
Graph Consistency as a Graduated Property

Consistency-Sustaining and -Improving Graph
Transformations

Jens Kosiol1 Q[0000−0003−4733−2777], Daniel Strüber2[0000−0002−5969−3521],
Gabriele Taentzer1[0000−0002−3975−5238], and Steffen

Zschaler3[0000−0001−9062−6637]

1 Philipps-Universität Marburg, Marburg, Germany
{kosiolje,taentzer}@mathematik.uni-marburg.de

2 Radboud University, Nijmegen, the Netherlands d.strueber@cs.ru.nl
3 King’s College London, London, UK szschaler@acm.org

Abstract. Where graphs are used for modelling and specifying systems,
consistency is an important concern. To be a valid model of a system,
the graph structure must satisfy a number of constraints. To date, con-
sistency has primarily been viewed as a binary property: a graph either
is or is not consistent with respect to a set of graph constraints. This
has enabled the definition of notions such as constraint-preserving and
constraint-guaranteeing graph transformations. Many practical applica-
tions—for example model repair or evolutionary search—implicitly as-
sume a more graduated notion of consistency, but without an explicit
formalisation only limited analysis of these applications is possible. In
this paper, we introduce an explicit notion of consistency as a graduated
property, depending on the number of constraint violations in a graph.
We present two new characterisations of transformations (and transfor-
mation rules) enabling reasoning about the gradual introduction of con-
sistency: while consistency-sustaining transformations do not decrease
the consistency level, consistency-improving transformations strictly re-
duce the number of constraint violations. We show how these new defini-
tions refine the existing concepts of constraint-preserving and constraint-
guaranteeing transformations. To support a static analysis based on our
characterisations, we present criteria for deciding which form of consis-
tency ensuring transformations is induced by the application of a trans-
formation rule. We illustrate our contributions in the context of an ex-
ample from search-based model engineering.

Keywords: Graph Consistency · Graph Transformation Systems · Evo-
lutionary Search · Graph Repair

1 Introduction

Graphs and graph transformations [8] are a good means for system modelling
and specification. Graph structures naturally relate to the structures typically
found in many (computer) systems and graph transformations provide intuitive

2 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

tools to specify the semantics of a model or implement refinement and analysis
techniques for specifications.

In all of these scenarios, it is important that the graphs used are consistent;
that is, that their structures satisfy a set of constraints. Some constraints can be
captured by typing graphs over so-called type graphs [8]—these allow capturing
basic structural constraints such as which kinds of nodes may be connected to
each other. To allow the expression of further constraints, the theory of nested
graph constraints has been introduced [11]. A graph is considered consistent if
it is correctly typed and satisfies all given constraints. Note that this notion of
consistency is binary: a graph either is consistent or it is not consistent. It is
impossible to distinguish different degrees of consistency.

In software engineering practice, it is often necessary to live with, and man-
age, a degree of inconsistency [23]. This requires tools and techniques for iden-
tifying, measuring, and correcting inconsistencies. In the field of graph-based
specifications, this has led to many practical applications, where a more fine-
grained notion of graph consistency is implicitly applied. For example, research
in model repair has aimed to automatically produce graph-transformation rules
that will gradually improve the consistency of a given graph. Such a rule may not
make a graph completely consistent in one transformation step, but performing
a sequence of such transformations will eventually produce a consistent graph
(e.g., [12,21,22,25]). In the area of search-based model engineering (e.g., [5,9]),
rules are required to be applicable to inconsistent graphs and, at least, not to
produce new inconsistencies. In earlier work, we have shown how such rules can
be generated at least with regard to multiplicity constraints [5]. However, in
all of these works, the notion of “partial” graph consistency remains implicit.
Without explicitly formalising this notion, it becomes difficult to reason about
the validity of the rules generated or the correctness of the algorithm by which
these rules were produced.

In this paper, we introduce a new notion of graph consistency as a graduated
property. A graph can be consistent to a degree, depending on the number of
constraint violations that occur in the graph. This conceptualisation allows us
to introduce two new characterisations of graph transformations: a consistency-
sustaining transformation does not decrease the overall consistency level, while a
consistency-improving transformation strictly decreases the number of violations
in a graph. We lift these characterisations to the level of graph transformation
rules, allowing rules to be characterised as consistency sustaining and consistency
improving, respectively. We show how these definitions fit with the already estab-
lished terminology of constraint-preserving and constraint-guaranteeing transfor-
mations / rules. Finally, we introduce formal criteria that allow checking whether
a given graph-transformation rule is consistency sustaining or consistency im-
proving w.r.t. constraints in specific forms.

Thus, the contributions of our paper are:

1. We present the first formalisation of graph consistency as a graduated prop-
erty of graphs;

Graph Consistency as a Graduated Property 3

Class

Feature

contains

hasDependencyTo

Type graph

Fig. 1. Type graph and four mutation rules for the CRA problem.

2. We present two novel characterisations of graph transformations and trans-
formation rules with regard to this new definition of graph consistency and
show how these refine the existing terminology;

3. We present static analysis techniques for checking whether a graph-transfor-
mation rule is consistency sustaining or improving.

The remainder of this paper is structured as follows: We introduce a running
example in Sect. 2 before outlining some foundation terminology in Sect. 3.
Section 4 introduces our new concepts and Sect. 5 discusses how graph-trans-
formation rules can be statically analysed for these properties. A discussion
of related work in Sect. 6 concludes the paper. All proofs are provided in an
extended version of this paper [16].

2 Example

Consider class responsibility assignment (CRA, [4]), a standard problem in ob-
ject-oriented software analysis. Given is a set of features (methods, fields) with
dependencies between them. The goal is to create a set of classes and assign the
features to classes so that a certain fitness function is maximized. The fitness
function rewards the assignment of dependent features to the same class (co-
hesion), while punishing dependencies that run between classes (coupling) and
solutions with too few classes. Solutions can be expressed as instances of the type
graph shown in the left of Fig. 1. For realistic problem instances, an exhaustive
enumeration of all solutions to find the optimal one is not feasible.

