
Amalgamation of Domain Specific Languages
with Behaviour

Francisco Durána, Antonio Moreno-Delgadoa, Fernando Orejasb, Steffen Zschalerc

aUniversidad de Málaga, Spain
bUniversidad Politécnica de Cataluña, Spain

cKing’s College London, UK

Abstract

Domain-specific languages (DSLs) become more useful the more specific they are to
a particular domain. The resulting need for developing a substantial number of DSLs
can only be satisfied if DSL development can be made as efficient as possible. One
way in which to address this challenge is by enabling the reuse of (partial) DSLs in
the construction of new DSLs. Reuse of DSLs builds on two foundations: a notion
of DSL composition and theoretical results ensuring the safeness of composing DSLs
with respect to the semantics of the component DSLs.

Given a graph-grammar formalisation of DSLs, in this paper, we build on graph
transformation system morphisms to define parameterized DSLs and their instantiation
by an amalgamation construction. Results on the protection of the behaviour along the
induced morphisms allow us to safely reuse and combine definitions of DSLs to build
more complex ones. We illustrate our proposal in e-Motions for a DSL for production-
line systems and three independent DSLs for describing non-functional properties,
namely response time, throughput, and failure rate.

1. Introduction

In Model-Driven Engineering (MDE) [53], models are used to specify, simulate,
analyse, modify, and generate code. One of the key ingredients making this approach
particularly attractive is the use of domain-specific languages (DSLs) [59] for the def-
inition of such models. DSLs offer concepts specifically targeted at a particular do-
main, which allow experts in such domains to express their problems and requirements
in their own languages. On the other hand, the higher amount of knowledge embed-
ded in these concepts allows for much more complete and specialised generation of
executable solution code from DSL models [35].

The application of these techniques to different domains has resulted in the prolif-
eration of DSLs of very different nature: the more specific for a particular domain a
DSL is, the more effective it is. However, DSLs are only viable if their development
can be made efficient. With this goal in mind, DSLs are often defined by specifying
their syntax in some standard formalisms, such as the Meta-Object Facility (MOF)
[45], thus facilitating the use of generic frameworks for the management of models,
including their composition, the definition of model transformations, etc.

Preprint submitted to Journal of Logical and Algebraic Methods in Programming April 28, 2015

Syntax is however just part of the story. Without a definition of the operational
behaviour of the defined DSLs, we will not be able to simulate or analyse the defined
models. In recent years, different formalisms have been proposed for the definition
of the behaviour of DSLs, including UML behavioural models [21, 25], abstract state
machines [12, 3], or in-place model transformations [11, 50]. Between all these ap-
proaches, we find the use of in-place model transformations particularly powerful, not
only because of its expressiveness, but also because the use of transformations facili-
tates integration with other MDE environments and tools, such as simulators and model
checkers.

While we have reasonably good knowledge of how to modularise DSL syntax, the
modularisation of language semantics is an as yet unsolved issue. In our work, we build
on a graph-grammar [6, 52, 16] formalisation of DSLs and on graph transformation
system (GTS) morphisms to define composition operations on DSLs. Specifically, we
define parameterized GTSs, that is, GTSs which have other GTSs as parameters. The
instantiation of such parameterized GTSs is then provided by an amalgamation con-
struction. Specifically, we are interested in how GTS morphisms preserve or protect
behaviour, and what behaviour-related properties may be guaranteed on the morphisms
induced by the amalgamation construction defining the instantiation of parameterized
GTSs. These properties will be key, for instance, to be able to assert that the behaviour
of a system has not changed when extended, if such an extension satisfies certain prop-
erties.

In this paper, we propose the use of parameterized DSLs, we present their imple-
mentation in the e-Motions system, and show its potential presenting the definition of
the e-Motions implementation of a production-line DSL. This paper is an extension
of our earlier work in [44, 13, 14]. Beyond a comprehensive presentation of the core
concepts, this paper extends the work to situations where more than two DSLs need
to be composed. We also provide more adequate notions of behaviour-aware mor-
phisms. Specifically, we lift our definitions for behaviour-preserving, -reflecting, and
-protecting morphisms to deal with traces, rather than only individual rules. In addi-
tion to extending formal results on these morphisms to these new notions, we provide
formal results stating that composition of multiple GTSs is equivalent to iterative com-
position of individual GTSs, allowing us to directly apply previous results to the case
of composing multiple DSLs. We present an implementation of these mechanisms as
an extension of the e-Motions system, and show its use in our case study. Although we
motivate and illustrate our approach using the e-Motions language [48], our proposal
is language-independent, and all the results are presented for GTSs and adhesive HLR
systems [40, 18].

The rest of the paper is structured as follows. Section 2 introduces behaviour-
reflecting, -preserving and -protecting GTS morphisms, the construction of amalga-
mations in the category of GTSs and GTS morphisms, and several results on these
amalgamations. Section 3 presents the e-Motions definition of a production-line DSL
and a number of DSLs for non-functional properties. We then show how the compo-
sition operations presented in Section 2 can be used to derive a DSL for specifying
and analysing non-functional properties of production-line systems. Section 4 presents
our current implementation. The paper presents some related work in Section 5 and
finishes with some conclusions and future work in Section 6.

2

2. Graph transformation and GTS amalgamations

Graph transformation [52, 16] is a formal, graphical and natural way of expressing
graph manipulation based on rewriting rules. In graph-based modelling (and meta-
modelling), graphs are used to define the static structures (e.g., classes and objects)
that represent visual alphabets and sentences over them. In this section, we give a brief
overview of the main elements of our approach to composing graph-transformation
systems. Some of the results in this section builds on results presented in [13], appro-
priate references are provided when necessary. The main focus of our presentation in
this paper is on the extension of these concepts to traces and to the composition of more
than two graph-transformation systems.

We start the rest of this section by introducing adhesive categories in Section 2.1,
and some basic concepts such as rules and rule morphisms in Section 2.2. This section
also presents the constructions for rule amalgamation and multi-amalgamation. Sec-
tion 2.3 focuses on typed graph transformation systems, and serves as ground on which
to introduce, in Section 2.4, the key notions of GTS morphism and different types of
GTS morphisms depending on the effects they have on the behaviour of the involved
GTSs, and some results on them. Section 2.5 presents our construction for GTS amal-
gamation and key results on them related to the guarantees on behaviour of the induced
morphisms. Section 2.6 extends the amalgamation construction to multiple GTSs.

2.1. Adhesive Categories

The original double-pushout (DPO) approach for graph transformation was defined
for directed, labeled graphs. However, the fact that all constructions and results were
based on categorical constructions led to a search for a characterisation of the kind of
categories for which the fundamental theory of DPO graph transformation would apply.
In this sense, Lack and Sobocinski defined in [40] the key notion of Adhesive Category
that captured the essential properties that ensured the satisfaction of this fundamental
theory. Thus, given proofs for adhesive categories of general results such as the Local
Church-Rosser, or the Parallelism and Concurrency Theorem, they are automatically
valid for any category which is proved an adhesive category.

Unfortunately, not all interesting categories of graph structures, like the category of
attributed graphs, form adhesive categories. For this reason different variations on the
notion of adhesivity have been proposed to cope with these cases. In particular, in this
paper, we use the notion of adhesive high-level replacement (HLR) category, that was
defined in [20] to cope with the case of attributed typed graphs. The concepts of adhe-
sive and (weak) adhesive HLR categories abstract the foundations of a general class of
models, and come together with a collection of general semantic techniques [40, 18].
The category of typed attributed graphs with inheritance, the one of interest to us, was
proved to be adhesive HLR in [20].

Definition 1 (Adhesive HLR category [20]). A category C together with a class of
monomorphismsM is an adhesive HLR category if the following properties hold:

1. M is closed under isomorphism, composition and decomposition (i.e., if g ◦ f ∈
M and g ∈M then f ∈M).

3

2. C has pushouts and pullbacks along M-morphisms. Moreover, M-morphisms
are closed under pushouts and pullbacks.

3. Pushouts in C alongM-morphisms are van Kampen squares, i.e. for any com-
mutative diagram as the one below, assuming that h1 and h2 areM-morphisms,
if the bottom diagram is a pushout and the back faces are pullbacks then the top
diagram is a pushout if and only if the front diagrams are pullbacks.

A′0h′1

uu

h′2
$$

f0

��

A′1 g′1
$$

f1

��

A′2

f2

��

g′2

uu
A′3

f3

��

A0

h1
tt h2

$$
A1

g1 $$

A2

g2tt
A3

In the case of attributed typed graphs,M is the class of injective graph morphisms
that are the identity when restricted to the attribute values. Intuitively, adhesive cate-
gories abstractly characterize the categories of set-like structures, where pushouts are
some sort of union, pullbacks are some sort of intersection and pushout complements
are some kind of set difference. Moreover, the van Kampen property ensures that we
have some kind of distributivity between union and intersection.

2.2. Rules, rule morphisms, and rule amalgamations

In the DPO approach to graph transformation, a rule with application conditions
p is of the form (L

l← K
r→ R, ac) with graphs L, K, and R, called, respectively,

left-hand side, interface, and right-hand side, some kind of monomorphisms (typically,
inclusions) l and r, and ac a (nested) application condition on L [31]. A graph transfor-
mation system (GTS) is a pair (P, π) where P is a set of rule names and π is a function
mapping each rule name p into a rule (L

l← K
r→ R, ac).

The application of a transformation rule p = (L
l← K

r→ R, ac) to a graph G via
a match m : L→ G, such that m satisfies ac, written m |= ac, is constructed as two
gluings (1) and (2), which are pushouts in the corresponding graph category, leading to
a direct transformation G

p,m
=⇒ H .

ac B L

m

��
(1)

K
loo r //

��
(2)

R

��
G Doo // H

Note the use of the B symbol to attach the application condition to its associated rule
in the diagrams.

Application conditions may be positive or negative. Positive application conditions
have the form ∃a, for a monomorphism a : L → C, and demand a certain structure

4

in addition to L. Negative application conditions of the form @a forbid such a struc-
ture. A match m : L → G satisfies a positive application condition ∃a if there is
a monomorphism q : C → G satisfying q ◦ a = m. A match m satisfies a nega-
tive application condition @a if there is no such monomorphism. Given an application
condition ∃a or @a, for a monomorphism a : L → C, another application condition
ac can be established on C, giving place to nested application conditions [31]. We
can write Boolean expressions with them. Thus, given application conditions ac and
ac′, we may write ¬ac, ac ∧ ac′, ac ∨ ac′, or ac ⇒ ac′ with the expected mean-
ing. Given an application condition ac on L and a monomorphism t : L → L′, then
there is an application condition Shift(t, ac) on L′ such that for all m′ : L′ → G,
m′ |= Shift(t, ac)↔ m = m′ ◦ t |= ac (see [31]).

ac B L
t //

m ��

L′

m′��

Shift(t, ac)C

G

To improve readability, we assume projection functions ac, lhs and rhs, returning,
respectively, the application condition, left-hand side and right-hand side of a rule.
Thus, given a rule p = (L

l← K
r→ R, ac), ac(p) = ac, lhs(p) = L, and rhs(p) = R.

We only consider injective matches, that is, monomorphisms. If the match m is
understood, a DPO transformation step G

p,m
=⇒ H will be simply written G

p
=⇒ H . A

transformation sequence or trace ρ = ρ1 . . . ρn : G ⇒∗ H via rules p1, . . . , pn is
a sequence of transformation steps ρi = (Gi

pi,mi
==⇒ Hi) such that G1 = G, Hn =

H , and consecutive steps are composable, that is, Gi+1 = Hi for all 1 ≤ i < n.
Given a sequence ρ = ρ1 . . . ρn, we define ρ(i) = ρi, for 1 ≤ i ≤ n. The category
of transformation sequences over an adhesive category C, denoted by Trf(C), has all
graphs in |C| as objects and all transformation sequences as arrows.

