving port). In (2) and (4) all elements contained in an activity (i.e., its nodes and
edges) are identified as prototypes and associated with a port named after the activity’s
name. Only nodes that have the Slot stereotype applied are ignored here. At last, (5) and
(6) define that nodes with a Slot (or Anchor) stereotype are treated as slots (or anchors
respectively). The properties of the addressable point are derived from the tagged values
of the stereotype application.7

7 The operation self.getValue(stereotypeApplication, ’taggedValue’) can be used in the Eclipse
UML2 [27] implementation, which we use in our tool, to obtain a tagged value of an applied
stereotype.



<<reuseuml::Anchor>> checkFork : ForkNode
portName CheckActivity
pointName IN
groupName
<<reuseuml::Anchor>> checkJoin : JoinNode
portName CheckActivity
pointName OUT YES
groupName
<<reuseuml::Anchor>> checkMerge : MergeNode
portName CheckActivity
pointName OUT NO
groupName

Table 2. Anchor stereotype applications on the process order model (cf. Fig. 1) in the following
format: << (stereotype) >> (targeted model element) : (metaclass)

<<reuseuml::Slot>> InitialNodeCREDIT : InitalNode
portName CheckActivity
pointName IN
groupName CreditCardCheck
<<reuseuml::Slot>> FINISH : FinalNode
portName CheckActivity
pointName OUT YES
groupName CreditCardCheck
<<reuseuml::Slot>> CANCEL : FinalNode
portName CheckActivity
pointName OUT NO
groupName CreditCardCheck

Table 3. Slot stereotype applications on the credit card check model (cf. Fig. 2)

We are now ready to prepare the order processing model from Fig. 1 and the credit
card check model from Fig. 2 for composition. The order processing model now implic-
itly offers a receiving port OrderProcessingExtensionPoint (cf. (1) and (3) in Table 1).
Additionally, the checkFork, checkJoin, and checkMerge nodes should be addressable to
connect additional check activities to them. We do that by applying stereotypes to these
nodes and setting the tagged values portName and pointName as shown in Table 2.

The credit card check model implicitly exports its content—that is its two actions
and all control flows—to a contributing port CreditCardCheckDefinition (cf. (2) and (4)
in Table 1). To connect the edges correctly to the nodes of the order processing model
later, we apply the slot stereotype on the initial and final nodes of the credit card check
model. We add them to the CreditCardCheck group and give them the same point names
(cf. Table 3) as used for the anchors (cf. Table 2) in the order processing model. This
enables the composition engine to match the anchors and slots as desired.



Fig. 20. The composition program to compose the order process and the credit card check

We now load the fragments into the composition program editor that displays their
composition interfaces only. In the composition program, we link the contributing port
CreditCardCheckDefinition with the receiving port OrderProcessExtensionPoint and
the two configuring ports CreditCardCheck and CheckActivitiesExtension. The two
links are assigned to the step ActivityComposition. When we execute the composition
program using our implementation of the composition technique from Sect. 4.3, we
obtain a composed model as shown in Fig. 3.

This example has demonstrated how a system for the desired activity diagram com-
position can be defined. With this system similar activity extensions and variations can
be defined and executed. For instance, imagine a scenario where a large set of check
activities that all declare a contributing port with an IN, an OUT YES, and an OUT NO
slot (i.e., offer a similar composition interface) are available in a library. There might
be checks related to software products (CheckSW*.uml) and checks related to hard-
ware products (CheckHW*.uml). Companies want to incorporate checks according to
the products they sell into their ordering process. We can use a fragment query to tailor
the process by selecting a set of activities and composing them into the ordering pro-
cess. By varying the query, we can adjust the defined system to the customer’s needs:
CheckSW*.uml for a software selling company, CheckHW*.uml for a hardware selling
company, and Check*.uml for a company selling both.

6.2 Implementation of a Modular Ship and Cargo Distribution System

To add modularisation to the TaiPan language, we also use syntactic extensions. This
is possible because the tooling is generated with GMF and can be regenerated and
extended. Nevertheless, we also define some semantic metaclass extensions to introduce
a default composition interface for certain model components.

