
AutoTMTDyn: A Matlab Software Package to Drive TMT Lagrange
Dynamics of Series Rigid- and Continuum-link Mechanisms

S.M.H. Sadati1,2,3, S. E. Naghibi4, A. Shiva2,3, S. Zschaler2, H. Hauser1, I. Walker5,
K. Althoefer4 and T. Nanayakkara3

Abstract— Having a reliable accurate and at the same time
simple dynamic model is important in analysis, design, path
planning and control of robotic systems. Such models should
be fast, convenient and simple to use to be accepted by the
ever growing robotics research community. Among all the
challenges, controlling complex systems with compound rigid
and continuum body mechanisms with switching dynamical
behavior, due to interaction with their environment in different
applications, has attracted much research recently. To address
these concerns, we have upgraded the AutoTMTDyn Matlab
software package, a recently introduced tool for deriving La-
grange Equations of Motion (EOM) in a vector formalism, with
the ability to handle series continuum-link mechanisms, e.g.
continuum manipulators, and introducing an easy to use high
level language (HLL) as a new text-based user interface. The
variable curvature kinematics and TMT Lagrange dynamics
of a continuum beam is derived in differential and discrete
forms. The HLL elements are described and showcased in
modeling and analysis of three bioinspired dynamical systems;
lumped-system model of a spider web, continuum model for
a rat whisker, and modeling a continuum pneumatic module.
The challenges with using the package for systems with large
modeling states, and the necessary modules to further automate
the analysis of the dynamic systems are briefly discussed.

Keywords- Lagrange Dynamics, Continuum Mechanism, High
Level Language, Software.

I. INTRODUCTION

ROS, Orocos, SmartSoft, OpenRTM are some robotic
software platforms developed to make robotics programming
and configuration as accessible as possible to application
domain experts. Domain-Specific Languages (DSLs) and
Model-driven Engineering (MDE) are interesting emerging
areas in the robotics research community, e.g. distributed
robotics, system control, and vision, with the potential to
facilitate the future programming of robots significantly. A
DSL is a dedicated programming language for a particular

This work is supported by the U.K. Engineering and Physical Sciences
Research Council (EPSRC) Grant EP/N03211X/2, European Union H2020
project FourByThree code 637095, and Leverhulme Trust Project RPG-
2016-345.

1S.M.H. Sadati and Helmut Hauser are with the Department of Engineer-
ing Mathematics, University of Bristol, Bristol BS8 1TH, U.K. (email:
s.m.hadi.sadati@bristol.ac.uk)

2S.M.Hadi Sadati, Ali Shiva and Steffen Zschaler are the Department of
Informstics, King’s College London, London WC2R 2LS, U.K.

3S.M.Hadi Sadati, Ali Shiva and Thrishantha Nanayakkara are with the
Dyson School of Design Engineering, Imperial College London, London
SW7 2AZ, U.K.

4S. E. Naghibi and K. Althoefer is with the Department of Mechanical
and Material Science, Queen Mary University of London, London E1 4NS,
U.K.

5Ian D. Walker is with the Department of Electrical and
Computer Engineering, Clemson University, Clemson, USA.
(iwalker@g.clemson.edu)

problem domain, offering specific abstractions and notations,
to decrease the coding complexity and increase programmer
productivity. DSLs have been used for programming complex
systems, e.g. robots, for which traditional general-purpose
languages do not provide a good correlation between the im-
plementation requirements and language features. To address
this, DSLs are a powerful and systematic way to provide two
main features; (i) quick and precise adaptation by domain
experts, who are not familiar with general purpose program-
ming languages; (ii) hiding the architecture complexity by
software engineers to facilitate complex configuration and
design architectures before transferring to domain experts.
The High level Language (HLL) presented in this work is
an initial effort in making dynamic modeling tools more
accessible for interdisciplinary research in robotics.