Next, we introduce the notion of a rule morphism, relating two graph-transformation
rules. Parisi-Presicce proposed in [46] a notion of rule morphism similar to the one be-
low, although we consider rules with application conditions, and require the commuting
squares to be pullbacks instead of pushouts.

Definition 2. (Rule morphism [13]) Given rules pi = (Li
li←− Ki

ri−→ Ri, aci), for
i = 0, 1, a rule morphism f : p0 → p1 is a tuple f = (fL, fK , fR) of graph monomor-
phisms fL : L0→L1, fK : K0→K1, and fR : R0→R1 such that the squares with the
span morphisms l0, l1, r0, and r1 are pullbacks, as in the diagram below, and such that
ac1 ⇒ Shift(fL, ac0).

p0 :

f

��

ac0 B L0

fL

��
pb

K0
l0oo r0 //

fK

��
pb

R0

fR

��
p1 : ac1 B L1 K1

l1

oo
r1

// R1

Asking that the two squares are pullbacks means, precisely, to preserve the “struc-
ture” of objects. I.e., we preserve what should be deleted, what should be added, and

5

what must remain invariant. Of course, pushouts also preserve the created and deleted
parts, but they reflect this structure as well, which we do not want in general. With
componentwise identities and composition, rule morphisms define the category Rule.

A key concept in the constructions in Section 2.5 is that of rule amalgamation [1].
The amalgamation of two rules p1 and p2 glues them together into a single rule p̃ to
obtain the effect of the original rules. I.e., the simultaneous application of p1 and p2
yields the same successor graph as the application of the amalgamated rule p̃. The
possible overlapping of rules p1 and p2 is captured by a rule p0 and rule morphisms
f : p0 → p1 and g : p0 → p2.

Definition 3. (Rule amalgamation [13]) Given rules pi = (Li
li← Ki

ri→ Ri, aci), for
i = 0, 1, 2, and rule morphisms f : p0 → p1 and g : p0 → p2, the amalgamated rule
p1+p0 p2 is the rule (L l← K

r→ R, ac) in the diagram below, where subdiagrams (1),
(2) and (3) are pushouts, l and r are induced by the universal property of (2) so that
all subdiagrams commute, and ac = Shift(f̂L, ac2) ∧ Shift(ĝL, ac1).

ac0 B L0

fL

{{

gL
""

(1)

K0

}}

""

l0oo r0 //

(2)

R0

}}

""

(3)

ac2 B L2

f̂L{{

K2

||

l2oo
r2

// R2

||
ac1 B L1

ĝ L
##

K1

""
l1

oo
r1

// R1

!!
ac B L K

l
oo

r
// R

Notice that in the above diagram all squares are either pushouts or pullbacks (by
the van Kampen property [40]) which means that all their arrows are monomorphisms
(by being an adhesive HLR category).

This construction can be extended to amalgamate any number of rules with respect
to a given one.

Definition 4. (Multiple rule amalgamation) Given graph transformation rules pi =

(Li
li←− Ki

ri−→ Ri, aci) and p′i = (L′i
l′i←− K ′i

r′i−→ R′i, ac
′
i), for 0 ≤ i ≤ n, and

p = (L
l← K

r→ R, ac), and given rule morphisms f i : pi → p′i and gi : pi → p, for
0 ≤ i ≤ n, (see Figure 1) the amalgamated rule p̂ = p{qpip′i}0≤i≤n is the rule

(L̂
l̂← K̂

r̂→ R̂, âc), where L̂, K̂ and R̂ are the colimits of f iL : Li → L′i and giL : Li → L,
f iK : Ki → K ′i and giK : Ki → K, and f iR : Ri → R′i and giR : Ri → R, respectively,
where l̂ and r̂ are uniquely determined by the universal properties of these colimits,
and where âc = Shift(f̂L, ac) ∧

∧
0≤i≤n Shift(ĝiL, ac

′
i).

Notice that this construction does not coincide with multi-amalgamation, as defined
in [26], where n rules are amalgamated given a single kernel rule — the construction
in [26] is also provided for HLR categories and for rules with (nested) application
conditions. It is not difficult to show, based on the HLR-adhesiveness of our cate-
gory, that the morphisms ĝ iL : Li → L′, f̂L : L→ L′, ĝ iK : Ki → K ′, f̂K : K → K ′,

6

pn

fn

��

gn

))p1

. .
.

f1

��

g1 // p

f̂

��

p0

f0

��

g0
11

p′n
ĝ n

((p′1

. .
.

ĝ 1

// p̂

p′0

ĝ 0

11

Figure 1: Multiple Rule Amalgamation

ĝ iR : Ri → R′, and f̂R : R→ R′, defined by the corresponding colimits, are monomor-
phisms. In particular, we have that this multiple amalgamation construction is equiva-
lent to iterating standard amalgamation.

Definition 5. (Iterative rule amalgamation) Given graph transformation rules pi =

(Li
li←− Ki

ri−→ Ri, aci) and p′i = (L′i
l′i←− K ′i

r′i−→ R′i, ac
′
i), for 0 ≤ i ≤ n, and p =

(L
l←− K r−→ R, ac), and given rule morphisms f i : pi → p′i and gi : pi → p, for

0 ≤ i ≤ n, the iterative amalgamated rule p̂ = p{⊕pip′i}0≤i≤n, together with rule
morphisms f̂ : p→ p̂ and ĝ i : p′i → p̂, for 0 ≤ i ≤ n, are inductively defined as fol-
lows:

• Case n = 0: p̂ = p+p0 p
′
0, f̂ : p→ p̂ and ĝ 0 : p′0 → p̂ and âc are, respectively,

the rule morphisms and the application condition defined by the amalgamation
construction (cf. Definition 3).

• Case n > 0: If ̂̂p = p{⊕pip′i}0≤i≤n−1, with rule morphisms ̂̂f : p→ ̂̂p and̂̂g i : p′i → ̂̂p , for 0 ≤ i ≤ n− 1, then we have rule morphisms ̂̂g n : pn → ̂̂p , witĥ̂g n = ̂̂f ◦ gn, and fn : pn → p′n. So, we can define p̂ = ̂̂p +pn p
′
n together

with morphisms f̂ : p→ p̂ and ĝ i : p′i → p̂, for 0 ≤ i ≤ n, with f̂ = h ◦ ̂̂f and
ĝ i = h ◦ ̂̂g i, for 0 ≤ i ≤ n− 1, and where ĝ n : p′n → p̂ and h : ̂̂p → p̂ are the
morphisms defined by the amalgamation ̂̂p +pn p

′
n.

(See Figure 2.)

Proposition 1. Given transformation rules pi = (Li
li← Ki

ri→ Ri, aci) and p′i =

(L′i
l′i← K ′i

r′i→ R′i, ac
′
i), for 0 ≤ i ≤ n, and p = (L

l← K
r→ R, ac), and given rule

morphisms f i : pi → p′i and gi : pi → p, for 0 ≤ i ≤ n,

p{⊕pip′i}0≤i≤n = p{qpip′i}0≤i≤n.

PROOF. Direct consequence of the fact that a sequence of pushouts is a colimit. �

7

pn

gn

''

fn

��

̂̂g n

��

pn−1

fn−1

��

gn−1

,, p

f̂

oo

̂̂
f

��

p1

. .
.

f1

��

g1
11

p0

f0

��

g0

33

p′n

ĝ n

��

p′n−1 ̂̂g n−1

,,

ĝ n−1

��

̂̂p

h

��

p′1

. .
. ̂̂g 1

11

ĝ 1

&&

p′0

̂̂g 0

33

ĝ 0

)) p̂

Figure 2: Iterative Rule Amalgamation

2.3. Typed graph transformation systems

A (directed unlabeled) graph G = (V,E, s, t) is given by a set of nodes (or ver-
tices) V , a set of edges E, and source and target functions s, t : E → V . Given
graphs Gi = (Vi, Ei, si, ti), with i = 1, 2, a graph homomorphism f : G1 → G2 is
a pair of functions (fV : V1 → V2, fE : E1 → E2) such that fV ◦ s1 = s2 ◦ fE and
fV ◦ t1 = t2 ◦ fE . With componentwise identities and composition this defines the
category Graph.

Given a distinguished graph TG, called type graph, a TG-typed graph (G, gG), or
simply typed graph if TG is known, consists of a graph G and a typing homomorphism
gG : G → TG associating with each vertex and edge of G its type in TG. However,
to enhance readability, we will use simply gG to denote a typed graph (G, gG), and
when the typing morphism gG can be considered implicit, we will often refer to a
typed graph (G, gG) just as G. A TG-typed graph morphism between TG-typed graphs
(Gi, gi : Gi → TG), with i = 1, 2, denoted f : (G1, g1) → (G2, g2), (or simply f :
g1 → g2), is a graph morphism f : G1 → G2 which preserves types, i.e., g2 ◦ f = g1.

8

G2

g2

��
G1

k 77

g1 ''
TG

f
// TG′

(a) Forward retyping functor

G2
g2

��

// G′2

g′2

��
G1

k
88

g1 &&

// G′1

k′
88

g′1
''

TG
f

// TG′

(b) Backward retyping functor

Figure 3: Forward and backward retyping functors

GraphTG is the category of TG-typed graphs and TG-typed graph morphisms, which
is the comma category Graph over TG.

If the underlying graph category is adhesive (resp., adhesive HLR, weakly adhe-
sive) then so are the associated typed categories [16], and therefore all definitions in
Section 2.2 apply to them. A TG-typed graph transformation rule p = (L

l← K
r→ R, ac)

is a span of injective TG-typed graph morphisms and a (nested) application condition
on L. Given TG-typed graph transformation rules pi = (Li

li← Ki
ri→ Ri, aci), with

i = 1, 2, a typed rule morphism f : p1 → p2 is a tuple (fL, fK , fR) of TG-typed graph
monomorphisms such that the squares with the span monomorphisms li and ri, for
i = 1, 2, are pullbacks, and such that ac2 ⇒ Shift(fL, ac1). TG-typed graph trans-
formation rules and typed rule morphisms define the category RuleTG, which is the
comma category Rule over TG.

We are interested in amalgamating GTSs over different type graphs. Following [6],
we use forward and backward retyping functors to deal with graphs over different
type graphs. A graph morphism f : TG→ TG′ induces a forward retyping functor
f> : GraphTG → GraphTG′ , with f>(g1) = f ◦ g1 and f>(k : g1→g2) = k by
composition, as shown in the diagram in Figure 3(a). Similarly, such a morphism f in-
duces a backward retyping functor f< : GraphTG′→GraphTG, with f<(g′1) = g1 and
f<(k′ : g′1 → g′2) = k : g1 → g2 by pullbacks and mediating morphisms as shown in
the diagram in Figure 3(b). Since, as said above, we refer to a TG-typed graphG→ TG
just by its typed graph G, leaving TG implicit, given a morphism f : TG→ TG′, we
may refer to the TG′-typed graph by f>(G). Since we can retype graphs and graph
morphisms, we can retype rules. Given a rule p over a type graph TG and a graph
morphism f : TG→ TG′, we will write things like f<(p) and f>(p) denoting, respec-
tively, the backward and forward retyping of rule p.

