How dark should a component black-box be?
The Reuseware Answer

Jakob Henriksson and Florian Heidenreich and Jendrik Johannes and Steffen Zschaler and Uwe ARmann
Technische Universit Dresden
Email: {jakob.henrikssdflorian.heidenreicliendrik.johannesteffen.zschalénwe.assmanr@tu-dresden.de

Short answerJet-black with plenty of holes, some of which The second reason is related to our desire to reuse existing
are not visible to everyone. tools for the different languages. To achieve this, all referenced
components need to be composed before applying the tools.

As the tools are assumed to not have a prior understanding

I. INTRODUCTION of components (in the fragment-based sense of the word),

they do not understand the need for their restricted interac-
The Software Technology Group at TU Dresden has loqg, (essential for proper component encapsulation). For this

experience with component-based software development aadson the components needs toopened upsuch that their
techniques. For a recent addition to the public debate, Sagyractions castaticallybe ensured in the composition result.
the book entitledinvasive Software Compositiof]. Cur- again, this is not an idea supported by black-box component
rently, the group is involved in projects (e.g. European NoE,yironments, but possible in composition systems based on
REWERSE, IP ModelPlex, feasiPLe etc.) addressing COMAGey-hox approaches.
sition for declarative languagesMore precisely, Ianguages For some general-purpose languages (e.g. C++, C#, Java),
important for the development of the Semantic Web and mponents can be described on different abstraction-levels—
software modeling are addressed. Such languages includgher as run-time entities or as static source-code snippets
for example, rule languages (Xcerpt, R2ML), Web quenys qone for aspects in Java). But for most languages used
languages (XQuery), ontology languages (OWL, NOtat"’”%? software modeling or on the Semantic Web we do not
and general modeling languages (MOF, UML, Ecore). Tave much choice. Thus, for the languages in these important
enable component-based development for such languagesiifis, components necessarily consist of source artifacts—
composition frameworkReuseware is being developed [3], snippets of descriptions—which can play roles in more com-
both as a conceptual framework and as a tool. plex, complete, coherent and usable descriptions or declarative
Szyperski [4] defines a software component as follows: programs. However, one should take care not to meddle
"A software component is a unit of composition with one of the most powerful notions in component-based
with contractually specified interfaces and explicit developmentthe power of abstractianThus, it is of utmost
context dependencies only. A software component importance to properly encapsulate components—hide their
can be deployed independently and is subject to details—and to access them wvigll-defined composition in-
composition by third parties.” [4] terfaces Here, again, we are in line with Szyperski's definition

This definition calls for components to be black-box conffom above: All access to the component should occur through
ponents where no information can be inferred beyond tMeell-defined interfaces, all dependencies should be explicit.
explicitly specified interfaces of the component. Such affe shall return to the issue of interfaces shortly.
approach enforces strong encapsulation and is very useful foPur work has its roots in Invasive Software Composition
reuse of components by third parties as these third parties n€&f) [1]. ISC takes a grey-box composition approach where
only rely on the—relatively litle—information provided in thecomponents, ofragments are static source-code entities with
interface specifications. well-defined interfaces using the notiontofoks A hook is a

For declarative languages, a pure black-box approach canl@ggtion in a component which may effectively be replaced by
always be taken. We currently see two reasons for this. Firgfiother component, thus, composed. As such, the hooks of a
not all declarative languages describe processing entities (€@nponent define its interface. The replacement of a hook with
ontology languages). As such, there is not even a notiSRMe existing component constitutes the basic composition
of well-defined inputs and outputs to interface componentgchnique of ISC. One of the conclusions from work on
which is an assumption made for black-boxes. Thus, a differd®C was the identification of a set @fimitive composition
composition paradigm is needed to address certain declaraff@@ratorsimplementing the described composition technique.
|anguages_ We argue that the grey_box and fragment_baa-é‘{p of the identified primitive Composition operators aiad

component paradigm is more suited for these languages. andextend wherebind replaces a hook with some component
once andextend possibly multiple times. The composition

Lhitp://www.reuseware.org technique and operators defined for ISC are very general

Long answer:

and applicable to many different languages and situations.ekpressing what they should). Furthermore, a LWDCS is type-

should be noted that ISC is able to realize existing compositisafe, ensuring that resulting descriptions (programs) are (syn-

approaches and techniques, such as aspect-orientation, viaetically) valid with respect to the underlying core language.

based programming, hyperspaces etc. Ensuring semantically correct results is also possible, but not
Our experience with ISC and component-based develdpfther discussed here.