Recently, a number of works have addressed the CRA problem via a combi-
nation of graph transformation and meta-heuristic search techniques, specifically
evolutionary algorithms [10,28,5]. An evolutionary algorithm uses genetic oper-
ators such as cross-over and mutation to find optimal solution candidates in an
efficient way. In this paper, we focus on mutation operators, which have been
specified using graph transformation rules in these works.

Figure 1 depicts four mutation rules for the CRA problem, taken from the
available MDEOptimiser solution [6]. The rules are specified as graph trans-
formation rules [8] in the Henshin notation [1,29]: Rule elements are tagged as

4 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

delete, create, preserve or forbid, which denotes them as being included in the
LHS, the RHS, in both rule sides, or a NAC. Rule assignFeature assigns a ran-
domly selected as-yet-unassigned feature to a class. Rule createClass creates a
class and assigns an as-yet-unassigned feature to it. Rule moveFeature moves a
feature between two classes. Rule deleteEmptyClass deletes a class to which no
feature is assigned.

Solutions in an optimization problem such as the given one usually need to
be consistent with regard to the constraints given by the problem domain. We
consider three constraints for the CRA case:

(c1) Every feature is contained in at most one class.
(c2) Every class contains at least one feature.
(c3) If a feature F1 has a dependency to another feature F2,

and F2 is contained in a different class than F1,
then F1 must have a dependency to a feature F3 in the same class.

Constraints c1 and c2 come from Fleck et al.’s formulation of the CRA prob-
lem [10]. Constraint c3 can be considered a helper constraint (compare helper
objectives [13]) that aims to enhance the efficiency of the search by formulating
a constraint with a positive impact to the fitness function: Assigning dependent
features to the same class is likely to improve coherence.

Given an arbitrary solution model (valid or invalid), mutations may intro-
duce new violations. For example, applying moveFeature can leave behind an
empty class, thus violating c2. While constraint violations can potentially be
removed using repair techniques [22,12,25], these can be computationally ex-
pensive and may involve strategies that lead to certain regions of the search
space being preferred, threatening the efficiency of the search. Instead, it would
be desirable to design mutation operators that impact consistency in a positive
or at least neutral way. Each application of a mutation rule should contribute
to some particular violations being removed, or at least ensure that the degree
of consistency does not decrease. Currently, there exists no formal framework
for identifying such rules. The established notions of constraint-preserving and
constraint-guaranteeing rules [11] assume an already-valid model or a transfor-
mation that removes all violations at once; both are infeasible in our scenario.

3 Preliminaries

Our new contributions are based on typed graph transformation systems follow-
ing the double-pushout approach [8]. We implicitly assume that all graphs, also
the ones occurring in rules and constraints, are typed over a common type graph
TG ; that is, there is a class GraphTG of graphs typed over TG . A nested graph
constraint [11] is a tree of injective graph morphisms.

Definition 1 ((Nested) graph conditions and constraints). Given a graph
P , a (nested) graph condition over P is defined recursively as follows: true is
a graph condition over P and if a : P ↪→ C is an injective morphism and d is

Graph Consistency as a Graduated Property 5

a graph condition over C, ∃ (a : P ↪→ C, d) is a graph condition over P again.
If d1 and d2 are graph conditions over P , ¬d1 and d1 ∧ d2 are graph conditions
over P . A (nested) graph constraint is a condition over the empty graph ∅.

A condition or constraint is called linear if the symbol ∧ does not occur,
i.e., if it is a (possibly empty) chain of morphisms. The nesting level nl of
a condition c is recursively defined by setting nl(true) := 0, nl(∃ (a : P ↪→
C, d)) := nl(d)+1, nl(¬d) := nl(d), and nl(d1∧d2) := max(nl(d1),nl(d2)). Given
a graph condition c over P , an injective morphism p : P ↪→ G satisfies c, written
p |= c, if the following applies: Every morphism satisfies true. The morphism p
satisfies a condition of the form c = ∃ (a : P ↪→ C, d) if there exists an injective
morphism q : C ↪→ G such that p = q◦a and q satisfies d. For Boolean operators,
satisfaction is defined as usual. A graph G satisfies a graph constraint c, denoted
as G |= c, if the empty morphism to G does so. A graph constraint c1 implies a
graph constraint c2, denoted as c1 ⇒ c2, if G |= c1 ⇒ G |= c2 for all graphs G.
The constraints are equivalent, denoted as c1 ≡ c2, if c1 ⇒ c2 and c2 ⇒ c1.

In the notation of graph constraints, we drop the domains of the involved mor-
phisms and occurrences of true whenever they can unambiguously be inferred.
For example, we write ∃(C,¬∃C ′) instead of ∃(∅ ↪→ C,¬∃(a : C ↪→ C ′, true)).
Moreover, we introduce ∀(C, d) as an abbreviation for the graph constraint
¬∃(C,¬d). Further sentential connectives like ∨ or ⇒ can be introduced as ab-
breviations as usual (which is irrelevant for linear constraints).

We define a normal form for graph conditions that requires that the occurring
quantifiers alternate. For every linear condition there is an equivalent condition
in this normal form [25, Fact 2].

Definition 2 (Alternating quantifier normal form (ANF)). A linear con-
dition c with nl(c) ≥ 1 is in alternating quantifier normal form (ANF) when the
occurring quantifiers alternate, i.e., if c is of the form Q(a1, Q̄(a2, Q(a3, . . .) . . .)
with Q ∈ {∃,∀} and ∃̄ = ∀, ∀̄ = ∃, none of the occurring morphisms ai is an
isomorphism, and the only negation, if any, occurs at the innermost nesting level
(i.e., the constraint is allowed to end with false). If a constraint in ANF starts
with ∃, it is called existential, otherwise it is called universal.