A typed graph transformation system over a type graph TG, is a graph transforma-
tion system where the given graph transformation rules are defined over the category of
TG-typed graphs. Since we deal with GTSs over different type graphs, we will make
explicit the given type graph. This means that, from now on, a typed GTS is a triple
(TG, P, π) where TG is a type graph, P is a set of rule names and π is a function
mapping each rule name p into a rule (L

l← K
r→ R, ac) typed over TG.

2.4. GTS morphisms and their effects on behaviour

The set of transformation rules of a GTS specifies a behaviour in terms of the
derivations obtained via such rules. A GTS morphism defines a relation between its

9

source and target GTSs by providing an association between their type graphs and
rules.

Definition 6. (GTS morphism [13]) Given GTSs GTSi = (TGi, Pi, πi), for i = 0, 1,
a GTS morphism f : GTS0→GTS1, with f = (fTG, fP , fr), is given by a morphism
fTG : TG0→ TG1, a surjective mapping fP : P1→P0 between the sets of rule names,
and a family of rule morphisms fr = {fp : f>TG(π0(fP (p)))→ π1(p)}p∈P1

.

Given a GTS morphism f : GTS0 → GTS1, each rule in GTS1 extends a rule in
GTS0. However if there are internal computation rules in GTS1 that do not extend any
rule in GTS0, we can always consider that the empty rule τ is included in GTS0, and
assume that those rules extend the empty rule. Notice that to deal with rule morphisms
defined on rules over different type graphs we retype the source rules. Typed GTSs and
GTS morphisms define the category GTS.

Different GTS morphisms may lead to different relationships between the possible
derivations in its source and target GTSs. For example, when a GTS is extended with
additional rules and alien elements, e.g., to measure or to verify some property, we
need to guarantee that such an extension does not change the behaviour of the original
GTS. Specifically, we need to guarantee that the behaviour of the resulting system is
exactly the same, that is, that any derivation in the target system was also possible in
the source one (behaviour reflection), and that any derivation in the source system also
happens in the target one (behaviour preservation).

Given a GTS morphism f : GTS0 → GTS1, we say that it reflects behaviour if for
any derivation that may happen in GTS1 there exists a corresponding derivation in
GTS0.

Definition 7. (Behaviour-reflecting GTS morphism [13]) Given transformation sys-
tems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism f : GTS0 → GTS1 reflects
behaviour if for all graphs G, H in |GraphTG1

|, all rules p in P1, and all matches

m : lhs(π1(p))→ G such that G
p,m
=⇒ H , then f<TG(G)

fP (p),f<TG(m)
======⇒ f<TG(H) in GTS0.

Proposition 2. The composition of behaviour-reflecting GTS morphisms is behaviour-
reflecting.

PROOF. Follows trivially from the fact that, given GTS morphisms f : GTS0 → GTS1

and g : GTS1 → GTS2, g<TG ◦ f<TG = (gTG ◦ fTG)
<. �

A useful type of GTS morphisms are those that only add to the transformation rules
elements not in their source type graph.

Definition 8. (Extension GTS morphism [13]) Given GTSs GTSi = (TGi, Pi, πi), for
i = 0, 1, a GTS morphism f : GTS0 → GTS1, with f = (fTG, fP , fr), is an extension
morphism if fTG is a monomorphism and for each p ∈ P1, π0(fP (p)) ≡ f<TG(π1(p)).

A morphism may be very easily checked to be an extension by making sure that the
features “added” in the rules are removed by the backward retyping functor and that
the application conditions are equivalent. This may also be useful given that, as shown
in the following lemma, an extension GTS morphism is indeed a behaviour-reflecting
GTS morphism.

10

Lemma 1. (From [13]) All extension GTS morphisms are behaviour-reflecting.

Behaviour-reflecting morphisms not only reflect individual transformation steps,
they reflect entire traces.

Fact 1. Given a behaviour-reflecting GTS morphism f : GTS0 → GTS1 and a trace in
GTS1 ρ = ρ1 . . . ρn, with ρi = Gi

pi,mi
==⇒ Gi+1, for i = 1 . . . n− 1, there is a corre-

sponding trace f<TG(ρ) in GTS0, with f<TG(ρi) = f<TG(Gi)
fP (pi),f

<
TG(mi)=======⇒ f<TG(Gi+1), for

i = 1 . . . n− 1.

We also need to characterize morphisms that preserve behaviour. We find in the lit-
erature definitions of behaviour-preserving morphisms as morphisms in which the rules
in the source GTS are included in the set of rules of the target GTS (see, e.g., [33, 29]).
Although these morphisms trivially preserve behaviour, they are not useful for our pur-
poses. In our case, in addition to adding new rules, we may be enriching the rules
themselves. Consider, e.g., a GTS1 which extends GTS0 just by an additional element
type, a step-counter, and extends each rule by adding a step-counter element which
gets incremented. Without an additional initialisation rule creating the step-counter set
to zero, we must make sure the step-counter is also added to the initial configuration.
Otherwise, none of the rules in the extended system would be applicable on a graph
without a step-counter object. In other words, we cannot only consider relations be-
tween rules, but need to consider relations between traces. We, however, do not need to
consider general traces, we may focus on some form of stuttering simulation [42, 43],
in a very specific form of matching of traces. Intuitively, in a stuttering simulation we
do not need traces to match completely, there might be steps that match with identity
steps.

Definition 9. (Matching traces) Let GTSi = (TGi, Pi, πi), for i = 0, 1, be graph
transformation systems, and let f : GTS0 → GTS1 be a GTS morphism. Given traces
ρ0 : G0 ⇒∗ H0 in GTS0 and ρ1 : G1 ⇒∗ H1 in GTS1, we say that ρ1 f -matches ρ0

if f<TG(G
1) = G0 and there is a strictly increasing function α : N→ N such that, for

all i ∈ N, ρ0(i) = f<TG(ρ
1(α(i))), that is, if ρ0(i) = G0

i

p0i ,m
0
i==⇒ G0

i+1 and ρ1(α(i)) =

G1
α(i)

p1α(i),m
1
α(i)

=====⇒ G1
α(i)+1, thenG0

i = f<TG(G
1
α(i)),G

0
i+1 = f<TG(G

1
α(i)+1), p

0
i = fP (p

1
α(i)),

and m0
i = f<TG(m

1
α(i)).

For example, the following diagram shows the beginning of two matching traces,
where related transformation steps are joined by dashed lines, and α is defined as
α(0) = 0, α(1) = 2, α(2) = 3, . . .

ρ0 G0
0

ρ00 // G0
1

ρ01 // G0
2

ρ02 // G0
3

ρ03 // G0
4
// . . .

ρ1 G1
0

ρ10

// G1
1

ρ11

// G1
2

ρ12

// G1
3

ρ13

// G1
4
// . . .

The intuition behind matching traces is that, if we take any trace ρ in GTS1 and remove
the extra elements introduced by the GTS morphism from the consecutive graphs in

11

ρ, we get a trace in GTS0, with the additional steps in GTS1 going to identity steps
in GTS0. Note that if a trace ρ1 f -matches ρ0, the ‘extra’ steps in ρ1 may only make
changes on elements not in TG0, that is, elements introduced in the extension. For
instance, the above derivation ρ11 induces an identity step on GTS0, that is, f<TG(ρ

1
1) =

G0
1

τ
=⇒ G0

1.

Definition 10. (Extended trace) Given transformation systems GTSi = (TGi, Pi, πi),
for i = 0, 1, a GTS morphism f : GTS0 → GTS1, and traces ρ0 in GTS0 and ρ1 in GTS1
such that ρ1 f -matches ρ0, with some strictly increasing function α, the extended trace
of ρ0, denoted ρ0, is ρ0 with identity steps (applications of τ rules) in those positions
in which α−1 is not defined.

For f -matching traces ρ0 and ρ1, the possibility of extending traces leaves us with
a one-to-one correspondence between the traces.

ρ0 G0
0

// G0
1

// G0
2

// G0
3

// G0
4
// . . .

ρ0 G0
0

ρ00 // G0
1

τ // G0
1

ρ01 // G0
2

ρ02 // G0
3

ρ03 // G0
4
// . . .

ρ1 G1
0

// G1
1

// G1
2

// G1
3

// G1
4

// G1
5
// . . .

Fact 2. Given transformation systems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS mor-
phism f : GTS0 → GTS1, and traces ρ0 in GTS0 and ρ1 in GTS1 such that ρ1 f -matches
ρ0, with some strictly increasing function α, then ρ1 f -matches ρ0, with the strictly in-
creasing function α(x) = x.

With the formulation in Definition 11, we make sure that the derivations in the
source GTS, GTS0, are applicable on graphs in |GraphTG1

|. The possibility of the
extra steps in the target GTS will allow the extended rules to be fired after appropriate
changes are made so that their requirements are satisfied.

Definition 11. (Behaviour-preserving GTS morphism) Given typed graph transfor-
mation systems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism f : GTS0 → GTS1

is behaviour-preserving if for each trace ρ0 in GTS0 there is a trace ρ1 in GTS1 that
f -matches ρ0.

Definition 9 characterizes f -matching in terms of infinite traces. But in practice,
we will find many situations in which we have to deal with finite traces. Theoretically,
we may handle finite traces by assuming identity derivations at deadlock states, us-
ing the empty rule, so that we do not have blocking states. Given a GTS morphism
f : GTS0 → GTS1, and traces ρ0 in GTS0 and ρ1 in GTS1 such that ρ1 f -matches ρ0,
with some strictly increasing function α, if there is a deadlock state in a trace ρ0 in
GTS0 at some position i, with α(i) = i + k for some k greater or equal than 0, we
would expect that if f preserves behaviour, there was a corresponding sequence of
identity derivations in GTS1 with α(j) = j + k, for all j greater or equal than i.
However, this may be not always the case, since we may have non-terminating com-
putations in GTS1 due to newly introduced rules, mapping to an infinite sequence of
identity derivations, thus having the same situation for a deadlock and a livelock.

12

Definition 12. (Deadlock-preserving GTS morphism) Given transformation systems
GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism f : GTS0 → GTS1 is deadlock-
preserving if for each trace ρ0 in GTS0 that leads to a deadlock there is no infinite
trace ρ1 in GTS1 that f -matches ρ0.

In order to check that a morphism is deadlock preserving, it is sufficient to prove
that the set of transformation rules p that map to the empty rule, that is, f<TG(π1(p)) = τ ,
is terminating.

Definition 13. (Strong behaviour-preserving GTS morphism) Given transformation
systems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism f : GTS0 → GTS1 strongly
preserves behaviour if it preserves both behaviour and deadlocks.

Strong behaviour-preserving morphisms compose as expected.

Proposition 3. The composition of strong behaviour-preserving GTS morphisms is
strong behaviour-preserving.

PROOF. Compositionality of behaviour preservation trivially follows from the facts
that, given GTS morphisms f : GTS0 → GTS1 and g : GTS1 → GTS2, g<TG ◦ f<TG =
(gTG ◦fTG)

<, and the composition of strictly increasing functions is strictly increasing.
Now, suppose a trace ρ0 in GTS0 that leads to a deadlock. Since f preserves deadlocks,
all traces ρ1 in GTS1 that f -match ρ0 are finite. And similarly, because g also preserves
deadlocks, there cannot be any infinite trace in GTS2 that g-matches any of these ρ1. �

The definition of behaviour-protecting GTS morphism establishes a bidirectional
correspondence between derivations in the source and target GTSs.

Definition 14. (Behaviour-protecting GTS morphism) Given transformation systems
GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism f : GTS0 → GTS1 is behaviour-
protecting if it reflects and strongly preserves behaviour.