On the other hand, modeling compound mechanisms with
rigid and continuum links has been a challange in soft robotic
research [1], [2], [3]. Newton-Euler, Lagrange, the Principle
of Virtual Work (PVW) and TMT methods have been used
to derive a dynamical system Equation Of Motion (EOM)
[4], [5]. Based on the Newton-Euler method, the EOM of
a system can be derived by knowing the relations between
the system components. This method is straight forward but
is complex to derive, results in large number of model-
ing states, and is not suitable for controller design. Matlb
Robotics Toolbox is one of the software packages using
this method [6]. Euler-Lagrange and Principle of Virtual
Work methods use independent generalized coordinates to
simplify the EOM derivation and support control design.
Most of commercially available dynamical system modeling
softwares, e.g. MSC. ADAMS, utilize Lagrange dynamics
formulation [7]. However, the final set of equations can
be complex and hard to interpret. Hence, an extra step is
taken to collect Lagrange EOM in a close vector formalism.
Alternatively, the TMT method is recently used by Wisse
et al. for modeling passive biped walker [5]. The TMT
method is based on parts of Lagrange’s investigations on
analytical mechanics, dealing with generalized coordinates,
virtual work and inertial forces, which was published in
in 1788 and before his well-known ”Lagrange method”.
L. Schwab and M. Wisse called this method ”TMT” be-
cause of the system inertia matrix in generalized coordinates
(TTMT), where T is the Jacobean transformation matrix
between the Cartesian and generalized coordinates spaces
and M is the system inertia matrix. As a result, highest
order derivatives are eliminated in the derivation process
and the EOM are derived in a closed vector formalism. The

derived terms are independent, hence suitable for parallel
numerical implementation, and clear to interpret for control
design. Changes in the system model due to change in the
constraints or elements are easier to handle and do not require
to fully re-derive the Lagrangian. Constraints, especially for
parallel mechanisms and inverse dynamic investigation, are
easy to implement too. ”AutoTMTDyn” is a software pack-
age, developed to automate the derivation steps, based on
Matlab programming Language and functionality, and with
a text-based user interface [4]. We have used the package
in modeling different dynamical systems recently [3], [8].
The application of the TMT method in modeling continuum
manipulators is presented in [9]. In this research, a new HLL
is proposed for the package for an easy-to-use and clear
interface. The discrete derivation of a continuum dynamic
system is investigated and implemented in the package.

In the following sections, first the terminology and ele-
ments of HLL used to design the text-based user interface
is explained. Then the differential and discrete dynamics
of a continuum beam as a series of continuum elements
is explained based with the TMT method. Finally, three
examples are discussed where the ”AutoTMTDyn” package
and the newly derived equations are employed for modeling
bioinspired systems: a spider web, a rat whisker, and a
pneumatic continuum manipulator. A short discussion is
provided on the challenges in modeling large dimension
systems and the necessary modules for further automation of
the derivation and analysis of more general systems’ EOM.
The source codes used in this research are available at [10].

II. MATERIALS AND METHODS

A. High Level Language for Text-based User Interface

Examples of the HLL proposed for the new text-based
user interface is presented in Fig. 1-, 2-, and 3- middle.
The user-interface are a Matlab code that needs to employ
a HLL, to define the system geometry and properties,
and calls ”TMTEoM QP”, ”EquilEoM”, ”SimEoM” and
”AnimEOM” functions, to derive the system EOM, calculate
the initial static equilibrium, simulate the dynamics, and
animate the results respectively [10]. The HLL inputs
are Matlab language structures that store properties of
the simulation environment, named ”wolrd”, each body,
named ”body(ib)”, joints, ”joint(ij)”, and external loads,
”exload(il)”, where i is a general numerator. ”world.g”
stores the gravity vector. ”body(ib).m” is the body mass,
”body(ib).I” is the inertia matrix, ”body(ib).l com” is the
body Center of Mass (COM) and ”body(ib).tip” is the
link tip which is used for an animation of the system
in action. A rigid link is a single body with regular
translational and rotational joints, but a continuum link
a series of finite number of bodies interconnected with
continuum joints. So we use ”body(ib)” for both body types.
A ”joint(ij)” can be a regular joint between the system
elements, spring/dampers, external inputs such as actuators,
or constraints. ”joint(ij).first” and ”joint(ij).second” are the
numbers associated with the first and second body that the
joint is connected to. ”joint(ij).tr(it)” is the the joint itht