Lemma 1 (Non-equivalence of constraints in ANF). Let c1 = ∃(C1, d1)
and c2 = ∀(C2, d2) be constraints in ANF. Then c1 6≡ c2.

We have c1 6≡ c2 since ∅ |= c2 but ∅ 6|= c1. Lemma 1 implies that the first
quantifier occurring in the ANF of a constraint separates linear constraints into
two disjoint classes. This ensures that our definitions in Section 4 are meaningful.

Graph transformation is the rule-based modification of graphs. The following
definition recalls graph transformation as a double-pushout.

Definition 3 (Rule and transformation). A plain rule r is defined by p =
(L←↩ K ↪→ R) with L,K, and R being graphs connected by two graph inclusions.
An application condition ac for p is a condition over L. A rule r = (p, ac) consists
of a plain rule p and an application condition ac over L.

6 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

p : L oo le

m|=ac

��

K
ri //

��

R

n

��
G oo

g
D

h // H

Fig. 2. Rule application

A transformation (step) G ⇒r,m H which applies rule r to a graph G con-
sists of two pushouts as depicted in Fig. 2. Rule r is applicable at the injective
morphism m : L → G called match if m |= ac and there exists a graph D such
that the left square is a pushout. Morphism n is called co-match. Morphisms
g and h are called transformation morphisms. The track morphism [24] of a
transformation step G⇒r,m H is the partial morphism tr : G 99K H defined by
tr(x) = h(g−1(x)) for x ∈ g(D) and undefined otherwise.

Obviously, transformations interact with the validity of graph constraints.
Two well-studied notions are constraint-guaranteeing and -preserving transfor-
mations [11].

Definition 4 (c-guaranteeing and -preserving transformation). Given a
constraint c, a transformation G ⇒r,m H is c-guaranteeing if H |= c. Such a
transformation is c-preserving if G |= c ⇒ H |= c. A rule r is c-guaranteeing
(c-preserving) if every transformation via r is.

As we will present criteria for consistency sustainment and improvement
based on conflicts and dependencies of rules, we recall these notions here as well.
Intuitively, a transformation step causes a conflict on another one if it hinders
this second one. A transformation step is dependent on another one if it is first
enabled by that.

Definition 5 (Conflict). Let a pair of transformations (t1, t2) : (G ⇒m1,r1

H1, G ⇒m2,r2 H2) applying rules ri = (Li ←↩ Ki ↪→ Ri, aci), i = 1, 2 be given

such that ti yields transformation morphisms G
gi← Di

hi→ Hi. Transformation
pair (t1, t2) is conflicting (or t1 causes a conflict on t2) if there does not exist
a morphism x : L2 → D1 such that g1 ◦ x = m2 and h1 ◦ x |= ac. Rule pair
(r1, r2) is conflicting if there exists a conflicting transformation pair (G⇒m1,r1

H1, G ⇒m2,r2 H2). If (r1, r2) and (r2, r1) are both not conflicting, rule pair
(r1, r2) is called parallel independent.

Definition 6 (Dependency). Let a sequence t1; t2 : G ⇒m1,r1 H1 ⇒m2,r2 X
of transformations applying rules ri = (Li ←↩ Ki ↪→ Ri, aci), i = 1, 2 be given

such that t1 yields transformation morphisms G
g1← D1

h1→ H1. Transformation
t2 is dependent on t1 if there does not exist a morphism x : L2 → D1 such
that h1 ◦ x = m2 and g1 ◦ x |= ac2. Rule r2 is dependent on rule r1 if there
exists a transformation sequence t1; t2 : G ⇒m1,r1 H1 ⇒m2,r2 X such that t2 is
dependent on t1. If r1 is not dependent on r2 and r2 is not dependent on r1, rule
pair (r1, r2) is called sequentially independent.

Graph Consistency as a Graduated Property 7

A weak critical sequence is a sequence t1; t2 : G ⇒m1,r1 H1 ⇒m2,r2 X of
transformations such that t2 depends on t1, n1 and m2 are jointly surjective
(where n1 is the co-match of t1), and mi is not required to satisfy aci (i = 1, 2).

As rule r2 in a rule pair (r1, r2) will always be plain in this paper, a transforma-
tion step can cause a conflict on another one if and only if it deletes an element
that the second transformation step matches. Similarly, a transformation step
can depend on another one if and only if the first step creates an element that
the second matches or deletes an edge that is adjacent to a node the second one
deletes.

4 Consistency-sustaining and consistency-improving
rules and transformations

In this section, we introduce our key new concepts. We do so in three stages, first
introducing foundational definitions for partial consistency, followed by a generic
definition of consistency sustainment and improvement. Finally, we give stronger
definitions for which we will be able to provide a static analysis in Sect. 5.

4.1 Partial consistency

To support the discussion and analysis of rules and transformations that improve
graph consistency, but do not produce a fully consistent graph in one step,
we introduce the notion of partial consistency. We base this notion on relating
the number of constraint violations to the total number of relevant occurrences
of a constraint. For the satisfaction of an existential constraint, a single valid
occurrence is enough. In contrast, universal constraints require the satisfaction
of some sub-constraint for every occurrence. Hence, the resulting notion is binary
in the existential case, but graduated in the universal one.

In the remainder of this paper, a constraint is always a linear constraint in
ANF having a nesting level ≥ 1.4 Moreover, all graphs are finite.

Definition 7 (Occurrences and violations). Let c = Q(∅ → C, d) with Q ∈
{∃,∀} be a constraint. An occurrence of c in a graph G is an injective morphism
p : C ↪→ G, and occ(G, c) denotes the number of such occurrences.

If c is universal, its number of relevant occurrences in a graph G, denoted
as ro(G, c), is defined as ro(G, c) := occ(G, c) and its number of constraint
violations, denoted as ncv(G, c), is the number of occurrences p for which p 6|= d.