This definition of behaviour-protecting morphisms is different to the one in [13].
According to the definition in [13], a GTS morphism f : GTS0 → GTS1 is behaviour-
protecting if for all graphs G and H in |GraphTG1

|, all rules p in P1, and all matches

m : lhs(π1(p))→ G, we have g<TG(G)
gP (p),g<TG(m)
======⇒ g<TG(H)⇐⇒ G

p,m
=⇒ H . This def-

inition is too strict, not considering as protecting some morphisms that intuitively are,
as for example an extension in which additional elements in the graphs are introduced
by additional rules. With the formulation in [13], we may have cases in which the
morphisms are protecting in a rule basis, but not when looking at traces, which may
be blocked. Consider again the above step-counter example, with the formulation in
Definition 11, we make sure the derivations in the source GTS GTS0 are applicable on
graphs in |GraphTG0

|.

Proposition 4. The composition of behaviour-protecting GTS morphisms is behaviour-
protecting.

13

PROOF. Follows from Propositions 2 and 3. �

Behaviour-protecting GTS morphisms reflect and preserve behaviour, including
deadlocks and livelocks.

Fact 3. Given a behaviour-protecting GTS morphism, there is a deadlock (resp., live-
lock) in the target GTS if and only if there is a corresponding deadlock (resp., livelock)
in the source GTS.

PROOF. Assume a behaviour-protecting GTS morphism f : GTS0 → GTS1. Since
f protects behaviour, it preserves deadlocks. Now, assume a graph G in |GraphTG1

|,
with no rule in P1 applicable on G (other than the empty rule). If there were a rule
p in P0 applicable on f<TG(G), then, since f preserves behaviour, there would be a
corresponding trace in GTS1.

Since f preserves behaviour, any infinite trace ρ0 in GTS0 has a corresponding infi-
nite trace ρ1 in GTS1. We are then left with reflection of livelocks. Assume an infinite
trace ρ1 in GTS1 such that f<TG(ρ1) is finite. The only possibility is that an infinite
number of consecutive derivations in the trace ρ1k ⇒ ρ1k+1 ⇒ . . ., starting for some k
on some graph G, maps to an infinite sequence of identity derivations in GTS0 from
graph f<TG(G), that is, all derivations f<TG(ρ

1
j), for j ≥ k, correspond to applications of

the empty rule. But this contradicts the fact that f is deadlock preserving: there cannot
be a finite trace in GTS0 that f -matches an infinite one in GTS1. �

2.5. GTS amalgamations

GTS amalgamation provides a very convenient way of composing GTSs. By amal-
gamating GTSs with respect to a kernel GTS, we are not only putting type graphs and
rules together, we are amalgamating rules so that we can synchronise their behaviours
in a very precise way. The definition below shows how we can compose two GTSs that
share some common part, and Theorem 1 establishes behaviour-related properties on
the induced morphisms.

Definition 15. (GTS Amalgamation [13]). Given typed graph transformation sys-
tems GTSi = (TGi, Pi, πi), for i = 0, 1, 2, and GTS morphisms f : GTS0 → GTS1

and g : GTS0 → GTS2, the amalgamated GTS ĜTS = GTS1 +GTS0 GTS2 is the GTS
(T̂G, P̂ , π̂) constructed as follows. We first construct the pushout of typing graph mor-
phisms fTG : TG0 → TG1 and gTG : TG0 → TG2, obtaining morphisms f̂TG : TG2 → T̂G
and ĝ TG : TG1 → T̂G. The pullback of set morphisms fP : P1 → P0 and gP : P2 → P0

defines morphisms f̂P : P̂ → P2 and ĝP : P̂ → P1. Then, for each rule p in P̂ , the rule
π̂(p) is defined as the amalgamation of rules f̂>TG(π2(f̂P (p))) and ĝ >TG(π1(ĝ P (p)))

with respect to the kernel rule f̂>TG(g
>
TG(π0(gP (f̂P (p))))).

GTS0
f //

g
��

GTS1
ĝ��

GTS2
f̂ // ĜTS

14

Since the amalgamation of GTSs is the basic construction for combining them, it
is very important to know whether the reflection of derivations remains invariant under
amalgamations.

Proposition 5. (From [13]) Given transformation systems GTSi = (TGi, Pi, πi), for
i = 0, 1, 2, and the amalgamation ĜTS = GTS1 +GTS0 GTS2 of GTS morphisms
f : GTS0 → GTS1 and g : GTS0 → GTS2 (see diagram in Definition 15), if fTG is a
monomorphism and g is an extension morphism, then ĝ is also an extension morphism.

Proposition 6. Given transformation systems GTSi = (TGi, Pi, πi), for i = 0, 1, 2,
and the amalgamation ĜTS = GTS1+GTS0 GTS2 of GTS morphisms f : GTS0 → GTS1
and g : GTS0 → GTS2 (see diagram in Definition 15), if f is a behaviour-reflecting
GTS morphism, fTG is a monomorphism, and g is a strongly behaviour-preserving
morphism, then ĝ is also a strongly behaviour-preserving morphism.

PROOF. Let ρ1 be a trace in GTS1. Since f is a behaviour-reflecting GTS morphism,
there is a corresponding trace ρ0 = f<TG(ρ

1) in GTS0. Since g preserves behaviour,
there is a trace ρ2 in GTS2 that f -matches ρ0, with some strictly increasing function α.
Let ρ0 be the extension of trace ρ0 (see Definition 10), and let us extend ρ1 accordingly
to get ρ1, by introducing identity steps in those positions in which α−1 is not defined.

Thus, we have that for derivations G1
i

p1i ,m
1
i===⇒ G1

i+1 in ρ1 and G2
i

p2i ,m
2
i===⇒ G2

i+1

in ρ2, for i = 1 . . . n, there is a corresponding derivation in GTS0, G0
i

p0i ,m
0
i===⇒ G0

i+1,
where the rule p0i = fP (p

1
i) = gP (p

2
i) can be applied on G0

i = f<TG(G
1
i) = g<TG(G

2
i)

with match m0
i = f<TG(m

1
i) = g<TG(m

2
i) satisfying the application condition of rule

π0(p
0
i) = π0(fP (p

1
i)) = π0(gP (p

2
i)), and resulting in a graph G0

i+1 = f<TG(G
1
i+1) =

g<TG(G
2
i+1).

Note that by the amalgamation construction in Definition 15, the set of rules of
ĜTS includes, for each p in P̂ , the amalgamation of (the forward retyping of) the rules
π1(ĝP (p)) = (L1

l1←− K1
r1−→ R1, ac1) and π2(f̂P (p)) = (L2

l2←− K2
r2−→ R2, ac2),

with kernel rule π0(fP (ĝP (p))) = π0(gP (f̂P (p))) = (L0
l0←− K0

r0−→ R0, ac0).
For any T̂G graphG,G is the pushout of the graphs ĝ<TG(G), f̂

<
TG(G) and f<TG(ĝ

<
TG(G))

(with the obvious morphisms). This can be proved using a van Kampen square, where
in the bottom we have the pushout of the type graphs, the vertical faces are the pull-
backs defining the backward retyping functors and on top we have that pushout.

Thus, for each graph Gi in ĜTS, if a transformation rule in GTS1 can be applied
on ĝ<TG(Gi), the corresponding transformation rule should be applicable on Gi in ĜTS.
The diagram in Figure 4 focus on the lefthand sides of the involved rules.

As we have seen above, rules ĝP (pi), f̂P (pi), and f̂P (gP (pi)) = ĝP (fP (pi)) are
applicable on their respective graphs using the matchings depicted in the above di-
agram. Since, by the amalgamation construction, the top square is a pushout, and

g1 ◦ ĝ>TG(m
1
i)◦ ĝ>TG(f

ĝP (pi)
L) = g2 ◦ f̂>TG(m

2
i)◦ f̂>TG(g

f̂P (pi)
L), then there is a unique mor-

phism mi : Li → Gi making g1 ◦ ĝ>TG(m
1
i) = mi ◦ ĝpiL and g2 ◦ f̂>TG(m

2
i) = mi ◦ f̂piL .

This mi will be used as matching morphism in the derivation we seek.

15

f̂>TG(g
>
TG(L

0
i)) = ĝ>TG(f

>
TG(L

0
i))

f̂>TG(g
f̂P (pi)

L)

tt

ĝ>TG(f
ĝP (pi)

L)

**
f̂>TG(g

>
TG(m

0
i))=ĝ

>
TG(f

>
TG(m

0
i))

��
f̂>TG(L

2
i)

f̂
pi
L **

f>TG(m
2
i)

��

f̂>TG(g
>
TG(g

<
TG(f̂

<
TG(G

0
i)))) = ĝ>TG(f

>
TG(f

<
TG(ĝ

<
TG(G

0
i))))

tt **

ĝ>TG(L
1
i)

ĝ
pi
Ltt

ĝ>TG(m
1
i)

��
f̂>TG(f̂

<
TG(Gi))

g2

**

Li
mi

��

ĝ>TG(ĝ
<
TG(Gi))

g1

ttGi

Figure 4: Applicability of the transformation rule in ĜTS

By construction, the application condition aci of the amalgamated rule pi is the
conjunction of the shiftings of the application conditions of ĝP (pi) and f̂P (pi). Then,
since

m1
i |= ac1i ⇐⇒ mi |= Shift(ĝpiL , ac

1
i)

and
m2
i |= ac2i ⇐⇒ mi |= Shift(f̂piL , ac

2
i),

and therefore
m1
i |= ac1i ∧m2

i |= ac2i ⇐⇒ mi |= aci.

We can then conclude that rule pi is applicable on graph Gi with match mi satisfying
its application condition aci. Indeed, given the rule π(pi) = (Li

li←− Ki
ri−→ Ri, aci)

we have the following derivation:

aci B Li

mi

��
po

Ki
lioo ri //

��
po

Ri

��
Gi Di
oo // Gi+1

Let us finally check then that Di and Gi+1 are as expected. To improve readability,
in the following diagrams we eliminate the forward retyping functors. For instance,
for the rest of the theorem L0

i denotes f̂>TG(g
>
TG(L

0
i)) = ĝ>TG(f

>
TG(L

0
i)), L

1
i denotes

ĝ>TG(L
1
i), etc.

First, let us focus on the pushout complement of li : Ki → Li and mi : Li → Gi.
Given rules ĝP (pi), f̂P (pi), and f̂P (gP (pi)) = ĝP (fP (pi)) and rule morphisms be-
tween them as above, the diagram in Figure 5 shows both the construction by amalga-
mation of the morphism li : Ki → Li, and the construction of the pushout comple-
ments for morphisms lji and mj

i , for i = 0, 1, 2.

16

L0
i

vv

��
m0
i

��

K0
i

vv

��

��

l0ioo

L2
i

m2
i

��

��

K2
i

��

��

l2i

oo

L1
i

vv

m1
i

��

K1
i

vv

��

l1ioo

Li

mi

��

��

Ki

��

lioo

G0
i

vv

��

D0
i

vv

��

l̂0ioo

G2
i

��

D2
i

��

l̂2ioo

G1
i

vv

D1
i

vv

l̂1ioo

Gi Di

̂̂
loo

rrX

Figure 5: Construction of the morphisms li, l
j
i and mj

i , for i = 0, 1, 2

By the pushout of D0
i → D1

i and D0
i → D2

i , and given the commuting subdiagram

D0
i

vv

��
G2
i

��

D2
i

��

oo

G1
i

xx

D1
i

vv

oo

Gi Di
oo

there exists a unique morphism Di → Gi making the diagram commute. This Di is
indeed the object of the pushout complement we were looking for. By the pushout of
K0
i → K1

i and K0
i → K2

i , there is a unique morphism from Ki to Di making the
diagram commute. We claim that these morphisms Ki → Di and Di → Gi are the
pushout complement of Ki → Li and Li → Gi. Suppose that the pushout of Ki → Li
and Ki → Di were Li → X and Di → X for some graph X different from Gi. By
the pushout of K1

i → D1
i and K1

i → L1
i there is a unique morphism G1

i → X making
the diagram commute. By the pushout of K2

i → D2
i and K2

i → L2
i there is a unique

morphism G2
i → X making the diagram commute. By the pushout of G0

i → G1
i and

G0
i → G2

i , there is a unique morphism Gi → X . But since Li → X and Di → X are
the pushout of Ki → Li and Ki → Di, there is a unique morphism X → Gi making
the diagram commute. Therefore, we can conclude that X and Gi are isomorphic.