transformation matrix, there can be as many as needed,
and has ”joint(ij).tr(it).trans” element for its Cartesian
translational vector and ”joint(ij).tr(it).rot” for its rotational
vector. ”joint(ij).tr(it).rot” can have two forms. It is a 1× 2
vector with the first element for the axis of rotation and the
second element for the amount of rotation. Alternatively, it
is a 1× 3 vector indicating that it is a continuum rotational
link with transformation matrix based on curvatures/torsion
of a beam. If any of the elements of ”joint(ij).tr(it).tr” or
”joint(ij).tr(it).rot” are free degrees of Freedom (DOF),
they are indicated by ”inf”. For any DOF,there should
be a ”joint(ij).dof(jd)” element, where id is a numerator
referring to the number of the associated DOF in the order
that the joint DOFs are defined. ”joint(ij).dof(id).init”
is the initial value, ”joint(ij).dof(id).input” is the input
acting directly on the DOF, and if a spring/damper is
needed parallel to the DOF, e.g. a revolute joint with a
parallel spring/damper, ”joint(ij).dof(id).spring.coeff” is the
spring coefficient, ”joint(ij).dof(id).spring.init” is the spring
initial (reference) state, ”joint(ij).dof(id).spring.comp”
is the spring compression ratio at pre-stress, and
”joint(ij).dof(id).damp.visc” is the viscous damping
value. To impose symmetric constraints between the DOFs,
”joint(ij).dof(id).equal2” can set to the number of one
of the previously defined DOFs to force an equality
constraint. ”joint(ij).tr2nd” is the joint transformation
matrix w.r.t. the second body with the same ”.trans”
and ”.rot” elements. If the joint is a part of the
mechanism original chain, i.e. the chain used to derive
the system EOM and any alternative chain is considered
as constraint, this can be left empty. ”tr2nd” should
be defined for the spring/dampers or constraints. In
the case of a spring/damper, ”joint(ij).spring.coeff”,
”joint(ij).spring.init”, ”joint(ij).spring.comp”, and
”joint(ij).damp.visc” are scalars for the spring coefficient,
initial (reference) value, compression ratio (as initial pre-
stress), and viscous damping respectively. The ”joint(ij)”
is a constraint if ”joint(ij).tr2nd” is defined but none of
”.spring” or ”.damp” are defined. Only translational springs
and dampers are supported at the moment. Finally, external
loads are defined by ”exload(il)”. ”exload(il).body” is
the number of the body that the load is acting upon and
”exload(il).tr(it)” is the transformation matrix w.r.t. the
body local frame, with the same ”trans” and ”rot” elements
as explained before.

B. Continuum Beam Variable Curvature Dynamics

A continuum beam with circular cross-section is consid-
ered, similar to the model presented for a bioinspired whisker
setup in Fig. 2- left. External loads causes local strains (vξ̂i)
and curvatures/torsion (uξ̂i) along a continuum beam, where
ξ̂i(s) is the ith direction of a local curvilinear frame at the
s axial location along the beam backbone. To derive the
system differential mechanics, the beam can be considered
as a finite number of infinitesimal beam elements with
infinitesimal mass (dm = σads), moment of inertia (dI =
diag[(3r2w+δs2)/12, (3r2w+δs2)/12, r2w/2]dm), and linear

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

x
[m

]

-0.15-0.1-0.0500.050.10.15

y [m]

0 0.1 0.2
-0.1

0
0.1

Hub
Capture
Frame
Radial
Mooring

g

for 𝑖𝑐 = 1 : 6 { iterate over circular webs
 for 𝑖𝜙 = 1 : 16 { iterate over radii and middle spiral masses

 𝑖𝑏 = (𝑖𝑐-1)*16 + 𝑖𝜙 + 1 ; body counter

 𝑖𝑘= 𝑖𝑘 + 1 spring numerator,
 body(𝑖𝑏).type = 'rigid' ; body type
 body(𝑖𝑏).m = 𝑛𝐶𝑛𝜌𝑎𝑙 ; body mass
 body(𝑖𝑏).l_com = [0, 0, 0] ; body COM position in local frame

 joint(𝑖𝑘).first = 0 ; DOF Joint 1st body
 joint(𝑖𝑘).second = 𝑖𝑏 ; DOF joint 2nd body
 joint(𝑖𝑘).tr(1).trans = [inf, inf, inf] ; 3D translational DOFs only
 joint(𝑖𝑘).dof(1).init = 𝑥(𝑖𝜙,𝑖𝑐) ; 1st DOF initial position