If c is existential, ro(G, c) := 1 and ncv(G, c) := 0 if there exists an occurrence
p : C ↪→ G such that p |= d but ncv(G, c) := 1 otherwise.
4 Requiring nesting level ≥ 1 is no real restriction as constraints with nesting level

0 are Boolean combinations of true which means they are equivalent to true or
false, anyhow. In contrast, restricting to linear constraints actually excludes some
interesting cases. We believe that the extension of our definitions and results to
also include the non-linear case will be doable. Restricting to the linear case first,
however, makes the statements much more accessible and succinct.

8 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

f1:Feature

c1:Class c2:Class

contains contains

f2:Feature f1:Feature

c1:Class c2:Class
contains contains

f2:Featuref3:Feature
hasDependencyTo hasDependencyTo hasDependencyTo

contains

𝑃𝑃𝑐𝑐3 𝑃𝑃𝑐𝑐3
′

𝑐𝑐3

𝑐𝑐1

:Feature

:Class :Class

contains contains

𝑃𝑃𝑐𝑐1 :Feature

c1:Class

contains

c1:Class

𝑃𝑃𝑐𝑐2
′𝑃𝑃𝑐𝑐2

𝑐𝑐2

f1:Feature

contains

f3:Feature

f2:Feature

hasDependencyTo

contains

𝐺𝐺 f4:Feature

c1:Class c2:Class

hasDependencyTo contains

Fig. 3. Example constraints and graph.

Definition 8 (Partial consistency). Given a graph G and a constraint c, G
is consistent w.r.t. c if G |= c. The consistency index of G w.r.t. c is defined as

ci(G, c) := 1− ncv(G, c)

ro(G, c)

where we set 0
0

:= 0. We say that G is partially consistent w.r.t. c if ci(G, c) > 0.

The next proposition makes precise that the consistency index runs between 0
and 1 and indicates the degree of consistency a graph G has w.r.t. a constraint c.

Fact 1 (Consistency index). Given a graph G and a constraint c, then 0 ≤
ci(G, c) ≤ 1 and G |= c if and only if ci(G, c) = 1. Consistency implies partial
consistency. Moreover, ci(G, c) ∈ {0, 1} for an existential constraint.

Example 1. Based on Fig. 3, we can express the three informal constraints from
Section 2 as nested graph constraints. Constraint c1 can be expressed as ¬∃Pc1 ,
constraint c2 becomes ∀(Pc2 ,∃P ′c2), and constraint c3 becomes ∀(Pc3 ,∃P ′c3).
Graph G (in the left top corner of Fig. 3) satisfies c1 and c2. It does not satisfy
c3, since we cannot find an occurrence of P ′c3 for the occurrence of Pc3 in G
where f1 and f2 are mapped to f1 and f3, respectively. Graph G in Fig. 3 has
the consistency index 0.5 with regard to c3, since one violation exists, and two
non-violating occurrences are required.

4.2 Consistency sustainment and improvement

In the remainder of this section, our goal is to introduce the notions of con-
sistency-sustaining and consistency-improving rule applications which refine the
established notions of preserving and guaranteeing applications [11].

Graph Consistency as a Graduated Property 9

Definition 9 (Consistency sustainment and improvement). Given a
graph constraint c and a rule r, a transformation t : G ⇒r,m H is consis-
tency sustaining w.r.t. c if ci(G, c) ≤ ci(H, c). It is consistency improving if it
is consistency sustaining, ncv(G, c) > 0, and ncv(G, c) > ncv(H, c).

The rule r is consistency sustaining if all of its applications are. It is con-
sistency improving if all of its applications are consistency sustaining and there
exists a graph G ∈ GraphTG with ncv(G, c) > 0 and a consistency-improving
transformation G ⇒r,m H. A consistency improving rule is strongly consis-
tency improving if all of its applications to graphs G with ncv(G, c) > 0 are
consistency-improving transformations.

In the above definition, we use the number of constraint violations (and not the
consistency index) to define improvement to avoid an undesirable side-effect:
Defining improvement via a growing consistency index would lead to consistency-
improving transformations (w.r.t. a universal constraint) which do not repair ex-
isting violations but only create new valid occurrences of the constraint. Hence,
there would exist infinitely long transformation sequences where every step in-
creases the consistency index but validity is never restored. Consistency-improv-
ing transformations, and therefore strongly consistency improving rules, require
that the number of constraint violations strictly decreases in each step. There-
fore, using only such transformations and rules, we cannot construct infinite
transformation sequences.

Any consistency-improving rule can be turned into a strongly consistency-
improving rule if suitable pre-conditions can be added that restrict the applica-
bility of the rule only to those cases where it can actually improve a constraint
violation. This links the two forms of consistency-improving rules to their prac-
tical applications: in model repair [21,25] we want to use rules that will only
make a change to a graph when there is a violation to be repaired—strongly
consistency-improving rules. However, in evolutionary search [5], we want to al-
low rules to be able to make changes even when there is no need for repair, but
to fix violations when they occur; consistency-improving rules are well-suited
here as they can be applied even when no constraint violations need fixing.

4.3 Direct consistency sustainment and improvement

While the above definitions are easy to state and understand, it turns out that
they are inherently difficult to investigate. Comparing numbers of (relevant)
occurrences and violations allows for very disparate behavior of consistency-
sustaining (-improving) transformations: For example, a transformation is al-
lowed to destroy as many valid occurrences as it repairs violations and is still
considered to be consistency sustaining w.r.t. a universal constraint.

Next, we introduce further qualified notions of consistency sustainment and
improvement. The idea behind this refinement is to retain the validity of oc-
currences of a universal constraint: valid occurrences that are preserved by a
transformation are to remain valid. In this way, sustainment and improvement
become more direct as it is no longer possible to compensate for introduced

10 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

violations by introducing additional valid occurrences. The notions of (direct)
sustainment and improvement are related to one another and also to the al-
ready known ones that preserve and guarantee constraints. In Sect. 5 we will
show how these stricter definitions allow for static analysis techniques to iden-
tify consistency-sustaining and -improving rules.