ment for declarative languages has refined our requirements

for composition interfaces. Most importantly, we argue that Light-weight dedicated composition system (LWDCS)

components for declarative languages shall indeed be greypy,oyeq | | D6 components Compose programs
boxes, but with tailored anckfined composition interfacd® Abstraction sisisls
o Level P2

answer the call from Ianguagt'a-.speuflc needs and language- Pi 2] Composition
specifically developed composition operators. layer

_ |

v
Il. DEDICATED COMPOSITION SYSTEMS AND (corelanguage }--{ Tools Core layer
ENVIRONMENTS
Many domain-specific languages in software modeling and Programs Output

on the Semantic Web do not provide sufficient constructs for

defining reusable entities—components. Many languages m@ 1. A light-weight composition system can be layered on top of a
have some form of abstraction and reuse idea, but it is Oﬁ@ngyage and its associ_ated tools to i_mprove and add the level of abstraction
limited, inflexible and most of all—fixed. For example, rule'orovIOIed by the underlying language tself.

languages on the Semantic Web often allow rule chaining;

the possibility of sequencing rules in different chains of A composition system can be seen as a triple consisting
computations. As such, the notion of thae is the level of of: a component modeh composition languageand acom-
reuse made possible by the language itself. No other entitjgssition techniqug1]. We argue that a LWDCS should be
are reusable; there is no other level alfstraction That is, constructed as a refinement of a generic composition system,
the set of abstractions provided by the language is fixeghere the triple comprising the system is specialized for
Thus, once the language has been designed and its relevagttask at hand—indeed tailored (see Figure 2). As can be
tools have been developed, the language as such is vesgn from Figure 2, the dedicated composition language is
inflexible to be changed for new abstractions. It should kelapted for the specialized task and refined from a more
noted that the expressiveness provided by languages is usugéyieral-purpose language. Furthermore, the dedicated compo-
adequate, since the languages certainly were developed agaiast model references ampper-level component modehere
use-cases and specific requirements. We exploit the fact thgheral composition system concepts are modeled. Finally,
appropriate expressiveness is provided for by reusing existingtead of including a general composition technique and
tools developed for the different languages when processiggneric operators in the dedicated composition system, it is
the composition results. However, we will address the issghipped with a set of predefined, specialized, composition
that a flexible level of abstraction is not to be found. operators.

We argue that instead of redesigning an individual language,The most important detail to notice in Figure 2 in order to
additional levels of abstraction, and thus reuse, can be providatswer the question about the desired darkness of components
via composition We propose to layer Bght-weight dedicated is the relationship between the set of dedicated operators and
composition systefLWDCSY on top of a targetedore lan- the dedicated component model. The detail to notice is that the
guageand its tools (see Figure 1) to provide richer abstractioe®@mponent model, which effectively determines the darkness
and allow programmers to think about their programs in nepf the components used in a composition system, heavily
and interesting ways. The composition system is dedicatédpends on the specific composition operators included in the
because it addresses issues for a single targeted language | ®idCS. We shall return to this issue with a more detailed
light-weight since once developed and deployed it is assumgigcussion in Section V. First, before describing our notion
to be operable without its users directly being aware of it. Thf refined composition interfaces, we will briefly describe how
LWDCS injects a core language with additional constructs, dedicated composition system may be semi-automatically
giving users the possibility to define reusable components ageherated. In particular, how a component model may be
to compose them in desired ways, all tailored for the need @drived from a core language.
hand. The LWDCS is responsible for interpreting the newly
introduced constructs and for composing specified components
into programs or descriptions of the core language. Thus,We intend to build upon the language-independent composi-
the existing and already developed tools are reused and 98 technique introduced in ISC. This means that components
semantics of the core language is appropriately retained {88y contain hooks that can be replaced by other components.

mentioned, we deem the core languages already capable/§frefer to these positions in components by the more general
term variation points Thus, the variation points declared in

2pronouncedow-deezepl. LWDCSs (ow-deezes components define the components’ interfaces. From these

I1l. GENERATED COMPONENT MODELS

Dictates requirements Upper-level component model

Variation k— Slot
Point

Generate | AheRile | 00 NmmmmmmmmmmmmmmmmmemReees
Component model
——

Dedicated Refined Dedicated Dedicated
composition language Comp. model operators

system

Refines ; Inherits Use

A 4 A 4

Generic
composition Composition Upper-level Composition
language Comp. model technique

system @ ()