17

By a similar construction for the righthand sides we get the pushout

Ki

��

//

po

Ri

��
Di

//Gi+1

and therefore the derivation Gi
pi,mi
==⇒ Gi+1.

The trace ρ thus obtained ĝ-matches the trace ρ1 with strictly increasing function
β(x) = x. ρ also ĝ-matches the trace ρ1 with β = α, since the positions of identity
derivations introduced in ρ1 to get ρ1 are the same as to get ρ0 from ρ0. We can
therefore conclude that ĝ is a behaviour-preserving morphism.

Let us finally see that ĝ also preserves deadlocks. Above, we have seen that any
trace ρ in ĜTS comes from traces ρ1 = ĝ<TG(ρ) in GTS1, ρ2 = f̂<TG(ρ) in GTS2, and
ρ0 = f<TG(ρ

1) = g<TG(ρ
2) in GTS0. Indeed, we have seen that ρ ĝ-matches ρ1, for some

strictly increasing function α, and that ρ2 g-matches ρ0, with the same α. Let us assume
that ρ1 is finite, that is, there is some k ≥ 0 such that the sub-trace ρ1k ⇒ ρ1k+1 ⇒ . . .
is a sequence of identity derivations. ρ0 is also finite, since the above sub-trace leads
to the sub-trace of identity derivations f<TG(ρ

1
k) ⇒ f<TG(ρ

1
k+1) ⇒ . . . in ρ0. Notice,

however, that if a derivation ρi is not an identity step and ρ1i is an identity step, ρ2i
cannot be an identity step. And therefore, since ρ is infinite and ρ1 is finite we have
that ρ2 is an infinite derivation. Since g preserves deadlocks, we cannot have a finite
trace ρ0 that g-matches an infinite trace ρ1. �

The following result gives conditions under which the morphisms induced by the
amalgamation construction can be expected to be protecting.

Theorem 1. Given typed transformation systems GTSi = (TGi, Pi, πi), for i = 0, 1, 2,
and the amalgamation ĜTS = GTS1+GTS0 GTS2 of GTS morphisms f : GTS0 → GTS1
and g : GTS0 → GTS2, if f is a behaviour-reflecting GTS morphism, fTG is a monomor-
phism, and g is a behaviour-protecting extension morphism, then ĝ is also a behaviour-
protecting extension.

GTS0
f //

g
��

GTS1
ĝ��

GTS2
f̂ // ĜTS

PROOF. Follows from Propositions 5 and 6. �

2.6. Multiple GTS amalgamations
To amalgamate several GTSs, as in the case of rules, we can extend GTS amalga-

mation to multiple amalgamation and to iterated amalgamation, which again coincide.

Definition 16. (Multiple GTS Amalgamation). Given typed graph transformation
systems GTSi = (TGi, Pi, πi) and GTS′i = (TG′i, P

′
i , π
′
i), for 0 ≤ i ≤ n, and GTS =

(TG, P, π), and given GTS morphisms f i : GTSi → GTS′i and gi : GTSi → GTS, the
amalgamated GTS ĜTS = GTS{qGTSiGTS′i}0≤i≤n is the GTS (T̂G, P̂ , π̂) constructed
as follows:

18

• We first construct the colimit of typing graph morphisms f iTG : TGi → TG′i and
giTG : TGi → TG obtaining morphisms f̂TG : TG→ T̂G and ĝ iTG : TG′i → T̂G.

• The limit of set morphisms f iP : P ′i → Pi and giP : P → Pi defines morphisms
f̂P : P̂ → P and ĝ iP : P̂ → P ′i .

• For each rule p in P̂ , the rule π̂(p) is the amalgamation of rules

f̂>TG(π(f̂P (p)))
{
qf̂>TG(g

i>
TG (πi(giP (f̂P (p))))) ĝ

i>
TG (π′i(ĝ

i
P (p)))

}
0≤i≤n

GTSn

fn

��

gn

))
GTS1

. .
.

f1

��

g1 // GTS

f̂

��

GTS0

f0

��

g0
11

GTS′n
ĝ n

))
GTS′1

. .
.

ĝ 1

// ĜTS

GTS′0

ĝ 0
11

Definition 17. (Iterative GTS Amalgamation). Given typed graph transformation sys-
tems GTSi = (TGi, Pi, πi) and GTS′i = (TG′i, P

′
i , π
′
i), for 0 ≤ i ≤ n, and GTS =

(TG, P, π), and given GTS morphisms f i : GTSi → GTS′i and gi : GTSi → GTS, for
0 ≤ i ≤ n, the iterative amalgamation GTS ĜTS = GTS{⊕GTSiGTS′i}0≤i≤n, together
with GTS morphisms f̂ : GTS→ ĜTS and ĝ i : GTS′i → ĜTS, are defined inductively as
follows:

• Case n = 0: ĜTS = GTS+GTS0GTS′0, and f̂ : GTS→ ĜTS and ĝ 0 : GTS′0 → ĜTS
are the GTS morphisms defined by the amalgamation construction (cf. Defini-
tion 15).

• Case n > 0: Let ̂̂GTS be the amalgamated GTS GTS{⊕GTSiGTS′i}0≤i≤n−1, with

morphisms ̂̂f : GTS→ ̂̂GTS and ̂̂g i : GTS′i → ̂̂GTS, for 0 ≤ i ≤ n− 1, then we

have morphisms ̂̂g n : GTSn → ̂̂GTS, with ̂̂g n = ̂̂f ◦gn, and fn : GTSn → GTS′n.

Thus, we define ĜTS = ̂̂GTS+GTSnGTS′n, together with morphisms f̂ : GTS→ ĜTS
and ĝ i : GTS′i → ĜTS, for 0 ≤ i ≤ n, with f̂ = h ◦ ̂̂f and ĝ i = h ◦ ̂̂g i, for

0 ≤ i ≤ n− 1, and where ĝ n : GTS′n → ĜTS and h : ̂̂GTS→ ĜTS are the mor-

phisms defined by the amalgamation ̂̂GTS +GTSn GTS′n.

Proposition 7. Given graph transformation systems GTSi and GTS′i, for 0 ≤ i ≤ n,
and GTS, and given GTS morphisms f i : GTSi → GTS′i and gi : GTSi → GTS, for
0 ≤ i ≤ n, GTS{⊕GTSiGTS′i}0≤i≤n = GTS{qGTSiGTS′i}0≤i≤n.

19

PROOF. Direct consequence of Proposition 1 and of the fact that a sequence of
pushouts is a colimit and a sequence of pullbacks is a limit. �

In the same way that Theorem 1 states the conditions under which the behaviour of
a GTS is protected when amalgamated with other GTS, we can get a similar result for
multiple amalgamation.

Theorem 2. Given typed graph transformation systems GTSi = (TGi, Pi, πi) and
GTS′i = (TG′i, P

′
i , π
′
i), for 0 ≤ i ≤ n, and GTS = (TG, P, π), and given GTS mor-

phisms f i : GTSi → GTS′i and gi : GTSi → GTS, for 0 ≤ i ≤ n, and their multiple
amalgamation ĜTS, with induced morphisms f̂ : GTS→ ĜTS and ĝ i : GTS′i → ĜTS,
for 0 ≤ i ≤ n, if each gi is a behaviour-reflecting GTS morphism, each giTG is a monomor-
phism, and each f i is an extension and behaviour-protecting morphism, then f̂ is
behaviour-protecting and f̂TG is a monomorphism.

PROOF. Since by Proposition 7, GTS{⊕GTSiGTS′i}0≤i≤n = GTS{qGTSiGTS′i}0≤i≤n,
let us consider the iterative amalgamation, and let us proceed by induction on n.

• If n = 0 then this is the case of Theorem 1. Since f0 is an extension, then f0TG
is a monomorphism, and therefore, since we assume an adhesive HLR category,
f̂TG and ĝ0TG are monomorphisms.

• Suppose that n > 0. (See Figure 6) Let ̂̂GTS = GTS{⊕GTSiGTS′i}0≤i≤n−1, with

morphisms ̂̂f : GTS→ ̂̂GTS and ̂̂g i : GTS′i → ̂̂GTS, for 0 ≤ i ≤ n− 1, and let
us assume that, because each gi is a behaviour-reflecting GTS morphism, each
gTG is a monomorphism, and each f i is an extension and behaviour-protecting
morphism, that then ̂̂f is a behaviour-protecting GTS morphism and ̂̂fTG is a
monomorphism.

By the construction in Definition 17, ĜTS = ̂̂GTS +GTSn GTS′n, and morphisms
f̂ : GTS→ ĜTS and ĝ i : GTS′i → ĜTS, for 0 ≤ i ≤ n, are defined as f̂ = h ◦ ̂̂f
and ĝ i = h◦̂̂g i, for 0 ≤ i ≤ n− 1, with ĝ n : GTS′n → ĜTS and h : ̂̂GTS→ ĜTS

the morphisms defined by the amalgamation ̂̂GTS+GTSn GTS′n along fn and ̂̂g n,
with ̂̂g n = ̂̂f ◦ gn.

Since, by the induction hypothesis, ̂̂f is a behaviour-protecting morphism, it is
behaviour-reflecting, and since gn is also behaviour-reflecting, by Proposition 2,̂̂g n is a behaviour-reflecting GTS morphism. Since gnTG and ̂̂fTG are monomor-
phisms, ̂̂g nTG is a monomorphism. Then, since ̂̂g n is behaviour-reflecting, ̂̂g nTG
is a monomorphism and fn is an extension and behaviour-protecting, then h is
behaviour-protecting. Since h and ̂̂f are behaviour-protecting, then, by Proposi-
tion 4, f̂ is also behaviour-protecting. Since hTG and ̂̂fTG are monomorphisms,
then f̂TG is also a monomorphism.

�

20

GTSn

gn

''

fn

��

̂̂g n

��

GTSn−1

fn−1

��

gn−1

,, GTS

f̂

oo

̂̂
f

��

GTS1

. .
.

f1

��

g1
11

GTS0

f0

��

g0

33

GTS′n

ĝ n

��

GTS′n−1 ̂̂g n−1

,,

ĝ n−1

��

̂̂GTS

h

��

GTS′1

. .
. ̂̂g 1

11

ĝ 1

&&

GTS′0

̂̂g 0

33

ĝ 0

))
ĜTS

Figure 6: Case n > 2 in Theorem 2

3. Non-functional properties specification with e-Motions

In this section, we show how the theoretical results in the previous sections can
be used to safely combine DSLs. Specifically, we will combine DSLs whose syntax
is provided by MOF metamodels and whose behaviour is specified by a set of graph
transformation rules.

