
Towards Contractual Interfaces for Reusable
Functional Quality Attribute Operationalisations

Jose-Miguel Horcas,

Mónica Pinto, and Lidia Fuentes

Universidad de Málaga, Andalucía Tech, Málaga, Spain

{horcas,pinto,lff}@lcc.uma.es

Steffen Zschaler

Department of Informatics, King’s College London,
United Kingdom

steffen.zschaler@kcl.ac.uk

Abstract
The quality of a software system can be measured by the extent to
which it possesses a desired combination of quality attributes (QAs).
While some QAs are achieved implicitly through the interaction of
various functional components of the system, others (e.g., security)
can be encapsulated in dedicated software components. These QAs
are known as functional quality attributes (FQAs). As applications
may require different FQAs, and each FQA can be composed of
many concerns (e.g., access control and authentication), integrating
FQAs is very complex and requires dedicated expertise. Software
architects are required to manually define FQA components, identify
appropriate points in their architecture where to weave them, and
verify that the composition of these FQA components with the other
components is correct. This is a complex and error prone process.

In our previous work we defined reusable FQAs by encapsulating
them as aspectual architecture models that can be woven into a base
architecture. So far, the joinpoints for weaving had to be identified
manually. This made it difficult for software architects to verify that
they have woven all the necessary FQAs into all the right places.
In this paper, we address this problem by introducing a notion of
contract for FQAs so that the correct application of an FQA (or one
of its concerns) can be checked or, alternatively, appropriate binding
points can be identified and proposed to the software architect
automatically.

Categories and Subject Descriptors D.2.11 [Software Architec-
tures]: Patterns; D.2.13 [Reusable Software]: Reuse models

Keywords Aspect-Orientation, Model-Driven Development, Qual-
ity Attributes, Weaving Patterns

1. Introduction
The critical Quality Attributes (QAs) of a software system must be
well understood and articulated early during the development of
a system, so that the architect can design a software architecture
that satisfies them (Bachmann et al. 2005). Some QAs such as
security, persistence, or usability, require the addition of specific
components into the software architecture of the base application
(e.g., a component implementing an encryption algorithm to satisfy

the security QA). We refer to these QAs as Functional Quality
Attributes (FQAs) (Horcas et al. 2014; Juristo et al. 2007). The
association of a function (e.g., the encryption of a message) to a goal
(e.g., providing security) is known as the operationalisation of the
QA, in the sense that the function specifies how a goal can be made
operational (Chung et al. 1999). For FQAs the operationalisation is
encapsulated in a distinct set of additional components.

Each FQA (e.g., security) can be composed by many concerns
(e.g., authentication, encryption, or integrity), and different appli-
cations may require a customised subset of each FQA (e.g., only
encryption). Also, different FQAs may have dependencies between
them (e.g., usability and security), which should be taken into ac-
count during architecture elicitation. Moreover, FQAs normally
crosscut the system architecture since their operationalization may
entail the injection of several functional components in different
places. For instance, the encryption concern requires a place where
to introduce the encrypt functionality to encrypt the data, and an-
other place where to decrypt the same data.

To better modularize FQAs, in (Horcas et al. 2014, 2016) we
model them separately from the base architecture following an
aspect-oriented (AO) approach. We defined a family of FQAs,
following a Software Product Line (SPL) approach, with the purpose
of automatically generating a customised configuration of the FQAs
required by a concrete application. For example, the security FQA
is defined in terms of access control, authentication, privacy, etc.,
being each of them optional features (i.e., we define a variability
model with FQAs variants), but a concrete application may require
only authentication (i.e., the customised configuration of FQAs for
this application is composed by authentication). But, in order to
weave a customised configuration of FQAs the software architect
(SA) must manually identify the points in the application where
the FQAs components must be incorporated. This is a complex and
error prone task since the SA has no mechanism to verify that the
composition of a set of FQA components in the places (i.e., the join
points) selected by them is correct. This means that after injecting a
FQA with the approach of (Horcas et al. 2014, 2016) the SA has no
guarantee that the resulting architecture complies the desired quality
attribute. Similar existing approaches (Alam et al. 2013; Kienzle
et al. 2009) have also strong support for modelling and customize
FQAs, but weaving FQA models into software architectures is still
quite challenging also for them. That is, the join points are manually
selected and no checking is performed of the weaving validity.