. . . . o Fig. 3. The abstract syntax description of a simple rule language on the
Fig. 2. A dedicated composition system is a specialization of & genefigi_hand-side can be extended into the abstract syntax description on the

composition system where the tailored composition operators addressingy.hand-side to allow programs to be underspecified with unknown rules,
particular issues in a declarative language dictate the form and detail of {§&,e composed into the program at a later point.

dedicated component model and thus, the components’ interfaces.

requirements, one can automatically generate a compon_ent‘F.

model from acore languagedescription (grammar or mode|'" T'gure 2). This is ber!eflmal since the basic technolt_)gy
based) [3]. Figure 3 (a) shows a simple (partial) model es not have to be reimplemented for.each composition
some rule language. The model states that programs of pystem gnd targeted Iapguage. However, in order' to support
rule language consist of one or more rules, which in turn aggd realize the appropriate kinds of reuse abstractions, differ-

composed from a head and a body (what they are in detail languages require special-purpose composition operators.
been left out here) us, it is desirable that the dedicated composition operators

Assume the simple case that we want to be able to wrfgéee?;tg?sedig tlee rrwjn?:ﬁth?:}s’ riﬁse?élth(?o?r?n:)lgxsjgortzgﬁilitlzg
rule programs in our rule language where certain rules R P 9 9 P q

not explicitly given, but leftunspecified(the program as ‘fjlafl:’soenece':Itg il;rgeii)r.egl;(r)trhc(iai;frgtr)e:(nai IgnausapeegﬂEsirr?u?ﬁeigsr::z[;os?c
whole is underspecified The underspecified program is a P) " guages, 9

. . . S ._and underlying composition technique is again advantageous
component with an interface, given by the variation pom%

programmed into the component. In order to be able to decl 7 practical reasons. Examples of reuse concepts not limited

variation points we inject the core language with constructs f c%ea esxﬁ:?fécegi?g;fa?heei?re uToodsueleZn?jn?]oaviptizts I((;d(l)irt?gatr:éng
this purpose. This modification can be seen in Figure 3 (purp y

The concept of the rule has here been madegable Rule pecific languages).

programs may now consist of normal rules (concBpie As our work extends that of ISC, which provides a very
in Figure 3 (b)) and ruleslots (conceptRuleSlot in Fig- general composition technique, we aim at reusing this tech-
ure 3 (b)). The abstract super-concéfisRule is introduced nique and its primitive composition operators for creating
to represent this choice. 8lot , as can be seen in the uppertWDCSs. While a single operation of a primitive operator
level component model is a kind of variation point. Here ibnly can describe dow-level composition step, a properly

is assumed that a slot has some concrete syntax such thefined sequence of such primitive composition operators can
variation points can explicitly be declared in components. Tlaehieve a more advanced desired effect on a set of fragments—
model in Figure 3 (b) properly describes what our simple high-level composition step. If such a high-level sequence
rule components look like and defines how the compositias found useful for different fragments, one would like to
technique is allowed to modify the components (by replacifge able to encapsulate the sequence as a single reusable
variation points with other suitable components). The ongtomic composition operator. We call such an operator a
access points to the components are the declared variatomplex composition operatofhus, a complex composition
points (expressed using slots), everything else is propedperator is able to encapsulate and realin®@-obvious reuse
encapsulated. As such, the derived language model in Fapstraction This notion gives us the possibility to develop
ure 3 (b), along with references to the upper-level compondahguage-tailored composition operators to be included in
model, is the component model for our simple components.LVDCSs.

is possible to automate such transformations. One thing to notice about complex composition operators

is that they may not only encapsulate a sequence of primitive
operators, but also components. That is, some composition
operators may require internal components, needed for the re-

It is useful to be able to reuse common compositioalization of the (abstraction) construct they are implementing.
techniques across different dedicated composition systeSisch components are not visible, or indeed known, to pro-
targeting different languages (see relationship between fipams using the operators; they are completely encapsulated
generic composition technique and the dedicated operatwiithin the operator definitions.