Our first remark is on the kind of graphs we use. The static structure of object-
oriented systems is typically modelled with type graphs in which nodes represent
classes, and instances of such class diagrams are such that the is-instance relationship
is modelled as a typing morphism from the instance to the type graph. Typed attributed
graphs [16] support the possibility of defining class attributes, and allocating instance
values. Typed attributed graphs with inheritance were introduced in [8, 16] as a way
to model the inheritance relation and abstract classes. Polymorphic transformations
where introduced to define transformations of such typed attributed graphs with inheri-
tance. A flattening construction was proposed so that such graphs with inheritance have

21

equivalent ones without inheritance, and a polymorphic transformation led to a set of
rules typed over the flattened type graph [16]. The category of typed attributed graphs
with inheritance was proved to be adhesive HLR in [20]. The approach in [8, 16] was
extended in [27] by defining inheritance respecting morphims instead of the flattening
construction. The category of typed attributed graphs with inheritance respecting mor-
phisms was proved adhesive in [27]. MOF metamodels may also specify cardinalities,
composition relations, etc. Although there are proposals in the literature to deal with
some of these features, we have left their inclusion in our setting for future work.

Our motivating example consists of different DSLs which specify some non-func-
tional properties, namely, throughput, response time and failure rate, which are then
composed with a DSL of production line systems to be analysed. The resulting DSL
will be used to carry out performance analysis on the specified system. Protection
of behaviour is key to the usefulness of the results: the behaviour of a model of the
production line system described using our DSL will not be affected by the machinery
attached to it for its analysis. Our example is adapted and extended from [57]. A proper
modelling of time is of course key for such an analysis. Although, as we will see in the
following subsections, our transformation rules may use time features, like duration
or periodicity, for now we assume that rule morphisms are always between rules with
exactly the same time features.

We define our DSLs using the e-Motions system [48, 49]. The defined DSLs
are then composed using the binding-definition and composition tools described in
Section 4, which implement the multi DSL amalgamation construction presented in
Section 2. e-Motions is a DSL and graphical framework developed for Eclipse that
supports the specification, simulation, and formal analysis of DSLs. Given a MOF
metamodel (abstract syntax) and a GCS model (a graphical concrete syntax) for it,
the behaviour of a DSL is defined by in-place graph transformation rules. e-Motions
extends standard in-place rules so that time and action statements can be included in
the behavioural specifications of a DSL. Although we briefly introduce the language
here, we omit all those details not relevant to this paper. We refer the interested reader
to [48, 49] or http://atenea.lcc.uma.es/e-Motions for additional details.

3.1. The Production Line System DSL
Figure 7(a) shows the metamodel of a DSL for specifying Production Line Systems

(PLS) for producing hammers out of hammer heads and handles, which are generated
in respective machines, transported along the production line via conveyors, and tem-
porarily stored in trays. As usual in MDE-based DSLs, this metamodel defines all the
concepts of the language and their interconnections; in short, it provides the language’s
abstract syntax. The diagram in Figure 7(a) is an attributed type graph with inheritance,
describing the types and their hierarchies to be used for the typing of the instances.
More specifically, an attributed type graph with inheritance (ATG , I, A) consists of an
attributed type graph ATG defining the types and their composition/association rela-
tions, an inheritance graph I with the same nodes as ATG , and a subset A of them
with the abstract nodes.

A concrete syntax is provided as a Graphical Concrete Syntax (GCS) model. In
the case of our example, this is sufficiently well defined by providing icons for each
concept (see Figure 7(b)); connections between concepts will then be indicated through

22

(a) PLS metamodel

(b) PLS concrete syntax

(c) Example of production line configuration

Figure 7: Production Line System metamodel (a) and concrete syntax (b)

arrows connecting the corresponding icons. Figure 7(c) shows a model conforming to
the metamodel in Figure 7(a) using the graphical notation introduced in the GCS model
in Figure 7(b).

The behavioural semantics of the DSL is then given by providing transformation
rules specifying how models can evolve. Figure 8 shows an example of such a rule.
The rule consists of a left-hand side matching a situation before the execution of the

23

Figure 8: The Assemble rule indicates how a hammer is assembled

Figure 9: The Collect rule specifies how a hammer is removed from the system

rule and a right-hand side showing the result of applying the rule. Specifically, this rule
shows how a new hammer is assembled: a hammer generator a has an incoming tray
of parts and is connected to an outgoing conveyor belt. Whenever there is a handle and
a head available, and there is space in the conveyor for at least one part, the hammer
generator can assemble them into a hammer. The new hammer is added to the parts set
of the outgoing conveyor belt in time T, with T some value in the range [a.pt-3, a.pt+3],
and where pt is an attribute representing the production time of a machine. Notice
the use of both positive and negative conditions constraining the matches of this rule.
In e-Motions, we may have as many positive and negative conditions as necessary,
and we can even have positive conditions on NACs (nested application conditions).
Each action is represented during execution by an action object, which we may use
as any other object. By having an Assemble action object in its NAC, we ensure that
an assemble action is not initiated if there is another one under execution, that is, we
explicitly indicate that the assemble machine is not in use.

Figure 9 shows another of the rules specifying the behaviour of the PLS. This rule
represents the action in which a worker takes a hammer from the final tray and removes
it from the system. Notice that the duration of the action is some value between 0 and 4.

24

The Assemble and Collect rules are atomic rules. In e-Motions, there are two
types of rules to specify time-dependent behaviour, namely, atomic and ongoing rules.
Atomic rules represent atomic actions with a duration, which is specified by an inter-
val of time. Atomic rules with duration zero are called instantaneous rules. Ongoing
rules represent actions that progress continuously over time and that can be interrupted
at any time, while the rule’s preconditions (LHS and not NACs) hold. Atomic rules
can be periodic, and both atomic and ongoing rules can be scheduled, or be given an
execution interval.

The complete behaviour of our PLS DSL is defined by a number of such rules
that specify the different actions that can take place in the system, e.g., generating
new pieces, moving pieces from a conveyor to a tray, etc. Its complete specification
using e-Motions can be found at http://atenea.lcc.uma.es/E-motions/
PLSExample.

3.2. Parametric DSLs for the independent definition of non-functional properties
In this section we model a number of different non-functional properties, namely

throughput, response time, and failure rate. Clearly, these properties could be useful in
relation to other systems as well, so we will first define and model them independently
of the PLS DSL. Following [57, 58], we rely on the notion of observer to analyse non-
functional properties of systems described by GTSs in a way that can be analysed by
simulation. By specifying different properties to be analysed as separate, parameterized
DSLs, independent of the definition of any system, we are then able to compose these
DSLs with the base DSL, the PLS DSL in this case, to generate specific simulation
environments.

3.2.1. Throughput
In communication networks, throughput is defined as the average rate of message

delivery over a communication channel. However, the notion has also been used in
other disciplines, like costing and manufacturing, acquiring a more general meaning.
We can define throughput as the average rate of work items flowing through a system.
Thus, the same generic notion allows us to measure the number of information pack-
ages being delivered through a network, the number of passengers checking-in in an
airport desk, or the number of hammers being manufactured in a production line.

Given this more general definition, and given the description of a system, to mea-
sure throughput, we basically need to be able to count the number of items delivered
or produced, and calculate its quotient with time. We define a ThroughputOb observer
class with attributes counter and thp keeping these values. The metamodel for the DSL
of ThroughputOb observers is the one depicted in Figure 10(a). ThroughputOb observer
objects will basically count instances of some generic class Request, which, as we will
see in Section 3.3, will later be instantiated to parts, as could be instantiated to data
packages or to passengers. These ThroughputOb objects will be associated to specific
systems, so that we may, e.g., measure the throughput of each of the connections in a
network, each of the check-in desks in an airport, or each of the production lines in a
factory.

Given a concrete syntax, depicted in Figure 10(b), the behaviour of ThroughputOb
objects is defined by the transformation rules CreateThroughput, RecordLeave and

25

(a) Abstract syntax (b) Concrete syntax

(c) CreateThroughput atomic rule

(d) RecordLeave atomic rule

(e) ContinuousThpUpdate on-going rule

Figure 10: Throughput observer DSL definition

ContinuousThpUpdate, shown in Figures 10(c), 10(d) and 10(e), respectively. The
CreateThroughput rule specifies how throughput observer objects are created. The
RecordLeave rule represents the way in which the throughput observer counts pro-
cessed requests, that is, it represents the way in which the values of its counter attribute
is to be updated: when a request leaves the System’s out queue, the ThroughputOb
observer gets updated. The ContinuousThpUpdate rule is in charge of maintaining

26

the actual throughput value updated. Note that whilst rules CreateThroughput and
RecordLeave, represent atomic actions, ContinuousThpUpdate is an on-going rule, en-
suring that the thp attribute is always updated. Clock is a predefined class in e-Motions
which represents the passage of time in the system, and whose time attribute keeps the
time of the system since its start-up.

Since classes System, Server and Request are generic, no concrete syntax is pro-
vided for them, and therefore instances of them are represented as boxes. Note that
this DSL is not usable by itself, it is a generic DSL — the parameter part of generic
DSLs is depicted shadowed in Figure 10 and in all other generic DSL definitions —
and needs to be instantiated before used. The non-shadowed part of a rule describes the
extensions that are required. So, in addition to reading, e.g., Figure 10(d) as a ‘normal’
transformation rule (as we have done above), we can also read it as a rule transforma-
tion, stating: “Find all rules that match the shaded pattern and add Throughput objects
to their left- and right-hand sides as described.” In effect, observer models become
higher-order transformations [56] in our implementation (see Section 4).

3.2.2. Response time
Like throughput, response time is also a property we may want to observe on many

different systems. We may want to know the time taken by a web server to answer a re-
quest, how long a data package takes to go from one node to another in a network, how
long it takes to check-in in an airport, or how long a hammer takes to be produced. Fig-
ure 11(a) shows the metamodel for a DSL for specifying response time. It is defined as
a parametric model (i.e., a model template). It uses the notion of response time, which
can be applied to different systems with different meanings. The concepts of Server,
Queue, and Request and their interconnections are parameters of the metamodel (and
therefore shaded in grey). Figure 11(b) shows the concrete syntax for the response time
observer object.

Figures 11(c) and 11(d) show the transformation rules defining the behaviour of the
response time observer. Rule CreateRT specifies the creation of response-time observer
objects. The ResponseTime rule states that if there is a server with an in queue and an
out queue and there initially are some requests (at least one) in the in queue, and the
out queue contains some requests after rule execution, the last response time should be
recorded to have been equal to the time it took the rule to execute.

In the rule in Figure 11(d), we use a cardinality constraint 1..∗ to indicate that the
actual parameter with which we instantiate the DSL will follow this pattern; that is, it
is just syntactic sugar to cover different alternatives. According to our formalisation in
Section 2, the morphism from the parameter DSL to the system DSL will have to map
n Request objects [r1] and n reqsts links and m Request objects [r2] and m links to
corresponding n and m objects and links in the target DSL (notice that the number of
objects and links for the left and right-hand sides of a rule may be different). Once the
matching indicates the values of these n’s, the construction only has to deal with that
specific matching.

3.2.3. Failure rate
The failure rate property may be defined similarly. Figure 12 shows the failure rate

observer DSL definition. As for the response time and throughput ones, the metamodel

27

(a) Metamodel (b) Concrete syntax

(c) CreateRT atomic rule

(d) ResponseTime atomic rule

Figure 11: Generic model of response time observer

for the failure rate DSL is defined on a parameter DSL that includes those generic
elements it depends on. In this case, the metamodel also specifies a FailureRate class
with attributes numFailures, to count failures, numTotal, to keep the total number of
processed elements, and rate, in which the actual failure rate is stored. Notice the
reqResults link, which will be used to temporarily collect all processed requests.