Table 4 enumerates all extensions performed. Extensions (1), (4), and (6) are defined
to make an aquatory model component extensible. Note that these are all semantic ex-
tensions that define hooks (to put ships into the aquatory) and anchors (to enable ships
to address ports and routes). Thus, they define a default (or implicit) interface for aqua-



(1) hook extension: Ship
isAddressablePoint self = self.aquatory.ships–>any (true)
portNameExpression ’shipExtension’
(2) prototype extension: Ship
isAddressablePoint true
groupNameExpression flotilla
portNameExpression ships
(3) slot extension: Port
syntactic extension
(4) anchor extension: Port
isAddressablePoint true
portNameExpression self.location.concat(’Port’)
(5) slot extension: Route
syntactic extension
(6) anchor extension: Route
isAddressablePoint true
portNameExpression self.description
(7) hook extension: LargeItem
syntactic extension
(8) prototype extension: LargeItem
isAddressablePoint true
portNameExpression self.article

Table 4. Taipan language extension

tory models and save the developer of such models the effort of defining each hook and
anchor explicitly. Still, the developer should be aware of the existence of the default
interface which he can always inspect in our composition program editor. All the syn-
tactic extensions—(3), (5), and (7)—are intended for the developers of flotilla model
components. They can use slots for the ports and routes of ships. Inside the cargo bays
of ships they can define hooks for large items. Additionally, extension (2) will automat-
ically export each individual ship to the composition interface. Extension (8) defines all
large items in cargo model components to be prototypes such that they can be addressed
for composition with flotilla models.

The port and cargo models (cf. Fig. 5 and Fig. 7) do not require any further editing,
because they only offer a default interface. The flotilla is extended with defined slots
and hooks. We extended the TaiPan graphical editor to support the declaration of these
elements and used them in Fig. 21.8

Figure 22 displays the composition program that composes the example aquatory,
flotilla, and cargo model components into a single TaiPan model as shown in Fig. 4. The
composition is separated into three independent composition steps that are executed

8 This was a surprisingly easy task, because the editor was generated from a very abstract model
(called sketch model in GMF) that assigns graphical representations to metaclasses. So we
only had to select graphics for slot and hook representations and assign them to the slot and
hook metaclasses of the reuse metamodel and then regenerate the editor.



Fig. 21. The flotilla model with slots and hooks

one after another. It demonstrates how the flotilla model first receives—through the
two composition steps CargoIntoShip1 and CargoIntoShip2—and then contributes—
through the composition step FlotillaIntoAquatory. Interpreting the composition as an
aspect-weaving, the flotilla model first plays the role of a core and then of an aspect.

We can further use aspect-oriented concepts, when we replace the flotilla model in
the example by a fragment query grouping many such models as shown in Fig. 23. As-
suming that we have a second flotilla model MyFlottillaB.taipan in our repository, the
fragment query MyFlottilla.*.taipan groups the two flotilla models MyFlottilla.taipan
and MyFlottillaB.taipan. MyFlottillaB.taipan defines an additional ship with the ports
Ship3Port, Ship3Route and Ship3Cargo. Using regular expressions, we merge the ports
from the different flotilla models as follows:

– Ship(2|3)Port merges Ship2Port and Ship3Port.
– Ship(2|3)Route merges Ship2Route and Ship3Route.
– ships merges ships from MyFlottilla.taipan and ships from MyFlottillaB.taipan.
– Ship(2|3)Cargo merges Ship2Cargo and Ship3Cargo.

Similar to distributing an aspect over a core, we load the same cargo (tobacco)
into two ships in the CargoIntoShip2+3 composition step. Through the merged ports



Fig. 22. The composition program to compose the aquatory, flotilla, and cargo model components

Fig. 23. The composition program to compose the aquatory, two flotilla, and cargo model com-
ponents by applying a fragment query

Ship(2|3)Port and Ship(2|3)Route, we ensure that the two ships get the same route and
destination assigned in the FlotillaIntoAquatory composition step.