IV. REFINED AND CONTROLLED COMPOSITION
INTERFACES

Language: Xcerpt Lot one must ensure that inappropriate rule dependencies do not
occur when programs and modules are merged before being
executed. That is, programs should only have access to certain
rules in imported modules, and vice versa. This encapsulation
can be realized by transforming the heads and bodies of
P UOUPPRR Pl JUUSPTRY SRS S g SN the rUleS Of the imported module in appropriate WayS. The
From generic g deta}ils are left (_)ut since_ it i; not releva_nt exactly how this is
composition system bind extend realized. What is clear is this: If rules in modules are to be
transformed in some way at composition time, the way they
are transformed, and thaecessed by composition operators

Fig. 4. Complex and dedicated composition operators for a dedicatBdust properly be reflected in the relevant component model.

composition system are defined in terms of general composition operators and
techniques from invasive software composition. The operators to-module() and
import() address specific issues in the core language Xcerpt. %

import()

Setof dedicated to-module()
composition '
operators for
language Xcerpt

Refined Language
(Modular Xcerpt)

Component User)
A. Example — Modules for the Web Query Language Xcerp_t___p_ _________________________ i__l __________ black-box view

rey-box view
We have practical experience with targeting and building o
a LWDCS for the Web query language Xcerpt [2]. Xcerpt is

Modularization

Core language
(Xcerpt)

a powerful rule-based language following the logic program- Concepts

ming paradigm for querying different kinds of semi-structured v

data. An Xcerpt program consists of a finite set of rules. What o i <<implemented in>>
Composition v

differentiates Xcerpt from some other well-known We_b QUENYstem Developer Composition | _____ [Upper-tevel
languages, e.g. XQuery, is that Xcerpt programs (i.e. their Language &> Component Model
rules) have a clear separation between data query parts and
data construct parts. As in other logic programming Ianguag?:_s, 5 The Useand theC iion S Devel

H . O eComponent Useand theComposition System Developare
Xcerpt rules COﬂSI_St ,Of a head and, a pOdy' The quy_of rking with different parts of the composition system and have different
rule can match existing data, resulting in variable binding&ews on the system.
The variable bindings produced by successful matching of the

body of a rule can then be applied to the head of the rule in))
order to derive new data. As such, the rule bodies represenf© understand the requirements of the component model, it

the queries and the rule heads the construct parts. |s.helpful to distinguish two differ_ept roles—or view-points—
An identified and desired (but so far lacking) abstractioffith respect to a LWDCS (containing the component model).
for Xcerpt was the notion of Xcerpmodules(much in the Figure 5 illustrates these different view-points.
style of other logic programming systems). An Xcerpt module 1) Component user roleUsers of the above-described
consists of a set of rules, which can be imported and reused Xcerpt module system only want to be able to define (en-
in different programs. A good example of a useful module is capsulated) modules and import already existing ones.
a set of rules able to perform simple reasoning on ontology = The constructs for doing so should appear to be first-
documents (e.g. OWL). An example of such reasoning is class constructs of the core language rather than added

to derive implicit subclass-of relationships from explicitly composition operators. As such, one should not require
declared class-hierarchies. the module programmers and users to define precisely

As a module consists of a set of rules, they should all how and where their modules must be transformed dur-
be included in the importing program at composition-time, ing composition. That is, they should not be required to

such that they are available to the Xcerpt interpreter when the describe how the underlying encapsulated composition
composition result is executed. However, properly realizing operators realize the module system and, thus, access
the module system is more subtle and complicated than just the modules (components).

executing the merger of different rule-sets. Since a module2) Composition system developer rolehe composition
from our point of view is acomponentcertain parts of the system seen from the view of the system developer is
module should be able to be encapsulated. From a usage however much different. The system developer cannot
perspective, a module can almost be seen as a black-box with assume the black-box view of the users, but rather
aninput rule and aroutputrule. The input rule is passed data a grey-box viewin line with our arguments of this

to process (possibly constructing intermediate results for rules necessity for declarative languages. The system devel-
encapsulated in the module) and eventually data to be used by oper must develop the complex composition operators
the importing program is constructed by the output rule. At responsible for realizing the module system and provide
the level of composition, however, we cannot consider modules an appropriate component model reflecting the intended
as black-boxes. In order to allow modules to be encapsulated, interfaces of the components. We recall from Section |