Although there are clear benefits of FQA modularisation and
reuse (Alam et al. 2013; Horcas et al. 2016), manually selecting the
join points where to weave them can lead to corrupted architectures.
For example, consider the case of the encryption that operationalized
the confidentiality property. This can be easily modelled by a
component with an encrypt and a decrypt methods, which can
be interpreted as advice in AO terms. Imagine that to incorporate

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
c© 2016 ACM. 978-1-4503-4033-5/16/03...

http://dx.doi.org/10.1145/2892664.2892700

201

ServerClient

+countVotes(c : Candidate) : Object

Counting

+castVote(v : Vote) : boolean
+getResults(c : Candidate) : Object

EVoting

+storeVote(v : Vote)
+retrieveVotes() : List<Vote>

VotingStorage

«component»

VoteCounting

«component»

ElectionData

«component»

VoteServer
«component»

VoteClient

«use»

«use»

«use»

«use»

Figure 1. E-Voting application architecture.

these functions to the system architecture we define a weaving
transformation that injects them at the start and at the end of a
concrete component interaction. However, note that confidentiality
property is only achieved when this operationalisation is applied to
all interactions between components deployed on different hosts (or
even between all components regardless of deployment, depending
on the attacker model). In this case, if confidentiality components
are not woven in all and correct places, the process cannot fairly
guarantee that the application architecture possesses the desired
quality; and the benefits of reusing an automatically built FQA
configuration could be lost. Furthermore, it may not be very efficient
to apply encryption/decryption to component connections that do
not connect components deployed on different hosts, so injecting
confidentiality components to all interactions may lead to some
inefficiency problems. Therefore, there is a need to support software
architects in making this selection decision.

In this paper, we aim to provide a solution that helps the software
architects choose the join points where to weave FQAs and to verify
the semantic correctness of the woven application architecture, in
order to assure the overall quality of the system. We extend the
current Aspect-Oriented SPL approach (Horcas et al. 2016) with
contracts that support the software architect to (1) automatically
identify the architecture join points where a particular FQA can
be woven, and (2) check whether a given FQA has been applied
semantically correctly to a software architecture model. To do that,
we enhance the current FQA models with additional models for
structural pre-conditions and invariants.

After this introduction, in Section 2 we motivate our work with
a real case study and an example of an encryption FQA. Section 3
explains our approach. In Section 4 we discuss the related works
and compare them with our approach. Finally, Section 5 concludes
the paper and sets our future work.

2. Motivation and Case Study
Our case study is an electronic voting (e-voting) application which
is one of the environments where quality attribute requirements
are complex. Figure 1 shows a simplified software architecture in
UML with the main functionality of the e-voting application. This
architecture does not include any component related to the security
requirements. The VoteClient component allows clients to cast
their votes to the server as well as to consult the election results, by
using the EVoting interface. The VoteServer component receives
the votes and the ElectionData stores them in a digital ballot
box through the VotingStorage interface. The VoteCounting
component through the Counting interface provides access to the
election results.

Apart from the base functionality shown in Figure 1, the e-voting
application requires a list of security FQAs. Concretely, it is of
paramount importance to guarantee the confidentiality of the votes as
well as the integrity of them, even in the counting process. Moreover,
the voters must be authenticated within the application in order to
cast their votes. This means that some security components must
be incorporated into the e-voting architecture to satisfy the security
requirements: an Encryption component to encrypt/decrypt the
votes, an Integrity component to check their integrity, and a

+method1(a1 : T1, a2 : T2, ...) : ReturnType1
+method2(a3 : T3, a4 : T4, ...) : ReturnType2
+...()

I1

+encrypt(o : T) : EncryptedT
+decrypt(o : EncryptedT) : T

Encryption
«component»

EncryptionImpl

«component»

C2
«component»

C1

«crosscuts»«crosscuts»

«use»

Figure 2. Encryption FQA model.

Authentication component to authenticate the voters. To do that,
the SA can use a reusable library of FQAs independent from the
application, customise them to the application requirements and
add them to the base application architecture (Horcas et al. 2016).
However, this is not an easy and straightforward task for the SA
as we show in the rest of the section. Thus, the process has to
guarantee that the FQAs have been applied semantically correctly to
the software architecture of the application. In this paper, we focus
on the encryption FQA.