 joint(𝑖𝑘).dof(1).damp.visc = 𝜈𝑚 ; 1st DOF viscous damping
 ... similar for 2nd and 3rd DOF
 𝑖𝑘 = 𝑖𝑘 + 1, 𝑖𝑝= … previous mass number

 joint(𝑖𝑘).first = 𝑖𝑝; spring 1st body (previous body)

 joint(𝑖𝑘).second = 𝑖𝑏 ; spring 2nd body (current body)
 joint(𝑖𝑘).tr.trans = [0, 0, 0] ;
 joint(𝑖𝑘).tr.rot = [0, 0] ; location & orientation in 1st body
 joint(𝑖𝑘).tr2nd.trans = [0, 0, 0] ;
 joint(𝑖𝑘).tr2nd.rot = [0, 0] ; location & orientation in 2nd body
 joint(𝑖𝑘).spring.coeff = 𝑛𝐶𝑛𝐸𝑎/(𝐶𝑐𝑙); spring coefficient
 joint(𝑖𝑘).spring.init = 𝐶𝑐𝑙; spring initial length

 joint(𝑖𝑘).damp.visc = 𝑛𝐶𝑛𝜈𝑙/(𝐶𝑐𝑙) ;
 if mod(𝑖𝜙 , 2) == 1 { no radial spring for middle spiral thread masses

 joint(𝑖𝑘).spring.coeff = 0 ; joint(𝑖𝑘).damp.visc = 0 ; }
 𝑖𝑘 = 𝑖𝑘 + 1, 𝑟 = [𝑥, 𝑦, 𝑧](𝑖𝜙+1,𝑖𝑐) − [𝑥, 𝑦, 𝑧](𝑖𝜙,𝑖𝑐); spiral spring vector

 𝑙𝑠 = sqrt(𝑟. 𝑟T) ; spiral spring length
… same as above for spiral springs } }

0 0.01 0.02 0.03 t [s]
-1

0

1

2

3

4

5

z
[m

]

10-6

N6- Signal

0 0.01 0.02 0.03 t [s]

0

1

2

3

4

z
[m

]

10-5

N2- Signal

N21 exp N22 N23 N24 N21 Sym N22 N23 N24

0 0.005 0.01 0.015 0.02 t [s]

0

2

4

6

8

z in
[m

]

10-4

Input- Signal

Input- FFT Analysis

0 200 400 600 800 1000

f [Hz]
0

0.5

1

1.5

2

|Z
in

| [
m

]

10-4

0 500 1000 1500 2000 2500 3000

f [Hz]
-80

-60

-40

-20

G
 [d

B
]

N2- Bode Diag.

0 500 1000 1500 2000 2500 3000

f [Hz]
-80

-60

-40

-20

G
 [d

B
]

N6- Bode Diag.

0 1 2 3 4 5 6
10-3

-1

-0.5

0

0.5

1

z
[m

]

10-6

N11
N21
N31
N51
N61
N71
N81

t [s]
1 2 3 4 5

Experiment Number

0.1

0.14

0.18

0.22

0.26

M
a
x
.

N
o
rm

a
lis

e
d

 D
is

p
la

ce
m

e
n

t

0.3

0

40

80

-40

-80

0-40-80 40 80 0

0.2

0.4

0.6

0.8

1Normalized Delay

x
 [

m
m

]

y [mm]

N1

N2

N3 N5

N6

N7

N8

a)

d) e) f)

Fig. 1. Left- schematics of a spider web lumped system model; middle- parts of input code for driving EOM with ”AutoTMTDyn” software package;
right- sample simulation results for excitation on the left horizontal thread (N2).