The composition step CargoIntoShip2+3 resembles an aspect-weaving: The frag-
ment query MyFlottilla.*.taipan and the port merge Ship(2|3)Cargo quantify over a set
of core flotilla models and the tobacco cargo aspect is distributed over it in a cross-
cutting manner.

6.3 Other Examples

In this section we briefly discuss additional applications, we were and are still working
on. More details and examples can be found on the Reuseware website [12].



Class Diagram Weaving In this application we introduced aspect-oriented concepts
into Ecore (which could similarly be done for UML or other languages with a class
concept). The idea is to distinguish between core classes—which are complete classes
that offer an interface for extension—and advice classes—which define operations and
features (possibly referring other advice classes) to be reused as extensions for core
classes. Advice classes can be woven into core classes, which means that all their oper-
ations and features are injected into the core class. If an advice class has references to
other advice class, all these classes have to be bound in one composition step.

The composition system is defined in terms of semantic extensions only. To distin-
guish between core and advice classes, a name convention on the package that contains
the classes is used: a package with advice in its name contains advice, others contain
core classes. A core class has hooks for both its lists of operations and features. Addi-
tionally the class itself is an anchor. The two hooks and the anchor of each core class
are exported to a receiving port that is named like the class itself. An advice class, on
the contrary, defines two lists with prototypes—its operations and features—and itself
as a slot. The two prototype lists and the anchor of each advice class are exported to a
contributing port that is named like the class itself.

As an example, one can consider the, rather technical, aspect of a subject-observer
relationship that can be modelled in two related advice classes: Observer and Subject.
The two classes appear as contributing ports on the composition interface of the advice
fragment and can be linked individually to two classes of a core fragment in a com-
position step. A more detailed example and the complete definition of the composition
system can be found on the web.9

Weaving Java Classes As mentioned in the above application, the composition system
for class weaving can be ported to other languages that have a class concept. This is not
limited to graphical languages, but can also be done for textual languages, as long as
a proper metamodel exists (and a tool that can parse textual model definitions). We
defined such a metamodel for (a subset of) Java and then realised the class weaving
composition system for Java. We have already used this as an example in [14]. There,
we applied syntactic extension.

We modified the composition system to work with semantic extensions; similar to
the Ecore weaving system. Interestingly, we can reuse the composition programs de-
fined for Ecore fragments above for similar examples based on Java fragments, without
having to change the composition programs at all. In MDD, one can benefit from this,
for instance, in code generation: model fragments can be translated to code individu-
ally—reducing complexity of generation and keeping the separation of concerns from
the models down to the code, which is important when the code is manually modified
after generation. To integrate the code fragments one can reuse the composition pro-
gram already defined on the modelling level. This is one direction of future work, were
we investigate how our approach can help in broader MDD settings, were different lan-
guages and composition systems are involved. More information about our experiments
with Java can be found on the web.10

9 http://reuseware.org/index.php/Ecore Aspect Weaving
10 http://reuseware.org/index.php/Java
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Fig. 24. Excerpt from the metamodel of a network configuration DSL

Including Modularisation and Aspect-Orientation in a DSL under development
When a DSL is developed, our approach can be used to add modularisation capabilities
to the language and profit from our existing tools for composition definition and exe-
cution. This example demonstrates this on a DSL for network configuration. Figure 24
shows an excerpt from the metamodel: A network model consist of connections and
devices that have a configuration attached. Now, independent definition and reuse of
configurations should be supported. Hence, we add hooks and prototypes for configu-
rations; and we are done with the definition.

Networks with hooks instead of concrete configurations and configuration proto-
type fragments can now be modelled. Configurations can be bound to hooks using the
composition editor. Thanks to the support for quantification through fragment queries
and merged ports, we can also distribute one configuration over a large network model.
More details about this example can be found on the web.11

Query Modularisation A complex composition system we built based on our earlier,
grammar-based, work ([13]) is a module system for the XML query language Xcerpt
[28]. Details about this systems are published in [13] and [29]. The system extends a
language that previously included no notion of modularisation with a module system
that performs encapsulation and enables the developer to import modules and to control
the data flow between modules.