2.1 The Encryption FQA
The encryption FQA (Figure 2) is defined as two pieces of advice:
encrypt and decrypt, being applied in different join points of the
architecture. The join point where the encrypt advice is applied
must intercept a “sender component" (C1 in Figure 2). This means
that the EncryptionImpl component crosscuts the base application
in the C1 component through the Encryption interface (I1). Then
the SA only has to decide the specific message type that must
be sent encrypted (or whose confidentiality must be preserved).
This requires to specify the specific method to intercept (method1,
method2,. . .), the message (a1, a2,. . .), and the message’s type (T1,
T2,. . .) in the communicating interface (I1). If there are many sender
components, interfaces, methods, or messages, this means that the
encryption weaving pattern may be applied many times inside the
software architecture, but in different join points. The join point
where the decrypt advice is applied must intercept a “receiving
component" (C2 in Figure 2). The signature of the decrypt input
parameter must be the same as the encrypt method’s output.

If the message to encrypt is a result of the communication — i.e.,
a return type such as ReturnType1 or ReturnType2 in Figure 2,
communicating components switch their roles. The “sender compo-
nent" becomes C2 whose encrypt the result before sending it, while
the “receiving component" becomes C1 and will decrypt the returned
message after receiving it. Potentially, some such interactions may
not need to be woven (e.g., because the communication happens all
in one host). However, at a minimum, the SA needs to identify all
potential such points and verify whether the FQA needs to be woven
there.

2.2 Applying the Encryption FQA to the E-Voting
Application

The conditions to preserve confidentiality in the software architec-
ture of the e-voting application are (1) “a message of type Vote
must be always sent encrypted to guarantee confidentiality"; and (2)
“the message sent before encryption must be equal to the received
message after decryption".

To weave the encryption FQA into the software architecture of
the e-voting application, we follow our current Aspect-Oriented
SPL approach (Horcas et al. 2016) (summarized in Figure 3)1 in
which we separate the Application Software Architecture

1 FQAs’ Constraint Models is the enhancement of our approach and the
main contribution of this paper.

202

(2) Composition

(1) Separation of concerns

Application Software

Architecture

FQAs’ Weaving

Patterns

Application

+ FQAs

Software

Architecture

Library of

FQAs

FQAs’ Constraint

Models

Weaving

Process
Software Architect

(SA)

fills

Figure 3. Our approach enhanced with constraints models.

from the Library of FQAs customised for the application require-
ments and ready to be incorporated into the application architecture.
The transformation rules in charge of weaving the FQAs are de-
fined in the FQAs’ Weaving Patterns asset. Applying the FQAs’
Weaving Patterns, the Weaving Process generates automati-
cally the final software architecture of the application with the FQAs
woven (Appli-cation + FQAs Software Architecture).

SAs are currently provided only with some pre-defined transfor-
mations for weaving FQAs, but not with any means of identifying
the relevant join points and checking the correct application of the
transformations to those join points. For example, the encryption
pattern needs to be applied at the start and end of the communica-
tion between the VoteClient and VoteServer components, since
they are deployed on different hosts (see e-voting application in
Figure 1). However, in order to preserve confidentiality of the votes
also in the counting process, the encryption pattern needs to be also
applied between the inside components of the server (VoteServer,
ElectionData, and VoteCounting) to avoid an internal attack.
Moreover, the methods to be intercepted by the encryption pattern
will be those related to the votes such as the castVote method
of the EVoting interface, or the storeVote and retrieveVotes
methods of the VotingStorage interface in charge of storing the
votes and retrieving them for the counting process. The messages
to be encrypted/decrypted will be the votes whose type is Vote in
the application. Furthermore, it may not be efficient to apply the
encryption pattern to join points where it is not needed, such as in
the method to consult the results of the elections (getResults).

So, the SA has to identify and decide the join points where to
apply the weaving pattern, and instantiate the parameters correctly to
apply the pattern (e.g., the message, the communicating components,
etc.). If the encryption pattern is not woven in all and correct places,
the resulting software architecture cannot fairly guarantee that the
required confidentiality property is satisfied.

3. Defining Pre-Conditions for the FQAs Weaving
Patterns

In order to help the SA in the process of choosing the correct join
points where to apply the weaving patterns of the FQAs, and verify-
ing the semantic correctness of the woven application architecture,
we enhance the current FQA models (top of Figure 3) with addi-
tional models for structural pre-conditions and invariants (FQAs’
Constraint Models). To this end, we extend FQA models with
additional model fragments (called constraint models) that give an
abstract description of the key architectural structures expected in a
target software architecture.