G oo
g

tr

))
D

h // H

C
p

ii

p′

55
pD

OO

Fig. 4. Rule application with
morphisms from a graph C,
occurring in some constraint

The following definitions assume a transforma-
tion step to be given and relate occurrences of con-
straints in its start and result graph as depicted
in Fig. 4. The existence of a morphism pD such
that the left triangle commutes (and p′ might be
defined as h ◦ pD) is equivalent to the tracking
morphism tr : G 99K H being a total morphism
when restricted to p(C) which is equivalent to the
transformation not destroying the occurrence p.

Definition 10 (Direct consistency sustainment). Given a graph constraint
c, a transformation t : G ⇒m,r H via rule r at match m with trace tr (Fig. 4)
is directly consistency sustaining w.r.t. c if either c is existential and the trans-
formation is c-preserving or c = ∀(C, d) is universal and

∀p : C ↪→ G
(
(p |= d ∧ tr ◦ p is total)⇒ tr ◦ p |= d

)
∧

∀p′ : C ↪→ H
(
¬∃p : C ↪→ G (p′ = tr ◦ p)⇒ p′ |= d

)
.

A rule r is directly consistency sustaining w.r.t. c if all its applications are.

Table 1. Properties of example rules.

Consistency Consistency
sustaining improving

Rule c1 c2 c3 c1 c2 c3
assignFeature + + - - + -

createClass + + - - - -
moveFeature (+) - - - - -

deleteEmptyClass + + + - +* -

Legend: + denotes directly, (+) denotes
non-directly, * denotes strongly

The first requirement in the defini-
tion checks that constraints that were
already valid in G are still valid in
H, unless their occurrence has been
removed; that is, the transformation
must not make existing valid occur-
rences invalid. Note, however, that we
do not require that the constraint be
satisfied by the same extension, just
that there is still a way to satisfy
the constraint at that occurrence. The
second requirement in the definition checks that every “new” occurrence of the
constraint in H satisfies the constraint; that is, the transformation must not
introduce fresh violations.

The following theorem relates the new notions of (direct) consistency sus-
tainment to preservation and guarantee of constraints.

Theorem 2 (Sustainment relations). Given a graph constraint c, every c-
guaranteeing transformation is directly consistency-sustaining, every directly con-
sistency-sustaining transformation is consistency sustaining, and every consis-
tency-sustaining transformation is c-preserving. The analogous implications hold
on the rule level:

Graph Consistency as a Graduated Property 11

@

cc1:Class cc2:Class

cf:Feature rf:Feature

contains contains

 ∧ @

cc1:Class cc2:Class

cf=rf:Feature

contains contains

⇒ @

cc1:Class

cf=rf:Feature

contains

Fig. 5. Generated preserving application condition for createClass w.r.t. constraint c1.
The feature named rf is the one from the LHS of createClass.

constraint-preserving rule ks
[11]

KS
Thm. 2

constraint-guaranteeing rule

Thm. 2

��
consistency-sustaining rule directly consistency-sustaining rule

Thm. 2
ks

The following example illustrates these notions and shows that sustainment
is different from constraint guaranteeing or preserving.

Example 2. Table 1 denotes for each rule from the running example if it is consis-
tency sustaining w.r.t. each constraint. Rule createClass is directly consistency
sustaining w.r.t. c1 (no double assignments) and c2 (no empty classes), since it
cannot assign an already assigned feature or remove existing assignments. How-
ever, it is not consistency guaranteeing, since it cannot remove any violation
either. Rule moveFeature is consistency sustaining w.r.t c1, but not directly so,
since it can introduce new violations, but only while at the same time removing
another violation, leading to a neutral outcome. Starting with the plain version
of rule createClass and computing a preserving application condition for con-
straint c1 according to the construction provided by Habel and Pennemann [11]
results in the application condition depicted in Fig. 5. By construction, equip-
ping the plain version of createClass with that application condition results in
a consistency-preserving rule. However, whenever applied to an invalid graph,
the antecedent of this application condition evaluates to false and, hence, the
whole application condition to true. In particular, the rule with this application
condition might introduce further violations of c1 and is, thus, not sustaining.

Similarly, the direct notion of consistency improvement preserves the validity
of already valid occurrences in the case of universal constraints and degenerates
to the known concept of constraint-guarantee in the existential case.

Definition 11 (Direct consistency improvement). Given a graph constraint
c, a transformation t : G ⇒m,r H via rule r at match m : L ↪→ G with trace tr
(Fig. 4) is directly consistency improving w.r.t. c if G 2 c, the transformation is
directly consistency sustaining, and either c is existential and the transformation
is c-guaranteeing or c = ∀(C, d) is universal and

∃p : C ↪→ G
(
p 2 d ∧ p′ := tr ◦ p is total ∧ p′ |= d

)
∨

∃p : C ↪→ G
(
p 2 d ∧ p′ := tr ◦ p is not total

)

12 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

We lift the notion of directly consistency-improving transformations to the
level of rules in the same way as in Def. 9. This leads to directly consistency-
improving rules and a strong form of directly consistency-improving rules.

(Direct) consistency improvement is related to, but different from constraint
guarantee and consistency sustainment as made explicit in the next theorem.