The system was not defined through concepts introduced in this paper, but uses our
previous grammar-based approach. Information about the Xcerpt module system can
also be found on the web.12

Managing Variability in Software Product Line Engineering In Software Product
Line Engineering (SPLE), one of the main challenges is expressing and managing the
variable parts in product lines. Although there already exist different variability con-
cepts and patterns, all of them are tied to a specific level of abstraction in the software
development process (e.g., models or code).

Due to its language independence and its built-in concept for expressing variability,
ISC is an interesting technique to express and manage variability on each stage of a
multi-staged software development process which we examined in a case study where
we developed a simple product line of time-sheet applications.

11 http://reuseware.org/index.php/CIM DSL Extension
12 http://xcerpt.reuseware.org/



In this case study we used Reuseware’s modularisation concepts to decompose the
variable parts of the product line on both the modelling level and code level. We cre-
ated fragments for each feature realisation and used Reuseware’s graphical composition
language to specify the composition of those variable parts of the product line with the
core. Since we aim at an automated product-instantiation process, we created a mapping
between conceptual variability models and composition steps of the composition pro-
grams using our tool FeatureMapper13 [30]. This mapping is interpreted by a dedicated
product-instantiation workbench we developed in the context of the case study, which
only executes the actual composition if the corresponding feature from the variability
model should be included in the concrete product variant.

7 Related Work

In [31], Klint et al. identify the need for an engineering approach to language develop-
ment. Our Reuseware tool, presented in this paper, can be viewed as a form of meta-
grammarware in their sense; that is, as a “software that supports concrete grammar
use cases by some means of meta-programming, generative programming or domain-
specific language implementation” [31, p. 342]. Our approach uses metamodels (which
are grammars in the sense of Klint et al., who use the term grammar in a slightly more
general sense essentially as ‘anything describing a language’) to generate composition
systems and enable the execution of compositions through model or program transfor-
mation for languages that originally did not support composition.

As Reuseware and invasive software composition have originally been developed
for textual languages, in the following, we first discuss a number of related work in the
area of textual languages before also discussing some related work in modelling. For
space reasons, neither discussion is meant to be complete, but rather to give an insight
into some of the manifold research approaches in the expanding field of grammarware
engineering. We will particularly focus on approaches in the aspect-oriented commu-
nity.

Several approaches exist that provide aspect orientation for the .NET platform and
claim that this makes their approaches language agnostic or independent. For example,
Aspect.NET [32] uses static weaving based on binary assemblies to provide AspectJ-
like AOP for .NET, Compose* [33] is an implementation of Composition Filters for
.NET. These approaches work on the level of the Common Language Infrastructure
(CLI) and hence are indeed independent of specific programming languages. At the
same time, however, working at the CLI level also means that these approaches cannot
provide language-specific modularisation concepts. Our approach works at the level of
each individual language itself. While this makes it more complicated to mix modules
of different languages, it enables us to build custom modularisation techniques for each
language.

Fractal Aspect Components (FAC) [34] is an extension of the Fractal Component
Model [35] to support Aspect-Oriented Programming. It aims at bridging the gap be-
tween Component-Based Software Engineering and Aspect-Oriented Programming.

13 http://featuremapper.org



FAC introduces several additional concepts to the Fractal Component Model to com-
pose Aspectisable Components and Aspect Components. FAC is similar to the Reuse-
ware approach, because the component model is designed in a language-independent
way. This allows for conceptual reuse within different implementations. It is, however,
also different in many ways. For example, aspect binding and composition programs do
not abstract from the implementation of the component model in FAC. With the graph-
ical fragment composition editor, the Reuseware approach provides a general-purpose
way to express compositions independently of the fragment component’s core language.