For example, Figure 4 shows a constraint model for the en-
cryption FQA. Structural elements of Figure 4 represent a simple
pre-condition extracted from the encryption FQA pattern of Figure 2.
The pre-condition is independent from the application, and can be
read as “given a message type (called it |T), every component inter-
action in the target software architecture, where messages of type

|T are exchanged, needs to be woven with the encrypt/decrypt
advice." The chosen type can be the type of an input parameter
of a method (|PT) or the return type of a method (|RT). The pre-
condition explicitly defines that the weaving pattern will weave
the encrypt advice “before" the message is sent and the decrypt
advice “after" the message is received.

When weaving the FQA into a target architecture, these con-
straint models will be mapped on structures in the application soft-
ware architecture to demonstrate that the FQA has been applied in
the correct way. Checking of the mappings can be incorporated with
the already existing weaving transformations or can be treated as a
separate previous step. Once constraint models have been defined,
they can be used in two complementary ways:

1. guiding SAs in selecting join points; and

2. verifying the choices of join points made by SAs.

We discuss each option in more detail in the following.

3.1 Matching Pre-Conditions to Identify Join Points
Following with our case study, the SA wants to weave encryption,
but does not know where all the potentially relevant places in the
application architecture would be. Checking the encryption pre-
condition (Figure 4) with our e-voting application architecture
(Figure 1) finds all possible completions where the encryption
pattern can be applied (see Figure 5). Every interaction between two
components through an interface matches the pre-conditions and
represent a completion in the architecture where the encryption
FQA pattern is suitable to be applied. When multiple different
completions can be found, the application of the weaving is under-
specified and the SA needs to provide more detail in a guided manner
(e.g., the component’s name in case of multiple possible joint points).
Thus, this is a largely manual approach requiring the SA to provide
the majority of parameters for the application of a weaving pattern.

To facilitate this task to the SA, we can interpret the pre-
conditions as an invariant/implicit for-all in a more traditional graph-
transformation manner. The SA would provide specific instantia-
tions for the desired parameters of the pre-conditions that conform
the FQAs’ Constraint Models (in graph-transformation terms a
partial match) such as the method name |m through the communi-
cation of the target message is done, the name (e.g., |param) or the
type of the method’s parameter that represents the message (e.g.,
|T or |RT). In our case study, the SA might only want to provide
an instantiation of the parameter |T with the value Vote and the
interpretation would be that the weaving should be applied for all
completions of this partial match: Matchings 1, 7, 8, 9 and 10 in
Figure 5. In a supporting tool this might be realised as an automatic
application of the weaving in all the right places.

3.2 Checking the Weaving Pattern’s Application
The pre-conditions can be also used for checking the validity of
the weaving pattern’s application, depending on how safely the
morphism can be completed. For example, there might be multiple
completions concerning the same two components communicating
such as in Matchings 1, 2, 5, and 6 of Figure 5; and only one of
which would be correct. In such a case we may wish to give the SA
the opportunity to make an explicit choice rather than automatically
weaving to all of these completions. In our case study, Matching
1 is the correct completion to preserve confidentiality of the votes
in the communication between the VoteClient and VoteServer
components. This is because the information to be encrypted (i.e.,
the votes) are only in Matching 1, while Matchings 2, 5, and 6
do not deal with the votes. Thus, the encryption pattern is applied
to the completion represented as Matching 1. In a supporting tool,
instantiating the pre-condition might be also realised as a check that

203

+encrypt(|o : |T) : |EncryptedT
+decrypt(|o : |EncryptedT) : |T

Encryption

+|m(|param : |PT) : |RT

|I1

«component»

EncryptionImpl

«component»

|C2

«component»

|C1

encrypt return type |RT "after" component |C2
executes method |m of interface |I1.

decrypt target return type |RT "after" component |C1
calls method |m of interface |I1.

encrypt target message |param with type |PT
"before" component |C1 calls method |m of
interface |I1.

decrypt target message |param with type |PT
"before" component |C2 executes method |m of
interface |I1.

«crosscuts» «crosscuts»

«use»

Figure 4. Pre-condition for the encryption FQA.