Theorem 3 (Improvement relations). Given a graph constraint c, every di-
rectly consistency-improving transformation is a consistency-improving transfor-
mation and every consistency-improving transformation is consistency sustain-
ing. Moreover, every c-guaranteeing transformation starting from a graph G that
is inconsistent w.r.t. c is a directly consistency-improving transformation. The
analogous implications hold on the rule level, provided that there exists a match
for the respective rule r in a graph G with G 6|= c:

consistency-sustaining ruleKS
Thm. 3

c-guaranteeing rule
Thm. 2

ks

Thm. 3

��
consistency-improving rule ks Thm. 3

directly consistency-improving rule

Example 3. Table 1 denotes for each rule of the running example if it is consis-
tency improving w.r.t. each constraint. For example, the rule deleteEmptyClass is
directly strongly consistency improving but not guaranteeing w.r.t. c2 (no empty
classes), since it always removes a violation (empty class), but generally not all
violations in one step. Rule assignFeature is consistency improving w.r.t. c2, but
not directly so, since it can turn empty classes into non-empty ones, but does not
do so in every possible application. Rule createClass is consistency sustaining
but not improving w.r.t. c2, as it cannot reduce the number of empty classes.

5 Static Analysis for Direct Consistency Sustainment
and Improvement

In this section, we consider specific kinds of constraints and present a static anal-
ysis technique for direct consistency sustainment and improvement. We present
criteria for rules to be directly consistency sustaining or directly consistency
improving w.r.t. these kinds of constraint. The restriction to specific kinds of
constraint greatly simplifies the presentation; at the end of the section we hint
at how our results may generalize to arbitrary universal constraints.

The general idea behind our static analysis technique is to check for validity
of a constraint by applying a trivial (non-modifying) rule that just checks for
the existence of a graph occurring in the constraint. This allows us to present
our analysis technique in the language of conflicts and dependencies which has
been developed to characterise the possible interactions between rule applica-
tions [24,8]. As a bonus, since the efficient detection of such conflicts and depen-
dencies has been the focus of recent theoretical and practical research [17,18],
we obtain tool support for an automated analysis based on Henshin.

Graph Consistency as a Graduated Property 13

In the remainder of this paper, we assume the following setting: Let r = (L←↩
K ↪→ R, ac) be a rule, c a graph constraint of the form ¬∃C = ∀(∅ ↪→ C, false)
and d a graph constraint of the form ∀(C,∃C ′) = ∀(∅ ↪→ C,∃a : C ↪→ C ′).

Given a graph G, there is the rule checkG := G
idG←−−↩ G idG

↪−−→ G given.

For the statement of the following results, note that sequential independence
of the (non-modifying) rule checkC from r means that r cannot create a new
match for C. Similarly, parallel independence of checkC′ from r means that r
cannot destroy a match for C ′. We first state criteria for direct consistency sus-
tainment: If a rule cannot create a new occurrence of C, it is directly consistency
sustaining w.r.t. a constraint of the form ¬∃C. If, in addition, it cannot delete
an occurrence of C ′, it is directly consistency sustaining w.r.t. a constraint of
the form ∀(C, ∃C ′).

Theorem 4 (Criteria for direct consistency sustainment). Rule r is di-
rectly consistency sustaining w.r.t. constraint c if and only if checkC is sequen-
tially independent from r. If, in addition, checkC′ is parallel independent from
r, then r is directly consistency sustaining w.r.t. constraint d.

The above criterion is sufficient but not necessary for constraints of the form
∀(C,∃C ′). For example, it does not take into account the possibility of r creating
a new valid occurrence of C. The next proposition strengthens the above theorem
by partially remedying this.

Proposition 1. If checkC′ is parallel independent from r and for every weak
critical sequence G ⇒r,m H ⇒checkC ,p′′ H it holds that there is an injective
morphism q′′ : C ′ ↪→ H with q′′ ◦ a = p′′, i.e., p′′ |= ∃C ′, then r is directly
consistency sustaining w.r.t. constraint d.

For consistency improvement we state criteria on rules as well: If a rule is
directly consistency improving w.r.t. a constraint of the form ∀(C,∃C ′), it is
either (1) able to destroy an occurrence of C (deleting a part of it) or (2) to
bring about an occurrence of C ′ (creating a part of it). In case (2), we can even
be more precise: The newly created elements do not stem from C but from the
part of C ′ without C; this is what the formula in the next theorem expresses.
For constraints of the form ¬∃C, condition (1) is the only one that holds.

Theorem 5 (Criteria for direct consistency improvement). If rule r is
directly consistency sustaining w.r.t. constraint c, then it is directly consistency
improving w.r.t. c if and only if r causes a conflict for checkC . If r is directly
consistency improving w.r.t. constraint d, then r causes a conflict for checkC or
checkC′ is sequentially dependent on r in such a way that

n(R \K) ∩ p′(C ′) ⊆ p′(C ′ \ a(C))

where, in this dependency, n is the co-match of the first transformation applying
r and p′ is the match for checkC′ .

14 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

Table 2. Generalisation of the criteria from Theorems 4 and 5 to universal constraints
up to nesting level 2. Here, ckC is short for checkC , r1 <D r2 denotes dependency of
r2 on r1, r1 <C r2 denotes r2 causing a conflict for r1, and crossed out versions denote
the respective absence.

type of constr. crit. for direct consist. sust. crit. for direct consist. impr.

∀(C, false) ≡ ¬∃C ckC ≮D r ckC <C r
∀(C1, ∃C2) ckC1 ≮D r ∧ ckC2 ≮C r ckC1 <C r ∨ ckC2 <D r
∀(C1, ∃(C2,¬∃C3)) ckC1 ≮D r ∧ ckC2 ≮C r ∧ ckC3 ≮D r ckC1 <C r ∨ ckC2 <D r ∨ ckC3 <C r

Table 3. Applying the criteria from Tbl. 2 to the example; ckC is short for checkC .

Consis. sust. (suff. cr.) Consis. impr. (necc. cr.)
seq. indep. par. indep. par. dep. seq. dep.

Rule ckPc1
ckPc2

ckPc3
ckP ′

c2
ckP ′

c3
ckPc1

ckPc2
ckPc3

ckP ′
c2

ckP ′
c3

assignFeature - + - + + - - - + +
createClass - - - + + - - - + +

moveFeature - + - - - + - + + +
deleteEmptyClass + + + + + - + - - -

The above criterion is not sufficient in case of constraint d. The existing
conflicts or dependencies do not ensure that actually an invalid occurrence of C
can be deleted or a new occurrence of C ′ can be created in such a way that an
invalid occurrence of C is “repaired”.