In [36], Gray and Roychoudhury present a technique for constructing aspect wea-
vers for arbitrary languages. They define an aspect weaving language (called Aspect
Domain) which can be used to define weavings for different languages. They argue that
a common superset of weaving operations can be applied to arbitrary languages, while
certain languages require specific extensions. The weaving language is comparable to
our composition language. One important difference is that Gray and Roychoudhury do
not extend languages, because their components (that is, core and advice artefacts) only
have implicit composition interfaces—which is reasonable, since they focus on legacy
systems written in existing languages—while we focus on programs and models un-
der development. Furthermore, our approach can also deal with non-textual languages
described by a metamodel.

The Mjølner System and the Beta language [37] were the first to introduce the con-
cept of slots. In Beta, any programming construct can be replaced by a slot typed with
the non-terminal corresponding to that construct. Beta also supports a notion of inheri-
tance of grammar types. Binding of slots happens when the name of a fragment and the
name of a slot in the same project match. Our approach extends the Beta approach in
two ways:

1. We introduce additional types of variation points, like anchors, hooks, and proto-
types. Additionally, we introduce the new (language-independent) abstraction of
ports that gives more control to the fragment developer when defining an interface.
The linking of ports is also an explicit operation allowing the definition and varia-
tion of composition programs, while Beta uses implicit matching of names only.

2. We extend the concept to any language that can be described by a metamodel. Dif-
ferent from Beta, our tool allows arbitrary languages to be extended with a compo-
sition system.

The Software COMPOsition SysTem (COMPOST) [38], the demonstrator system of
[11], is a predecessor of our current system, which introduced many of the concepts
available in our approach, but was limited to Java and XML. For each new language
that should be supported by COMPOST a large amount of implementation work is
required. In [13] we introduced the first version of the Reuseware system which was
capable of extending grammar-based textual languages and performing compositions of
syntax trees, without the requirement for manual implementations. We took first steps in
extending these concepts towards metamodel-based (possibly graphical) languages in
[14]. There, we introduced the concept of fragment queries but did not elaborate on the
details of metamodel extension or the composition algorithm. Novel in the current work
are also the concepts of ports, composition links, and composition steps, which were not



required in the syntax-tree composition approach ([13]) and were not yet applied in the
compositions presented in [14].

Our notion of fragment components is comparable to the notion of syntactic units
presented in [39]. Syntactic units are arranged in syntactic unit trees that can be likened
to composition programs. In this approach, so-called extension spots can be defined as
alternatives for any fragment of code derivable from a non-terminal. Compared to our
approach, there is no formalisation of language extensions which allows for tailored
extension of a language (to only allow the desired amount of variability) and generation
of language-specific tooling.

In the area of model-based approaches, Model Weaving is strongly related to the
work presented in this paper. It allows for combining two or more models to form a
composed or woven model. AMW, the Atlas Model Weaver [40] is a tool that allows
generating model transformations based on a so-called Weaving Model. The Weaving
Model consists of links between two or more models that are used to generate model
transformations and model weavings.

Another approach to model weaving presented in [9] by Heidenreich and Loch-
mann stems from Product-Line Engineering and provides means to express Aspectual
Features in separate models which are woven into a core model according to the fea-
ture selection of the product line. The authors are using graph-rewrite systems to weave
the Aspectual Features to the core model. This idea was adopted in the design of the
XWeave [41] tool by Groher and Völter. XWeave is integrated in the openArchitec-
tureWare tool chain and uses name correspondence and regular expressions for model
weaving as our composition language does.

However, the work presented in this paper goes beyond existing model weaving. It
unifies weaving and composition operations on both model and text artefacts through
the general concepts of addressable points and fragment queries.

The Generic Modeling Environment (GME) [42, 43] offers generic means to build
UML-based DSMLs and also allows for defining concrete syntax for those languages. It
supports partitioning of models according to aspects that are defined on the metamodel
level. While this increases understandability and maintainability of complex models, it
does not address the issue of reusability of language modules, the goal of Reuseware.
In [44], the authors introduce the concept of metamodel composition to GME where
existing language modules and newly developed languages can be composed by dedi-
cated composition operators. This fosters reuse of modularisation techniques which is
the driving force behind our work. Compared with the Reuseware approach, metamodel
composition as presented within GME does not allow for language-agnostic interpreta-
tion of the reused language modules.