ServerClient

+countVotes(c : Candidate) : Object
Counting

+castVote(v : Vote) : boolean
+getResults(c : Candidate) : Object

EVoting

+storeVote(v : Vote)
+retrieveVotes() : List<Vote>

VotingStorage

«component»
VoteCounting

«component»
ElectionData

«component»
VoteServer

«component»
VoteClient

«use»

«use»

«use»

«use»

Matching 1 Matching 2

Matching 5 Matching 6 Matching 7

Matching 3

Matching 10

Matching 4

Matching 8 Matching 9

Figure 5. Completions of the encryption pre-condition in the e-voting application.

the SA has manually applied the weaving correctly in all correct
places.

Similarly, the communications between the VoteServer and
the VoteCounting need to be also encrypted to preserve the
confidentiality of the votes in the counting process. So, the SA
only has to instantiate the parameters of the pre-conditions for those
completions represented in Figure 5 as Matching 7, 8, 9, and 10.

Figure 6 shows the final architecture of the e-voting application
with the encryption FQA woven in the correct completions to sat-
isfy the specified confidentiality requirements. Note that although
the final application respects the confidentiality requirements speci-
fied in Section 2, the votes are stored in the storage device without
encryption. This is because the pre-condition we defined speci-
fies that encryption must be applied between two communicating
components. In order to allow applying encryption between two
independent (no-communicating) components (e.g., to encrypt the
votes before storing them, and to decrypt the votes after retrieving
them) we need to defined a more complex pre-condition involving
independent components.

We have tested the validity of the approach by implementing the
pre-conditions of the FQAs’ constraint models using the Henshin
transformation language (Arendt et al. 2010).

ServerClient

+countVotes(c : Candidate) : Object

Counting

+castVote(v : Vote) : boolean
+getResults(c : Candidate) : Object

EVoting

operations

+encrypt(o : Object) : Object
+decrypt(o : Object) : Object

Encryption

+storeVote(v : Vote)
+retrieveVotes() : List<Vote>

VotingStorage

«component»

EncryptionImpl

«component»

VoteCounting

«component»

ElectionData

«component»

VoteClient

«component»

VoteServer

«decrypt»«encrypt»

«decrypt»

«encrypt»

«decrypt»

«encrypt»

«use»

«use»

«use»

«use»

Figure 6. Correct completions for the encryption weaving pattern.

4. Related Work
There are few approaches that address the variability of the QAs
from a functional point of view as we do using SPLs (Horcas
et al. 2014, 2016). Juristo et al. (Juristo et al. 2007) propose
an elicitation and specification approach for usability features
with major implications on software functionality (e.g., feedback,
contextual help). They specify pre-conditions for the usability
patterns but do not provide any automatic process or mechanism as
we do, to incorporate the usability functionalities into the application

204

and to verify that the resulting application architecture satisfies the
required QAs.

The RiPLE-DE (Cavalcanti et al. 2011) process is a domain
design process for SPL that can be extended to model the FQA vari-
ability as part of a family of products. The variability of the FQAs
is represented in feature model diagrams and in order to achieve
desired quality levels, the models are enhanced with information of
the base application. This makes the variability of the FQA compo-
nents directly depend on the base application, preventing the FQA
components from being reused. Our approach, in contrast, models
separately the FQAs from the base application, improving the modu-
larisation of the software architectures. As a consequence of a better
modularisation, our approach improves the maintainability of the
global system because changes in an FQA component affect only
that component; and also the reusability improves because both base
architecture and FQAs can be reused easier in different systems.

A similar approach built on the benefits of modularisation is
the concern-oriented reuse (CORE) process (Alam et al. 2013).
However, they model separately the variability of the interfaces
of the concerns (e.g., interfaces of frameworks or components)
instead of modelling the variability of the internal functionality
of the components as we do. Also, they focus on the impacts
of the concerns on non-functional qualities (e.g., access time,
efficiency, etc.) by using goal models, while we focus on the
operationalisation of the quality attributes (e.g., the functional
description of the encryption functionality). Moreover, they do not
provide any mechanism to verify the semantic correctness of the
woven application architecture, delegating the weaving process to
the Reusable Aspect Models (RAM) weaver (Kienzle et al. 2009).