δ lt

l t

PMHSvb

Reference Frame
(s0) PS

ξ̂1

(st)

ξ̂2

ξ̂3

(ξ̂ , R ,ρ)(s)

(ξ̂ , R ,ρ)(s+ds)

dρ

x
y

z l PS

Sensors

Rigid Case
Whisker
Contact Surface
Element COM

Silicon Case (kb)
Stiffness Variable Case(ks)

Equivalent Springs

lHS

l PM

… base segment (body 1)
for i = 2 : ns+1 whisker segments
 body(i).m = dm ; element mass
 body(i).I = dI22 ; element inertia moment
 body(i).l_com = [0, 0, δs/2] ; COM in local frame
 body(i).tip = [0, 0, δs] ; element length
 joint(i).first = i - 1 ; previous element number
 joint(i).second = i ; current element number
 joint(i).tr(1).trans = [0, 0, δs] ; joint translation
 joint(i).tr(1).rot = [0, inf, 0] ; continuum joint rotation...

with DOF along 2nd axis
 joint(i).dof(1).init = u0(i-1) ; initial value from static analysis
 joint(i).dof(1).spring.coeff = ku ; bending stiffness
 joint(i).dof(1).spring.init = 0 ; spring resting angle
 joint(i).dof(1).damp.visc = μu ; bending viscous damping
end
… base variable stiffness
joint(i+1).first = 0 ; spring 1st end (ground)
joint(i+1).second = 1 ; 2nd end (body 1)
joint(i+1).tr(1).trans = [0, 0, lPS] ; position w.r.t. ground
joint(i+1).tr2nd.trans = [0, 0, lPS] ; position w.r.t. base body
joint(i+1).spring.coeff = ks ; variable spring coefficient
joint(i+1).spring.init = 0 ; spring initial length
joint(i+1).damp.visc = μs ; variable damping coefficient

Fig. 2. Left- schematics of a bio-inspired whisker design and equivalent modeling framework; middle- parts of input code for driving EOM with
”AutoTMTDyn” software package; right- sample simulation results for base element curvature (θPS) and translation (lHS).

… base segment (body 1)-
fixed to reference frame

for i = 2 : ns-1 middle segments
 body(i).m = dm ; element mass
 body(i).J = dJ22 ; element inertia moment
 body(i).l_com = [0, 0, δs/2] ; COM in local frame
 body(i).tip = [0, 0, δs] ; element length
 joint(i).first = i - 1 ; previous element number
 joint(i).second = i ; current element number
 joint(i).tr(1).trans = [0, 0, δs] ; translation along each element
 joint(i).tr(2).trans = [inf, inf, inf] ; translation joint with 3 DOFs for strains
 joint(i).tr(2).rot = [inf, inf, inf] ; continuum rotation joint with 3 DOFs

for curvatures/torsion
 id = 1… 3 ; 1st... 3rd DOFs: strains
 joint(i).dof(id).spring.coeff = Kvx|y|z ; shear stiffness
 joint(i).dof(id).damp.visc = μvx|y|z ; shear viscous damping
 joint(i).dof(id).input = 0|0|fp ; pneumatic input axial force
 id = 4… 6 ; 4th… 6th DOFs: curvatures/torsion
 joint(i).dof(id).spring.coeff = Kux|y|z ; bending/torsion stiffness
 joint(i).dof(id).damp.visc = μux|y|z ; bending/torsion viscous damping
 joint(i).dof(id).input = τpx|τpy|τpz ; pneumatic input bending moments
 ... default values
end
… tip segment (force sensor)-

with the same joint DOFs

0 10 20 30 40 50 60
-5

0

5

10

15

P
 [P

a]

10 4

Input Pressure- No Tip Load

0 10 20 30 40 50 60
-0.1

-0.05

0

0.05

tip
 p

os
. [

m
]

Tip Position- No Tip Load

0 10 20 30 40 50

0

5

10

15

P
 [P

a]

10 4

Input Pressure- with Tip Load

p
1
@ /2 p

2
@- /3 p

3
@7 /6

0 10 20 30 40 50 60

t [s]

-1

-0.5

0

0.5

1

f t
 [N

]

Tip Force f
tx

f
ty

f
tz

0 10 20 30 40 50 60

-0.02

0

0.02

0.04

0.06

0.08

tip
 p

os
. [

m
]

Tip Position- With Tip Loadx
exp

x
sim

y
exp

y
sim

z
exp

z
sim

0 10 20 30 40 50 60

t [s]

-2

-1

0

1

2

3
 t

 [N
m

]
10 -3

Tip Torque tx

ty

tz

Fig. 3. Left- schematics of variable curvature kinematics and differential mechanics of a pneumatic continuum manipulator [9]; middle- parts of the
input code for driving EOM with ”AutoTMTDyn” software package; right- sample simulation results for a manipulator with three pressure inputs and no
external load.

axial (Kv = diag[G G E]−1a) and bending/torsional (Ku =
diag[EJ11 EJ22 GJ33]−1) elasticities based on Hooke’s law.
E and G ≈ E/3 are the beam elastic and shear modulus, σ
is the beam material density, rw and a = πr2w are the cross-
section radius and area, Jii is the second moment of area
around the ith-axis and J = diag[πr4w/4, πr

4
w/4, πr

2
w/2].