The behaviour of the DSL is then specified by rules CreateFailure (Figure 12(c)),
which creates observer objects, FailureRateSeq (Figure 12(d)), which adds every pro-
cessed request to the reqResults collection, and FailureRateCalc1 (Figure 12(e)) and
FailureRateCalc2 (Figure 12(f)), which process the requests in the reqResults collec-
tion and update the values of the corresponding attributes. Whilst the FailureRateSeq
rule is atomic, FailureRateCalc1 and FailureRateCalc2 are on-going rules, what ensures
that the failure rate will be always updated.

28

(a) Abstract syntax (b) Concrete syntax

(c) CreateFailureRate atomic rule

(d) FailureRateSeq atomic rule

(e) FailureRateCalc1 on-going rule

(f) FailureRateCalc2 on-going rule

Figure 12: Failure rate observer DSL definition

29

MPar

MMPar ⊕ RlsPar

Binding
BMM⊕ BRls +3

��

MDSL

MMDSL ⊕ RlsDSL

��
MObs

MMObs ⊕ RlsObs

+3 MD̂SL

(MMDSL ⊗MMObs)⊕ (RlsDSL ⊗ RlsObs)

Figure 13: Amalgamation of DSLs

3.3. DSL weaving for analysis
To be able to collect information on the production time of parts, number of parts

produced per time unit, and rate of defective parts in the PLS DSL described in Sec-
tion 3.1, we need to weave the languages together. In fact, since we could want, e.g.,
to measure the response time of each of the machines in a production line, or the num-
ber of defective hammer heads or hammer handles, we may want to compose the PLS
DSL with more than one instance of some of our generic DSLs. We may do this just
by providing appropriate binding morphisms.

According to Definition 6, a GTS morphism is given by a morphism between the
underlying type graphs, a surjective mapping between the sets of rule names, and a fam-
ily of rule morphisms. In terms of DSLs, whose semantics is given by corresponding
GTSs, given the amalgamation construction in Definition 15, if we want to compose,
e.g., the response time observer DSL with the PLS DSL to measure the production
time of hammers, we need to provide GTS morphisms from the parameter sub-DSL
of the response time DSL to the response time DSL itself, and a binding morphism
between this parameter sub-DSL and the PLS DSL. The weaving of DSLs then corre-
sponds to amalgamation in the category of GTSs and GTS morphisms (Definition 15).
Figure 13 shows the amalgamation of an inclusion morphism between the model of an
observer DSL, MObs (abstract syntax given by a metamodel MMObs and behaviour
given by a set of transformation rules RlsObs), and its parameter sub-model MPar

(MMPar⊕RlsPar), and the binding morphism from MPar to the DSL of the system
at hand, MDSL, the PLS DSL in our example. The amalgamation object M

D̂SL
is ob-

tained by the construction of the pushout of the corresponding metamodel morphisms
and the amalgamation of the rules describing the behaviour of the different DSLs.

Thus, to, e.g., collect information on the production time of hammers in our PLS
DSL, we need to provide a binding from the elements in the parameter part of the
observer DSL metamodel (e.g., Figure 11(a)) to elements in the PLS metamodel (Fig-
ure 7(a)). We start with the response-time DSL and bind it so as to measure the response
time of the Assemble machine:

• Classes:

– Server to Assemble;
– Queue to LimitedContainer, as the Assemble machine is to be connected

to an arbitrary LimitedContainer for queuing incoming and outgoing parts;
and

30

Figure 14: Weaving of metamodels

– Request to Part, as Assemble only does something when there are Parts to
be processed; and

• Associations:

– The in and out associations from Server to Queue are bound to the cor-
responding in and out associations from Machine to LimitedContainer, re-
spectively; and

– The association requests from Queue to Request is bound to the associa-
tion parts from Container to Part.

This morphism between the attributed type graphs with inheritance has its correspon-
dent one over the flattened versions of the graphs.

Figure 14 illustrates the composition of the metamodels (pushout of the correspond-
ing type graphs). We observe how the weaving process adds the ResponseTime con-
cept to the resulting metamodel. Notice that the weaving process also ensures that only
sensible woven metamodels can be produced: for a given binding of parameters, there
needs to be a match between the requirements expressed in the observer metamodel
(associations, cardinalities, etc.) and the DSL metamodel.

The binding is completed with maps for rules. Each rule in the parameter DSL is
mapped to a rule in the target DSL. In the formalisation in Section 2, see Definition 6,
this binding includes both a rule-name mapping and a set of rule morphisms. The
intuition is that each rule in the parameter DSL must be mapped to a rule in the target
DSL. A rule morphism is assumed to be defined between rules with the same time
features, and must specify to which element in the target rule each of the elements

31

Figure 15: Amalgamation of the Assemble and RespTime rules

in the source rule is sent. For example, the rule Assemble in Figure 8 matches the
pattern in Figure 11(d), given this binding: In the left-hand side, there is a Server
(Assemble) with an in-Queue (Tray) that holds two Requests (Handle and Head) and
an out-Queue (Conveyor). In the right-hand side, there is a Server (Assemble) with
an in-Queue (Tray) and an out-Queue (Conveyor) that holds one Request (Hammer).
Figure 15 shows the rule amalgamation using this morphism. We can see how the
obtained amalgamated rule is similar to the Assemble rule but with the observers in the
RespTime rule appropriately introduced.

The DSL resulting from such amalgamation will have a metamodel extended with
observer classes, and its rules will be decorated with observer objects newly introduced,
or ready to collect information on the execution. This composed DSL may also have ad-
ditional rules, resulting from rules in the observer DSL which do not change parameter
objects. This is the case of rule ContinuousThpUpdate (Figure 10(e)) in the Throughput
observer DSL, or rules FailureRateCal1 and FailureRateCal2 (Figures 12(e) and 12(f))
in the Failure rate observer DSL. Note that the composition results in a DSL completely
operational, the DSLs involved have been completely instantiated and can be executed.

Once appropriate binding morphisms for the throughput and failure rate observers
DSLs are defined in a similar way, we may use the multiple amalgamation construc-
tion to compose all of them in one single DSL. Given a binding for the throughput
to compute the throughput on the entire production line, and calculate the failure rate
of the assemble machine, we get a ‘decorated’ production line system on which we
may observe all these properties. Figure 16 shows the data collected along time during

32

the execution of the system resulting from the amalgamation for a run of 4000 time
units. Figure 16(a) shows how the throughput of the machine Assemble evolves along
time. Such a chart illustrates how the throughput grows from zero to the asymptote,
as time passes. Figure 16(b) shows the mean failure rate of the same machine along
time. Gaps in the chart represent failures in the machine. Finally, Figure 16(c) shows
the mean response time of the Assemble machine along time.

The amalgamation of the different DSLs has allowed us to analyse the performance
of the system resulting from the amalgamation. However, we still need to check the
conditions of Theorem 2, so that we can infer that the behaviour of the original sys-
tem did not change, and therefore, that the analysis results are indeed for the original
system. We have to check that (1) the inclusion morphisms between the parameter
DSLs and their corresponding observer DSLs are extensions and behaviour protect-
ing, and (2) that the morphisms between such parameter DSLs and the PLS DSL are
behaviour-reflecting and their underlying metamodel morphisms are monomorphisms.

In this concrete simple case study the checks can be carried out by hand without
much effort. For parameterized DSLs, we will always have that the parameter DSL is
included in the DSL it is a parameter of. If we look at the observer parametric DSLs
defined in Section 3.2, we easily check that they are extensions: all the additions in
the rules use properties not in the parameter, that is, features that would be removed
if moving back along the inclusion morphisms (using the corresponding backward re-
typing functors). By Lemma 1, extensions are behaviour-reflecting, so we are left with
checking that they preserve behaviour and deadlocks. Traces in the parameter DSL
of the throughput observer DSL (shadowed part of Figure 10) will be sequences of
CreateThroughput and RecordLeave rules. The former can always be executed, both if
considered at the parameter DSL or at the observer DSL. If the RecordLeave rule can
be applied for the parameter DSL, it will also be applied for the observer DSL, perhaps
after an additional application of the CreateThroughput rule if the System object had
no associated thp observer yet (stuttering steps). Deadlocks are also preserved. In-
deed, the parameter DSL is deadlock free, since the CreateThroughput rule can always
be applied. A similar reasoning may be carried out for the other parametric DSLs in
Section 3.2.

Regarding the morphisms from the parameters of the observer DSLs and the PLS
DSL, we need to check that their underlying metalevel morphisms are monomorphims,
and that they reflect behaviour. Checking that they are monomorphisms is straightfor-
ward. Checking that they reflect behaviour is non-trivial, but if we study the morphisms
defined in this case, we realize that they actually are extensions. Notice how similar are
the structures of the parameter part of rule RecordLeave (Figure 10(d)) and rule Col-
lect (Figure 9), and the parameter part of rule ResponseTime (Figure 11(d)) and rule
Assemble (Figure 8). The same occur for the other rule morphisms. Since extensions
are behaviour-reflecting (by Lemma 1) we have completed the checks of all required
conditions, and we can therefore conclude that the behaviour of the PLS DSL did not
change when amalgamated with its observers.

33

(a) Throughput of the production line

(b) Mean failure rate of the Assemble machine

(c) Mean response time of the Assemble machine

Figure 16: Analysis results

34

4. Implementation: Binding definitions and iterative amalgamation

We have implemented the composition operations presented in Section 2. Specif-
ically, we have extended the implementation presented in [14] and added support for
multiple amalgamation. Our Eclipse plugin enables language developers to provide a
DSL and a set of parametric DSLs with their parameter bindings; the plugin then al-
lows the DSL weaving to be triggered. DSL weaving is implemented using an extended
version of the ATL transformation discussed in [14].

4.1. Binding algorithm
Manually defining the binding between parametric and base DSL can be quite cum-

bersome and error prone. To ease the process, we have implemented an algorithm that
semi-automatically proposes valid bindings. We currently support incremental semi-
automatic binding for meta-models, but not for rules.

The meta-model part of the parameter DSL encodes the structure of meta-classes
and meta- associations that need to be matched in the base DSL for a valid binding
to be established. For example, in our case study, class Server of the response time
meta-model can be bound only with certain classes of the production line meta-model,
namely with classes that have two references to a class bound to Queue and one class
bound to Request. By appropriately encoding these constraints in Maude [5], we have
transformed the problem into a matching problem, which can be automatically solved
to retrieve the complete set of all valid bindings. As long as more than one binding is
found, the user is asked to provide additional partial binding information (for example,
by binding one meta-class in the parameter DSL) and the constraint solver is run again.
When only one valid solution remains, this is directly proposed to the user. Once
the algorithm has been executed through the Eclipse plug-in, we get a list of possible
substitution, each of the form:

Server <- assemble,
Queue <- limitedContainer,
...

This is only part of the binding, we also need to bind the rules. We believe that the
binding of the behavioural part may be inferred semi-automatically, too. For example,
let us suppose that parametric class Par A and actual class Act A match, then object
o parA of type Par A is going to match with object o actA of type Act A. We will study
this approach further as part of our future work.

4.2. Transformations
We have implemented model-to-model transformations to compose both syntax

and behaviour of DSLs. These transformations have been coded using ATL [36]. We
have split the composition process into two different ATL transformations: one for
weaving the syntax, both abstract and concrete syntaxes, i.e., MMDSL and MMObs ;
and another one for weaving the behavioural rules, i.e. RlsDSL and RlsObs . The former
produces the woven syntax of our DSL (for example, the meta-model obtained in Fig-
ure 14) while the latter produces the woven behaviour of our DSL (the rule obtained in
Figure 15).