QADA (Matinlassi et al. 2002) is a specific method for design-
ing SPL architectures by transforming systematic functionality and
FQAs into software architectures, but this proposal does not explic-
itly take into account the requirements of the FQAs, so the semantic
correctness of the final architecture cannot be checked, in order to
assure the quality of the system.

5. Conclusions and Future Work
In this paper we have presented an approach towards the automation
of the weaving process between FQAs models, already defined and
taken from a library of FQAs, and the software architectures that
needs to satisfy them. Concretely, the approach consists on defining
for each FQA a constraint model with the pre-conditions for the
correct weaving of that FQA. This means that we provide the SA
with some help for identifying the join points where to insert each
FQA. So, instead of manually doing the join point identification as
existing approaches propose, the system suggests the SA a set of
join points where to weave the FQAs and to verify the semantic
correctness of the woven application architecture, in order to assure
the quality of the system.

As regards future work, we plan to model the pre-conditions as
part of the variability model of the FQAs, including the cross-tree
constraints that relate the pre-condition models with the other FQA
models previously defined (Horcas et al. 2016). This would allow

the SAs to customise the constraint models for different systems that
may require different pre-conditions. We also plan to automate the
checking/guidance process of our approach to minimize the effort of
instantiating the parameters of the pre-conditions by SAs, specially
for those SAs that are not experts on aspect-orientation or quality
attributes.

Acknowledgments
Work funded by the Spanish TIN2012-34840 (co-funded by EU
with FEDER funds), and MAGIC P12-TIC1814 projects.

References
O. Alam, J. Kienzle, and G. Mussbacher. Concern-oriented soft-

ware design. In Model-Driven Engineering Languages and Sys-
tems, volume 8107 of LNCS, pages 604–621. 2013. ISBN
978-3-642-41532-6. doi: 10.1007/978-3-642-41533-3_37. URL
http://dx.doi.org/10.1007/978-3-642-41533-3_37.

T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Hen-
shin: Advanced concepts and tools for in-place emf model trans-
formations. In Model Driven Engineering Languages and Sys-
tems, volume 6394 of LNCS, pages 121–135. 2010. ISBN
978-3-642-16144-5. doi: 10.1007/978-3-642-16145-2_9. URL
http://dx.doi.org/10.1007/978-3-642-16145-2_9.

F. Bachmann, L. Bass, M. Klein, and C. Shelton. Designing software
architectures to achieve quality attribute requirements. Software, IEE
Proceedings -, 152(4):153–165, 2005. ISSN 1462-5970. doi: 10.1049/ip-
sen:20045037.

R. d. O. Cavalcanti, E. S. de Almeida, and S. R. Meira. Extending the RiPLE-
DE process with quality attribute variability realization. In QoSA-ISARCS,
2011.

L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional
Requirements in Software Engineering. The Kluwer international series
in software engineering. Kluwer Academic Publishers Group, Dordrecht,
Netherlands, 1999. ISBN 0-7923-8666-3.

J. M. Horcas, M. Pinto, and L. Fuentes. Injecting quality at-
tributes into software architectures with the common variability
language. In Component-Based Software Engineering, CBSE,
pages 35–44, 2014. doi: 10.1145/2602458.2602460. URL
http://doi.acm.org/10.1145/2602458.2602460.

J. M. Horcas, M. Pinto, and L. Fuentes. An automatic pro-
cess for weaving functional quality attributes using a soft-
ware product line approach. Journal of Systems and Soft-
ware, 112:78–95, 2016. doi: 10.1016/j.jss.2015.11.005. URL
http://dx.doi.org/10.1016/j.jss.2015.11.005.

N. Juristo, A. Moreno, and M.-I. Sanchez-Segura. Guidelines for eliciting
usability functionalities. IEEE Transactions on Software Engineering, 33
(11):744–758, 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.70741.

J. Kienzle, W. Al Abed, and J. Klein. Aspect-oriented multi-view model-
ing. In Aspect-Oriented Software Development, AOSD, pages 87–98,
2009. ISBN 978-1-60558-442-3. doi: 10.1145/1509239.1509252. URL
http://doi.acm.org/10.1145/1509239.1509252.

M. Matinlassi, E. Niemelä, and L. Dobrica. Quality-driven Architecture De-
sign and Quality Analysis Method: A Revolutionary Initiation Approach
to a Product Line Architecture. 2002.

205