Looking closer to the criteria stated above, we can find some recurring pat-
terns. Table 2 lists the kinds of universal constraints up to nesting level 2 and
the corresponding criteria. While we have shown the criteria in the first two rows
in Theorems 4 and 5, we conjecture the criteria in the last row of Table 2. To
prove generalized theorems for nesting levels ≥ 2, however, is up to future work.

Example 4. We can use the criteria in Table 2 to semi-automatically reason
about consistency sustainment and improvement in our example. To this end,
we first apply automated conflict and dependency analysis (CDA, [18]) to the
relevant pairs of mutation and check rules. Using the detected conflicts and
dependencies, we infer parallel and sequential (in)dependence per definition, as
shown in Table 3. For example, since no dependencies between assignFeature
and checkPc1

exist, we conclude that these rules are sequentially independent.
Consistency sustainment : Based on Table 3, we find that the sufficient crite-

rion formulated in Theorem 4 is adequate to show direct consistency sustainment
in four out of seven positive cases as per Table 1: rule assignFeature with con-
straint c3 and rule deleteEmptyClass with constraints c1, c2 and c3. Moreover,
the stronger criterion in Proposition 1 allows to recognize the case of create-
Class with c2. Discerning the remaining two positive cases (assignFeature with
c1; createClass with c1) from the five negative ones requires further inspection.

Consistency improvement : Based on Table 3, our necessary criterion allows
to detect the two positive cases in Table 1: rules deleteEmptyClass and assign-

Graph Consistency as a Graduated Property 15

Feature with constraint c2. The former is due to parallel dependence, the latter
due to sequential dependence (where inspection of the CDA results reveals a
critical sequence with a suitable co-match). The criterion is also fulfilled in six
negative cases: assignFeature with c3, createClass with c2 and c3, and move-
Feature with c1, c2 and c3. Four negative cases are correctly ruled out by the
criterion.

6 Related Work

In this paper, we introduce a graduated version of a specific logic on graphs,
namely of nested graph constraints. Moreover, we focus on the interaction of
this graduation with graph transformations. Therefore, we leave a comparison
with fuzzy or multi-valued logics (on graphs) to future work. Instead, we focus on
works that also investigate the interaction between the validity of nested graph
constraints and the application of transformation rules.

Given a graph transformation (sequence) G⇒ H, the validity of graph H can
be established with basically three strategies: (1) graph G is already valid and
this validity is preserved, (2) graph G is not valid and there is a c-guaranteeing
rule applied, and (3) graph G is made valid by a graph transformation (sequence)
step-by-step.

Strategies (1) and (2) are supported by the incorporation of constraints in
application conditions of rules as presented in [11] for nested graph constraints in
general and implemented in Henshin [19]. As the applicability of rules enhanced
in that way can be severely restricted, improved constructions have been consid-
ered of specific forms of constraints. For constraints of the form ∀(C, ∃C ′), for
example, a suitable rule scheme is constructed in [15]. In [2] refactoring rules are
checked for the preservation of constraints of nesting level ≤ 2. In [19], two of the
present authors also suggested certain simplifications of application conditions;
the resulting ones are still constraint-preserving. In [20], we even showed that
they result in the logically weakest application condition that is still directly con-
sistency sustaining. However, the result is only shown for negative constraints of
nesting level one. A very similar construction of negative application conditions
from such negative constraints has very recently been suggested in [3].

Strategy (3) is followed in most of the rule-based graph repair or model repair
approaches. In [22], the violation of mainly multiplicity constraints is considered.
In [12], Habel and Sandmann derive graph programs from graph constraints of
nesting level ≤ 2. In [25], they extend their results to constraints in ANF which
end with ∃C or constraints of one of the forms ∃(C,¬∃C ′) or ¬∃C. They also
investigate whether a given set of rules allows to repair such a given constraint.
In [7] Dyck and Giese present an approach to automatically check whether a
transformation sequence yields a graph that is valid w.r.t. specific constraints of
nesting level ≤ 2.

Up to now, result graphs of transformations have been considered either
valid or invalid w.r.t. to a graph constraint; intermediate consistency grades
have not been made explicit. Thereby, c-preserving and c-guaranteeing transfor-

16 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

mations [11] focus on the full validity of the result graphs. Our newly developed
notions of consistency-sustainment and improvement are located properly in be-
tween existing kinds of transformations (as proven in Theorems 2 and 3). These
new forms of transformations make the gradual improvements in consistency ex-
plicit. While a detailed and systematic investigation (applying the static methods
developed in this paper) is future work, a first check of the kinds of rules gener-
ated and used in [14] (model editing), [22] (model repair), and [5] (search-based
model engineering) reveals that—in each case—at least some of them are indeed
(directly) consistency-sustaining. We are therefore confident that the current
paper formalizes properties of rules that are practically relevant in diverse appli-
cation contexts. Work on partial graphs as in, e.g. [26], investigates the validity
of constraints in families of graphs which is not our focus here and therefore, not
further considered.

Stevens in [27] discusses similar challenges in the specific context of bidi-
rectional transformations. Here, consistency is a property of a pair of models
(loosely, graphs) rather than between a graph and constraint. In this sense, it
may be argued that our formalisation generalises that of [27]. Several concepts
are introduced that initially seem to make sense only in the specific context of

bidirectional transformations (e.g., the idea of
→
R candidates), but may provide

inspiration for a further extension of our framework with corresponding concepts.