The beam Variable Curvature (VC) kinematics is ex-
pressed by the following two differential equations for the
Cartesian position vector (ρ(s)) and rotation matrix (R(s)) of
each point along the beam w.r.t. v and u. The dependency

of the terms on s are not noted in the equations throughout
the text for simplicity

ρ,s = R(v + [0 0 1])ds, (1)
R,s = [u]×R,

where y,x = ∂y/∂x and [x|X]× = X|x is an operator that
creates a skew-symmetric matrix (X) from a vector x or
extracts the base vector (x) of a skew-symmetric matrix X .

From a lumped-system (equivalent mass-spring-damper
system) point of view, each element is a rigid cylindrical

segment with dm mass and dI inertia. The elements are
interconnected with a 3-degree of freedom (DOF) linear
joint, with linear compliance (translational springs) Kv ,
followed by a 3-DOF rotational joint with linear compliance
(torsional springs) Ku. The system generalized coordinates
(modeling states) for each element are q(s) = [v u]. Then
ρ,sq q̇ is each element total linear velocity expressed in the
reference frame and ω,sq̇ is the element total angular velocity
expressed in the local frame, where ω(s) = [RTR,q]×. The
system continuum dynamics can be derived using the TMT
method [4] as in [9],

dM̄ q̈︸ ︷︷ ︸
Acceleration

+ (dDM + dDµ)q̇︸ ︷︷ ︸
Velocity Dependent

+ dKq − dW︸ ︷︷ ︸
ConservativeActions

= (2)

dF︸︷︷︸
Non−conservativeActions

,

where dM̄ = TTdMT , T(s) = [ρ,q ω]T is the Jacobian
transformation between the Cartesian and generalized coor-
dinates, dM = diag[dm dm dm dI11 dI22 dI33] is the
system differential mass matrix, dDM = TTdM(T q̇),q are
the inertial velocity dependent terms, dDµ = diag[µv µu]ds
is the viscous damping term, µv|u is the element strain
or curvature/torsion viscous damping coefficient, dK =
diag[Kv Ku]ds is the element stiffness matrix based on
Hooke’s law, dW = ρT,qgdm, g = [0 0 − g] is gravity
vector, g is the gravity acceleration, dF = dFp+dFt are the
non-conservative terms, e.g. due to the input pressure axial
force (fp = 2Σ3

i=1piap) and bending moment (τp = 2papρo)
as dFp = [0, 0, fp, τp]Tds in a pneumatic continuum
manipulator, and external tip force (ft) and moment (τt) as
dF = (ρT,sqft+u

T
,qτt)ds. ap = πr2p and rp are the pneumatic

chamber inner area and radius, and ρo is a matrix of which
rows are position vectors of the pneumatic chambers on the
manipulator cross-section as

ρo =

 sin(π/2) − cos(π/2) 0
sin(−π/6) − cos(−π/6) 0
sin(7π/6) − cos(7π/6) 0

 . (3)

The static solution to find the beam mean bent configuration,
due to ftε, is found by setting q̈ = q̇ = ftm = 0 in Eq. (2).

Eq. (1) and (2) result in a set of partial differential equa-
tions (PDE) to be integrated over time and spatial domains
numerically. Optimization based methods [3], approximate
continuous solutions [9] and finite element method (FEM)
[11] are available for such PDEs. Alternatively, this PDE
can be converted to an ordinary differential equation (ODE)
by considering a fixed number of elements (ns) with length
δs = st/ns and writing Eq. (1) in a discrete form as

ρ(i+1) = ρi +Ri(vi + [0 0 1])δs (4)
R(i+1) = Ri + [ui]×Riδs,

Thus, Eq. (2) can be derived similar to a series rigid-link
mechanism with q = [q1 ... qns

] as the system states. As a
result, the system static equilibrium and dynamic solution
are numerically more efficient, and modal analysis and
controller design tasks are easier to implement. However,

the discretization is valid as long as a high enough number
of elements are considered and for K ≈ cte (constant),
i.e. small axial (δs ≈ cte) and cross-sectional (a ≈ cte)
deformations.