the argument for the need to ensure proper componeatgeted composition system dictates the form of the associated
interactions statically. Hence, the componeatisieed to component model, that is, how components look and interact
be opened up in the deployment of the module systefsee Figure 2).
and this responsibility lies on the composition system In a similar fashion one can identify needed abstractions
developer. for other declarative languages. Instead of re-designing the
To support these different roles—considered attractive ftinguage and its tools one can realize the abstraction by
the users—the development of the specific composition dpiplementing the necessary additional constructs as complex
erators and the composition system as a whole dictate e@mposition operators in a LWDCS and generate an appropri-
quirements for the component model. We therefore need ate and tailored component model with thgpropriate shade
transform the core language model in a slightly different wagf darkness
(Figure 6) as to what was done in Figure 3. As can be seen
in Figure 6 (b), in place of the head construct we introduce)
a head variation pointHeadVP), which forms part of the [N this paper we have presented the Reuseware approach to
interface of components adhering to the component modélvasive Software Composition in an attempt to answer the
At the variation point, either the original head construct cafi#estion “How dark should a component black-box be?” for
directly be programmed in its place (asdafault valuefor compon'e.nts in declarative languages or in situations where
the variation point), or a concrete variation point (slot) can F&@Mposition occurs on the source-code level.
used. This means that regardless of whether the head of som@Ur short answer has been “Jet-black with plenty of holes,
rule consists of a core language head constrdead) or is SOMe of which are ngt visible to everyone.” In Fhe long answer
left unspecified (using the introducéteadSlot construct), We showed that this means that we require encapsulated

the component model describes it as accessible, as part of §Ag1POnents where composition can only occur in well-defined
component’s interface. places—hence they are “jet-black”. At the same time, however,

component developers and users should not have to worry
A = about all the details of the composition interface relating
Variation to encapsulated composition operators. Rather, this part of
o the interface should be described in the relevant component
. model and taken advantage of by the complex composition
Headvp| |Body| operators available in the dedicated composition system for
which the components have been written. Hence, components
“have plenty of holes”, but they are “not visible to everyone”.
More specifically, some parts are visible to developers of
(a) (b) dedicatedcomposition system@ WDCS), while component

_ o o developers and users only have to care about the part of the
Fig. 6. The original construct (hetdead) must at composition time be int?rface relevant to them.
accessible to certain composition operators. Thus, the construct must be par
of the interface of the component, which is realized by making the variation
point (HeadVP) a super-class of Head.

V. CONCLUSION

Slot |4

Generate
Component model

HeadSlot | | Head |

ACKNOWLEDGMENT
This research has been co-funded by the European Commis-

The same kind of transformation can be done for the boaﬁn and _by the Swiss Federal Office for Edupation and Sci-
of rules. Again, it should be stressed that module programmg cebW|th|n tg‘; 6th I:rar:ne\{\///ork Programme prOJecl:It REVYFRSﬁ
working against the component model in Figure 6 (b) do ngf’m;’: IEOG 9 (Ck'P tp: rewerse.n_et), K‘/IS (;NT | as throug
have to express via some special mark-up that the rule hegb% bt Or:;iAfnagvlvor ¢ r:og.r/allmme prgjelctl odelp exd ct;)ntrﬁct
are part of the interface. They can write rules as they norma mber (cf._http:/www.modelplex.org) and by the

would, but still expect the programmed modules to be usab Frman 'V““‘S”Y of Education and Resgarch (BMBF) within
in the LWDCS realizing the module system. the project feasiPLe (cf. http://www.feasiple.de).

So, the module system is realized by a set of dedicated com- REFERENCES
position operators (tr?'nSformmg rU|eS)’ anng with a dedlcatjr? U. ABmann.Invasive Software Compositio®pringer-Verlag New York
component model adjusted to the needs of the operators. AloNgnc.. Secaucus, NJ, USA, 2003.

with a composition language (not discussed here) we cih F. Bry and S. Schaffert. The XML query language Xcerpt: Design

i it ; principles, examples, and semantics. Revised Papers from the NODe
create a LWDCS for Xcerpt reaI|Z|r@dd|t|0naI abstractions 2002 Web and Database-Related Workshops on Web, Web-Services, and

in this case the possibility of authoring encapsulated modules patapase Systempages 295-310. Springer-Verlag, London, UK, 2003.
and using them in Xcerpt programs. [3] J. Henriksson, J. Johannes, S. Zschaler, and U. ARmann. Reuseware —
The critical notion is the following: due to the encapsulation 2dding modularity to your language of choié&oc. of TOOLS EUROPE
L . . 2007: Special Issue of the Journal of Object Technology (to appear)
of the complex composition operators, we find it necessary ,qo7.
to refine our notion of composition interfaces. This is @] C. Szyperski.Component Software: Beyond Object-Oriented Program-
consequence from the fact that was remarked upon earlier: ming Component Software Series. Addison-Wesley Publishing Company,

. " . . second edition, 2002.
the set of dedicated composition operators included in a