7 Conclusions

In this paper, we have introduced a definition of graph consistency as a graduated
property, which allows for graphs to be partially consistent w.r.t. a nested graph
constraint, inducing a partial ordering between graphs based on the number of
constraint violations they contain. Two new forms of transformation can be iden-
tified as consistency sustaining and consistency improving, respectively. They
are properly located in between the existing notions of constraint-preserving
and constraint-guaranteeing transformations. Lifting them to rules, we have pre-
sented criteria for determining whether a rule is consistency sustaining or im-
proving w.r.t. a graph constraint. We have demonstrated how these criteria can
be applied in the context of a case study from search-based model engineering.

While the propositions we present allow us to check a given rule against
a graph constraint, their lifting to a set of constraints is the next step to go.
Furthermore, algorithms for constructing consistency-sustaining or -improving
rules from a set of constraints are left for future work.

Acknowledgements. We thank the ICGT reviewers for their insightful and helpful
comments. This work has been partially supported by DFG grants TA 294/17-1
and 413074939.

Graph Consistency as a Graduated Property 17

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Proc. MODELS.
pp. 121–135. Springer (2010)

2. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative Development of
Consistency-Preserving Rule-Based Refactorings. In: ICMT. pp. 123–137. Springer,
Berlin (2011)

3. Behr, N., Saadat, M.G., Heckel, R.: Commutators for Stochastic Rewriting Sys-
tems: Theory and Implementation in Z3 (2020), https://arxiv.org/abs/2003.
11010

4. Bowman, M., Briand, L.C., Labiche, Y.: Solving the class responsibility assignment
problem in object-oriented analysis with multi-objective genetic algorithms. IEEE
Transactions on Software Engineering 36(6), 817–837 (2010)

5. Burdusel, A., Zschaler, S., John, S.: Automatic generation of atomic consistency
preserving search operators for search-based model engineering. In: MODELS. pp.
106–116. IEEE (2019)

6. Burdusel, A., Zschaler, S., Strüber, D.: MDEOptimiser: A search based model
engineering tool. In: MODELS. pp. 12–16 (2018)

7. Dyck, J., Giese, H.: k-inductive invariant checking for graph transformation sys-
tems. In: Graph Transformation - 10th International Conference, ICGT 2017.
LNCS, vol. 10373, pp. 142–158. Springer (2017)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer (2006)

9. Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: NasBASE (2015)

10. Fleck, M., Troya Castilla, J., Wimmer, M.: The class responsibility assignment
case. TTC (2016)

11. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. in Comp. Science 19, 245–296 (2009)

12. Habel, A., Sandmann, C.: Graph Repair by Graph Programs. In: STAF. pp. 431–
446. Springer, Cham (2018)

13. Jensen, M.T.: Helper-objectives: Using multi-objective evolutionary algorithms for
single-objective optimisation. Journal of Mathematical Modelling and Algorithms
3(4), 323–347 (2004)

14. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the spec-
ification of model editing operations from meta-models. In: ICMT. pp. 173–188.
Springer, Cham (2016)

15. Kosiol, J., Fritsche, L., Nassar, N., Schürr, A., Taentzer, G.: Constructing
Constraint-Preserving Interaction Schemes in Adhesive Categories. In: WADT.
pp. 139–153. Springer (2019)

16. Kosiol, J., Strüber, D., Taentzer, G., Zschaler, S.: Graph Consistency as a Grad-
uated Property: Consistency-Sustaining and -Improving Graph Transformations –
Extended Version (2020), https://arxiv.org/abs/2005.04162

17. Lambers, L., Born, K., Kosiol, J., Strüber, D., Taentzer, G.: Granularity of conflicts
and dependencies in graph transformation systems: A two-dimensional approach.
J. Log. Algebr. Meth. Program. 103, 105–129 (2019)

18. Lambers, L., Strüber, D., Taentzer, G., Born, K., Huebert, J.: Multi-granular con-
flict and dependency analysis in software engineering based on graph transforma-
tion. In: ICSE. pp. 716–727. ACM (2018)

https://arxiv.org/abs/2003.11010
https://arxiv.org/abs/2003.11010
https://arxiv.org/abs/2005.04162

18 J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler

19. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: Constructing optimized validity-
preserving application conditions for graph transformation rules. In: ICGT. pp.
177–194. Springer (2019)

20. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: Constructing optimized validity-
preserving application conditions for graph transformation rules. Journal of Logical
and Algebraic Methods in Programming (2020), (to appear)

21. Nassar, N., Kosiol, J., Radke, H.: Rule-based Repair of EMF Models: Formalization
and Correctness Proof. In: GCM (2017)

22. Nassar, N., Radke, H., Arendt, T.: Rule-based repair of EMF models: An auto-
mated interactive approach. In: ICMT. pp. 171–181. Springer, Cham (2017)

23. Nuseibeh, B., Easterbrook, S., Russo, A.: Making inconsistency respectable in soft-
ware development. Journal of Systems and Software 58(2), 171–180 (2001)

24. Plump, D.: Confluence of graph transformation revisited. In: Processes, Terms and
Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on
the Occasion of His 60th Birthday. pp. 280–308. Springer (2005)

25. Sandmann, C., Habel, A.: Rule-based graph repair. CoRR abs/1912.09610
(2019), http://arxiv.org/abs/1912.09610

26. Semeráth, O., Varró, D.: Graph constraint evaluation over partial models by con-
straint rewriting. In: ICMT. pp. 138–154. Springer (2017)

27. Stevens, P.: Bidirectionally tolerating inconsistency: Partial transformations. In:
Gnesi, S., Rensink, A. (eds.) Int’l Conf. Fundamental Approaches to Software En-
gineering (FASE’14). pp. 32–46. Springer Berlin Heidelberg (2014)

28. Strüber, D.: Generating efficient mutation operators for search-based model-driven
engineering. In: ICMT. pp. 121–137. Springer (2017)

29. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy, M.:
Henshin: A usability-focused framework for EMF model transformation develop-
ment. In: ICGT. pp. 196–208. Springer (2017)

http://arxiv.org/abs/1912.09610

	Graph Consistency as a Graduated Property