III. TEST CASES

A. Spider Web Lumped System Model

A web is modeled as a mass-spring-damper network with
8 radii and 6 circular webs to capture all the experimental
points (Fig. 1- left). Point masses are assumed at the nodes
and middle of the circular webs, to capture the thread
second deformation modes and simulate the secondary outer
frame, with Cartesian motion of the masses as generalized
coordinates (q). AutoTMTDyn Matlab package is used to
derive the system constrained Lagrange dynamics in a vector
formalism in the form

Mq̈+Nmq̇+LT
,q(NlL,q q̇+K∆L)+Mg = λ, qin = u, (5)

where M is the mass matrix, Nm is the lateral damping
matrix, Nl is the longitudinal damping matrix, L is the spring
vector, |L| is their length, ∆L = (1 − Ccl0/|L|)L,qq is
the spring deformation vector, K is the stiffness coefficient
matrix, g =9.81 m/s2 is the gravity, u is the input signal, λ is
a Lagrange multiplier resulting from the input constraint, qin
is the generalized coordinate on which the input signal is ex-
erted, ẋ = ∂x/∂t for the time derivatives, and y,x = ∂y/∂x
for the spatial derivatives. λ, i.e. a constrained dynamic sys-
tem, is used to match the experiments excitation to numerical
simulations since it is hard to measure input force on the
web and only the displacement imposed at the excitation
location can be observed accurately. Modeling parameters
are extracted from the experimental measurements and [12].
Parts of the code used to model the web in AutoTMTDyn
package and sample simulation results are presented in Fig.
1- middle & right.

B. A Bioinspired Whisker Setup

In a bioinspired whisker setup, the system is assumed
as a relatively high stiffness cantilever rod as a compliant
fixture to a moving base [13] (Fig. 2- left). The whisker
base tissue compliance is modeled as a constant horizontal
(along x-axis) linear spring (kb) and a variable stiffness one
(ks) constrained in y- and z- axis directions. kb is tuned
to change the signal processing properties of the system.
The whisker is rubbed against a target surface, with lt offset
from the whisker base, which is modeled as a fixed system
contacting with a constant velocity (vb) moving surface.
The whisker initially deforms to a bent configuration upon
contacting with the surface (Fig. 2- left), to be predicted
by an initial static analysis. The surface irregularities (δlt)
excite small vibrations in the whisker w.r.t. its bias bent
configuration. The whisker is modeled as a variable curvature
(VC) continuum beam [11], with linear stress-strain relation
(Hooke’s law), to capture the bent configuration vibration and
ability to model large deformations (structural nonlinearities)
in our parameter studies. Hall Sensor (HS) readings are pre-
dicted based on the sensor varying distance to the permanent

magnet (PM) at the whisker base. The beam curvature at
the contacting point with the Piezoelectric Sensor (PS) are
used for modeling the PS readings. The sensors dynamics
contributions are neglected in our model.

The TMT method as in section II-B is used to derive the
system EOM and for static, dynamic and modal analysis.
In this case, the strain (v ≈ 0), out of plane bending
(uξ̂1 ≈ 0), and torsion (uξ̂3 ≈ 0) are negligible based on
the problem physics (G ≈ 0). Parts of the code used in
the ”AutoTMTDyn” package input code for the intermediate
elements and base stiffness variable spring are presented in
Fig. 2- middle.

C. A Pneumatic Continuum Module

A Manipulator is modeled as a variable curvature (VC)
continuum beam with linear stress-strain relation (Hooke’s
law) (Fig. 3- left). The ”AutoTMTDyn” Matlab software
package is used to drive the system EOM with four elements
and the same parameters as in [9] except for E = 130 KPa,
and linear and rotational viscous damping of 0.01 Ns/m. Parts
of the input code used in The ”AutoTMTDyn” package and a
comparison between the simulation and experimental results
in the case without external load are presented in Fig. 3-
middle & right.