Many aspect-oriented approaches to modelling have been developed, most of which
are specific to one particular modelling language. A large number of these approaches
is inspired by aspect technology as introduced in the area of AOP—for example, [7]
presents an approach to aspect-orientation for state machines that is closely inspired
by AspectJ technology. At the same time, approaches are beginning to appear that
show composition techniques differing from aspect-oriented ideas. For example, in
[10], Whittle et al. present an approach that uses pattern matching on state-machine
concrete syntax and graph transformation to describe aspects on state machines.



[45, and references therein] presents a generic framework for composing different
views on a model. The approach distinguished a matching and a merging phase. The
matching phase determines which model elements in two models should be merged to-
gether, while the merging phase performs the actual merging. Merging is implemented
in a completely language-independent fashion. Matching is language dependent and the
match rules must, therefore, be provided in a specialisation of the framework. However,
the framework defines an interface for the match rules, which is, to our understanding,
based on matching metaclasses and signatures. Our approach can also be seen to distin-
guish a matching and a merging phase. However, both phases are expressed language-
independently by composition diagrams in our composition description language. Spe-
cialisation to specific languages is only necessary to identify how addressable points
etc. can be expressed for model components. In our approach, matching must be done
for each composition individually. In contrast, [45] use matching rules that are defined
once for a specific language and then applied to multiple combinations of models. We
are planning, however, to extend the approach presented in this paper to support con-
cepts similar to such matching rules. For textual languages we have already presented
such an approach in [46] under the name of a light-weight dedicated composition system
(LWDCS).

C-SAW [47] is a general model transformation tool that also supports some form
of aspect-oriented modelling independently of the specific modelling language. Devel-
opers write so-called aspects or strategies, model transformations expressed in the Em-
bedded Constraint Language (ECL), querying for a number of model elements and then
modifying these. Reuseware also is based on model transformation. However, the col-
lection of model elements to be transformed is encapsulated in an explicit construct—
the model fragment—rather than implicitly represented in a query inside the composi-
tion program.

8 Conclusions and Outlook

Modularising models is becoming increasingly important, especially due to the fact that
model-driven development approaches are requiring richer and more complex models
to be constructed. Not only are models growing in complexity and becoming harder
to overview, but many different modelling languages—domain-specific modelling lan-
guages—are being developed alongside general-purpose ones such as UML. As we
have demonstrated with use-cases for both kinds of languages, it is important to be able
to construct larger models from smaller and better understood ones. The first use-case
concerned the modularisation of UML activity diagrams, while the second use-case
described how models of a domain-specific language (called TaiPan) can be split into
different concerns. We have in this paper presented a language-independent approach
to enable component-oriented thinking and development for modelling languages.

We proposed two ways of extending modelling languages with component capabil-
ities. The first involves an extension of the underlying modelling language’s metamodel
in order to define components’ interfaces, while the second can extract such interfaces
implicitly. Avoiding metamodel extension has the benefit that already developed editors
and tools will not break. However, for certain domain-specific modelling languages an



extension of the language metamodel can make sense and be an easier approach, as we
have demonstrated on the TaiPan modelling language. Hence, both approaches can be
useful depending on the particulars of the addressed language and the desired modular-
isation.

We would not have been able to reach our solution without implementing the ideas
and applying them on examples. Our current implementation [12] is based on the
Eclipse Modeling Framework and offers GUI tooling as plug-ins for the Eclipse plat-
form. The main components of our tool are the graphical composition program editor
presented and a fragment management system that extends the general resource man-
agement of the Eclipse Modeling Framework [23]. Because of the integrated Eclipse
platform [21], on which many modelling tools are based, our tool can directly inter-
act with tooling of the used component description languages. These tools are used to
define fragments and view composition results. In the examples, for instance, we used
the TOPCASED UML Editor [25] and the TaiPan editor. The importance of provid-
ing such a tool should not be underestimated for future research: It enables us to do
case-studies more quickly and the good integration with existing modelling tools may
improve acceptance in the community.

For the future we plan to do further case-studies to clarify the open questions of what
additional matching concepts are needed in composition program definitions to match
the ports of composition links and in fragment queries. This issue is also related to the
concepts of complex composition operators, which we introduced as means to define
composition systems for grammar-based languages [46, 13]. Such operators allow for
the grouping of several composition operations that work together on a set of fragments
and variation points. This grouping is similar to the grouping of addressable points
into ports but defines the binding between variation and reference points explicitly. We
believe that both concepts can be unified and that complex composition operators can
be translated into composition programs of the approach presented in this paper. Doing
this would unite our grammar-based and our metamodel-based approaches.

In the future we will formalise our composition technique which we described in
this paper and implemented in the tool. This will give a formal definition of what a valid
and what an invalid composition program is and will enable an analysis of the limits of
our approach.

We also see potential in applying our approach in a larger model-driven develop-
ment process, where different languages are utilised. We believe our approach will
show its advantages in such a scenario, that is, where modularisation issues of all in-
volved languages can be solved with a common base component model and a language-
independent composition description language. In general it becomes easier to relate
artefacts even when they are written in different languages, because they share certain
parts of their component models. Composition programs can, for instance, be reused at
different abstraction levels of an MDD process, where only details, but not the archi-
tecture, of a system change. We took a first step in this direction in [14] where we used
the same composition program to compose UML and Java fragments.
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sium on Software Composition (SC’06). Volume 4089 of LNCS., Vienna, Austria, Springer
(March 2006)



35. The Fractal Project Team: The Fractal Project (April 2008) URL
http://fractal.objectweb.org/.

36. Gray, J., Roychoudhury, S.: A technique for constructing aspect weavers using a program
transformation engine. In Murphy, G.C., Lieberherr, K.J., eds.: 3rd International Conference
on Aspect-Oriented Software Development (AOSD’04), Lancaster, UK, ACM Press (March
2004) 36–45

37. Madsen, O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming in the
BETA Programming Language. Addison-Wesley, Reading, MA, USA (June 1993)

38. The COMPOST Consortium: The COMPOST system (April 2008) URL http://www.the-
compost-system.org.

39. Majkut, M., Franczyk, B.: Generation of implementations for the model driven architecture
with syntactic unit trees. In Crocker, R., Jr., G.L.S., eds.: 2nd Workshop Generative Tech-
niques in the context of MDA co-located with OOPSLA 2003, Anaheim, CA, USA, Online
Proc. (October 2003)

40. The AMW Project Team: Atlas Model Weaver (April 2008) URL
http://eclipse.org/gmt/amw/.

41. Groher, I., Völter, M.: XWeave: Models and aspects in concert. [5] URL: http://www.aspect-
modeling.org/aosd07/.

42. Vanderbilt University, Institute for Software Integrated Systems: GME: The Generic Mod-
eling Environment. http://www.isis.vanderbilt.edu/Projects/gme/ (2008)

43. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The generic modeling environment. Technical report, Vanderbilt
University, Institute for Software Integrated Systems, Nashville, TN, USA (2000)

44. Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., Maroti, M.: On metamodel composi-
tion. In: IEEE International Conference on Control Applications 2001 (CCA’01), Mexico
City, Mexico (September 2001) 756–760

45. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach for automatic model
composition. [6] URL http://www.aspect-modeling.org/models07/.

46. Henriksson, J., Aßmann, U., Heidenreich, F., Johannes, J., Zschaler, S.: How dark should
a component black box be? The Reuseware Answer. In Weck, W., Reussner, R., Szyper-
ski, C., eds.: 12th International Workshop on Component-Oriented Programming (WCOP)
co-located with 21st European Conference on Object-Oriented Programming (ECOOP’07).
Volume 4906 of LNCS., Berlin, Germany (July 2007)

47. Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engineering. IEEE
Computer 39(2) (February 2006) 51–58

48. Engels, G., Opdyke, B., Schmidt, D.C., Weil, F., eds.: 10th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’07). Volume 4735 of LNCS.,
Springer (October 2007)