IV. CONCLUSION

In this research, new upgrades for The ”AutoTMTDyn”
software package, a Matlab tool for deriving the TMT
Lagrange EOM in a vector formalism are introduced to
facilitate the text-base user interface using a high level
language, and to handle series continuum-link mechanisms.
The variable curvature kinematics and the TMT Lagrange
dynamics of a continuum beam are derived and the HLL
elements are described and showcased in modeling of three
bioinspired dynamical systems; lumped-system model of
a spider web, continuum model for a rat whisker, and a
continuum pneumatic module. The dynamic modeling results
for the three test cases are stable and in correlation with
experimental results. However, the derivation of equations
and the numerical simulation are computationally expensive
for such systems with large number of DOFs. The dynamic
model needs to be improved by considering alternative
modeling states, e.g. absolute states or momentum, to achieve
sparsity for possible real-time performance. The derivation
of this new system of equations is not trivial and is left for
a future study. Alternatively, reduced order models [9] and
modal analysis [14] can be used, instead of direct numerical
simulations, to reduce the numerical computational cost of
investigating the dynamical behavior of such systems.

REFERENCES

[1] F. Boyer, “Multibody system dynamics for bio-inspired locomo-
tion: from geometric structures to computational aspects,” Bioinspir.
Biomim., p. 23, 2014.

[2] C. D. Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Dynamic
Control of Soft Robots Interacting with the Environment,” (Livorno,
Italy), p. 9, IEEE, 2018.

[3] S. Sadati, S. E. Naghibi, A. Shiva, I. D. Walker, K. Althoefer,
and T. Nanayakkara, “Mechanics of Continuum Manipulators, a
Comparative Study of Five Methods with Experiments,” in Towards
Autonomous Robotic Systems, vol. 10454, (Surrey, UK), pp. 686–702,
Springer International Publishing, 2017.

[4] S. Sadati, S. Naghibi, and M. Naraghi, “An Automatic Algorithm
to Derive Linear Vector Form of Lagrangian Equation of Motion
with Collision and Constraint,” Procedia Computer Science, vol. 76,
pp. 217–222, 2015.

[5] M. Wisse and R. Q. v. d. Linde, Delft Pneumatic Bipeds.
Springer Science & Business Media, June 2007. Google-Books-ID:
NE8CmUMdG38C.

[6] “Robotics System Toolbox,” 2018.
[7] D. Negrut and A. Dyer, “Adams/solver primer,” MSC. Software Doc-

umentation, Ann Arbor, 2004.
[8] S. Sadati and A. Meghdari, “Singularity-free planning for a robot

cat free-fall with control delay: Role of limbs and tail,” in 2017 8th
International Conference on Mechanical and Aerospace Engineering
(ICMAE), pp. 215–221, July 2017.

[9] S. Sadati, S. E. Naghibi, I. D. Walker, K. Althoefer, and
T. Nanayakkara, “Control Space Reduction and Real-Time Accurate
Modeling of Continuum Manipulators Using Ritz and RitzGalerkin
Methods,” IEEE Robotics and Automation Letters, vol. 3, pp. 328–
335, Jan. 2018.

[10] S. Sadati, “AutoTMTDyn Software Package,” May 2017.
https://github.com/hadisdt/AutoTMTDyn.

[11] M. Gazzola, L. H. Dudte, A. G. McCormick, and L. Mahadevan,
“Forward and inverse problems in the mechanics of soft filaments,”
Royal Society Open Science, vol. 5, p. 171628, June 2018.

[12] S. Sadati, S. E. Naghibi, K. Althoefer, and T. Nanayakkara, “Toward
a Low Hysteresis Helical Scale Jamming Interface Inspired by Teleost
Fish Scale Morphology and Arrangement,” (Livorno, Italy), p. 7, IEEE,
2018.

[13] H. Wegiriya, N. Sornkarn, H. Bedford, and T. Nanayakkara, “A bio-
logically inspired multimodal whisker follicle,” pp. 003847–003852,
IEEE, Oct. 2016.

[14] C. Della Santina, D. Lakatos, A. Bicchi, and A. Albu-Schffer, “Using
Nonlinear Normal Modes for Execution of Efficient Cyclic Motions in
Soft Robots,” arXiv:1806.08389 [cs], June 2018. arXiv: 1806.08389.