35

Figure 17: Correspondences meta-model

Bindings — BMM and BRls — are represented in our implementation by a model,
conforming to the correspondences meta-model shown in Figure 17. Each individual
binding (be it between meta-classes or between rules and their parts) is represented by
its own model element. This meta-model is similar to the weaving models introduced,
for example, in the context of ATL [24]. The completed correspondences model is used
as input for both model transformations.

The e-Motions models obtained as result of the weaving can be automatically trans-
formed into Maude specifications (see [49] for details on this transformation) and fur-
ther analysed using standard Maude tooling. See [47] for a detailed presentation of
how Maude provides an accurate way of specifying both the abstract syntax and the
behavioural semantics of models and meta-models, and offers good tool support both
for simulating and for reasoning about them.

5. Related Work

Graph transformation systems (GTSs) were proposed as a formal specification
technique for the rule-based specification of the dynamic behaviour of systems [15].
Different approaches exist for modularisation in the context of the graph-grammar for-
malism [6, 52, 16]. All of them have followed the tradition of modules inspired by the
notion of algebraic specification module [19]. A module is thus typically considered
as given by an export and an import interface, and an implementation body that real-
izes what is offered in the export interface, using the specification to be imported from
other modules via the import interface. For example, Große-Rhode, Parisi-Presicce,
and Simeoni introduce in [29] a notion of module for typed graph transformation sys-
tems, with interfaces and implementation bodies; they propose operations for union,
composition, and refinement of modules. Other approaches to modularisation of graph
transformation systems include PROGRES Packages [54], GRACE Graph Transfor-
mation Units and Modules [39], and DIEGO Modules [55]. See [34] for a discussion
on these proposals. For the kind of systems we deal with, the type of module we need
is much simpler. For us, a module is just the specification of a system, a GTS, without

36

import and export interfaces. Then, we build on GTS morphisms to compose these
modules, and specifically we define parameterized GTSs.

We find different forms of GTS morphisms in the literature, taking one form or
another depending on their concrete application. Thus, we find proposals centered
on refinements [33, 28, 29], views [23], and substitutability [22]. See [22] for a first
attempt to a systematic comparison of the different proposals and notations. None of
these notions fit our needs, and none of them coincide with our behaviour-aware GTS
morphisms.

As far as we know, parameterized GTSs and GTS morphisms, as we discuss them,
have not been studied before. Heckel and Cherchago introduce parameterized GTSs
in [32], but their notion has little to do with our parameterized GTSs. In their case,
the parameter is a signature, intended to match service descriptions. They however
use a double-pullback semantics, and have a notion of substitution morphism which is
related to our behaviour-preserving morphism.

The way in which we think about composition of reusable DSL modules is related
to work in aspect-oriented modeling (AOM). In particular, our ideas for expressing pa-
rameterized metamodels are based on the proposals in [4, 38]. Most AOM approaches
use syntactic notions to automate the establishment of mappings between different
models to be composed, often focusing primarily on the structural parts of a model.
While our mapping specifications are syntactic in nature, we focus on composition
of behaviours and provide semantic guarantees. In this sense, our work is perhaps
most closely related to the work on MATA [60] or semantic-based weaving of scenar-
ios [37]. Although the approach is completely different to ours, Machado, Foss and
Ribeiro propose in [41] an extension to conventional graph grammar, which they call
aspect-oriented graph grammars, where aspects are modeled as transformation rules
over the structure of a base graph grammar.

Genericity has also been used by different authors to enable reuse of model-mana-
gement operations across different DSLs. For example, [51, 9] use generic metamodel
concepts as an intermediate, abstract metamodel over which model management spec-
ifications are defined, enabling the application of the operations thus defined to any
metamodel satisfying the requirements imposed by the concept. Similarly, [30] intro-
duces a notion of meta-model sub-typing to achieve a comparable effect. A comparison
of these approaches and a first attempt to synthesise them has been reported in [62].
Figure 18 demonstrates how these approaches fit into our GTS category. It can be
seen that both model typing and model concepts represent pathological cases where
the parameter DSL MT and the base DSL MM do not have any associated operational
semantics. Model concepts use explicit bindings between MT and MM and, given a
transformation XForm defined on MT , perform a translation of XForm to transforma-
tion X̂Form defined on MM , while model typing uses default bindings and backward
typing to execute transformations.

6. Conclusions

We have proposed in this paper a novel concept of parameterised graph transforma-
tion system and their instantiation by amalgamation. Such amalgamations are defined

37

MT
B +3

i ��

MM

î ��
MT ⊗XForm

B̂ +3 MM ⊗ X̂Form

Figure 18: Model concepts and model typing in GTS

for multiple parameters, and we have proven that the multiple amalgamation is in fact
equivalent to its iterative version.

We have built this construction on a novel definition of behaviour-aware mor-
phisms of systems. Specifically, we introduce behaviour-reflecting, -preserving, and
-protecting morphisms. Some of these novel definitions rely on ideas from concur-
rency theory (stuttering bisimulations) to reason on the behaviours of system as given
by all its possible traces. Given these notions, we are able to prove that the instantiation
of systems satisfying certain properties do not change their behaviour.

The approach is illustrated by the use of observers to carry out performance analy-
sis of system. Indeed, our work was originally motivated by the specification of non-
functional properties (NFPs), such as performance or throughput, in DSLs. We have
been looking for ways in which to encapsulate the ability to specify non-functional
properties into reusable DSL modules. Troya et al. used the concept of observers
in [57, 58] to model non-functional properties of systems described by GTSs in a
way that could be analysed by simulation. Zschaler had previously discussed mod-
ular specification of NFPs in temporal logic in [61]. In [14, 58], we have combined
these ideas to allow the modular encapsulation of observer definitions in a way that
can be reused in different DSL specifications. A first attempt to formalise the needed
composition operations was provided in [13], were we provided a formal framework
of such language extensions. In [44], we addressed the performance analysis problem
by presenting a model-based and modular partial reimplementation of one well-known
analysis framework — the Palladio Architecture Simulator. We have specified key
DSLs from Palladio in e-Motions, describing the basic simulation semantics as a set of
graph-transformation rules. Different properties to be analysed have been encoded as
separate, parameterized DSLs, independent of the definition of Palladio. We have then
composed these DSLs with the base Palladio DSL to generate specific simulation en-
vironments. Models created in the Palladio IDE can be fed directly into our simulation
environment for analysis.

This paper extends these earlier works in three main ways:

1. We provide the formal tools needed to seamlessly extend our concepts to the
composition of more than two DSLs;

2. We provide a revised notion of behaviour preservation that can be shown to ex-
tend to sequences of transformation steps in a GTS rather than only individual
rules; and

3. An implementation of the multiple amalgamation construction has been pro-
vided.

Much work still remains. The three main areas of future work for us are:

38

1. Improving the flexibility of DSL composition. Currently, our formal framework
only supports morphisms (and by extension amalgamations) where there is a
close correspondence between the set of transformation rules in the GTSs to
be composed. This limits the amount of reuse that can be achieved. We plan
to study ways in which the relationships can be made more flexible — for ex-
ample, by allowing GTS morphisms to selectively map rules or map individual
rules to sequences of rules. Similarly, type-graph morphisms currently require
a very high structural similarity between the two type graphs. We are planning
to explore bindings inspired by type groups [2] and ideas by de Lara and Guerra
in [10] to allow for more flexibility in this area.

2. Improving the tool support. There is reason to be optimistic that at least a sub-
stantial set of behaviour-preserving morphisms can be verified statically by es-
tablishing simple, easily checkable conditions over rules and sets of rules. We
plan to provide such conditions and embed them into our current tooling so that
behaviour-protection of any DSL composition can be verified effectively.

3. Exploring other DSL composition scenarios. So far, we have focused on sce-
narios where we are adding observer DSLs to a base DSL. For these cases,
behaviour-protection is an appropriate property to require of the underlying mor-
phisms. However, other DSL-composition scenarios may find this property too
restrictive. We plan to identify classes of DSL-composition scenarios that can
be characterised by different semantics-related properties of the underlying mor-
phisms.

Acknowledgements

We would like to thank the anonymous reviewers for their careful reading of our
work and the comments made, which we found very useful in order to improve the qual-
ity and clarity of our article. The work of Fernando Orejas has been partially supported
by funds from the Spanish Ministry for Economy and Competitiveness (MINECO) and
the European Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-
1-R).

References

[1] P. Boehm, H.-R. Fonio, and A. Habel. Amalgamation of graph transformations
with applications to synchronization. In H. Ehrig, C. Floyd, M. Nivat, and J. W.
Thatcher, editors, TAPSOFT, Vol.1, volume 185 of Lecture Notes in Computer
Science, pages 267–283. Springer, 1985.

[2] K. B. Bruce, L. Petersen, and A. Fiech. Subtyping is not a good “match” for
object-oriented languages. In M. Akşit and S. Matsuoka, editors, Proc. 11th Eu-
ropean Conf. on Object-Oriented Programming (ECOOP’97), volume 1241 of
LNCS, pages 104–127. Springer, 1997.

[3] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson. Semantic anchor-
ing with model transformations. In Proc. of the 1st European Conference on

39

Model Driven Architecture: Fondations and Applications (ECMDA-FA’05), vol-
ume 3748 of Lecture Notes in Computer Science. Springer, 2005.

[4] S. Clarke and R. J. Walker. Generic aspect-oriented design with Theme/UML. In
Aspect-Oriented Software Development, pages 425–458. Addison-Wesley, 2005.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude, volume 4350 of LNCS. Springer, 2007.

[6] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg. The category of
typed graph grammars and its adjunctions with categories of derivations. In Cuny
et al. [7], pages 56–74.

[7] J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors. Proc. 5th International
Workshop on Graph Grammars and their Applications to Computer Science (Gra-
Gra 1994), volume 1073 of Lecture Notes in Computer Science. Springer, 1996.

[8] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Attributed
graph transformation with node type inheritance. Theoretical Computer Science,
376(3):139–163, 2007.

[9] J. de Lara and E. Guerra. From types to type requirements: genericity for model-
driven engineering. Software and System Modeling, 12(3):453–474, 2013.

[10] J. de Lara and E. Guerra. Towards the flexible reuse of model transformations: A
formal approach based on graph transformation. J. Log. Algebr. Meth. Program.,
83(5-6):427–458, 2014.

[11] J. de Lara and H. Vangheluwe. Automating the transformation-based analysis of
visual languages. Formal Aspects of Computing, 22(3-4):297–326, 2010.

[12] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio. Extending
AMMA for supporting dynamic semantics specifications of DSLs. Technical Re-
port 06.02, Laboratoire d’Informatique de Nantes-Atlantique (LINA), Apr. 2006.

[13] F. Durán, F. Orejas, and S. Zschaler. Behaviour protection in modular rule-based
system specifications. In N. Martı́-Oliet and M. Palomino, editors, Recent Trends
in Algebraic Development Techniques (WADT 2012), volume 7841 of Lecture
Notes in Computer Science, pages 24–49. Springer, 2013.

[14] F. Durán, S. Zschaler, and J. Troya. On the reusable specification of non-
functional properties in DSLs. In Proc. 5th Int’l Conf. on Software Language
Engineering (SLE 2012), 2012.

[15] H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, 1st Graph Grammar Workshop, volume 73
of Lecture Notes in Computer Science, pages 1–69. Springer, 1979.

[16] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer, 2005.

40

[17] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volumne II: Appli-
cations, Languages and Tools. World Scientific, 1999.

[18] H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, ICGT, volume 3256 of Lecture Notes in Computer Science, pages
144–160. Springer, 2004.

[19] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Module Spec-
ifications and Constraints. Springer, 1990.

[20] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, Graph Transformations, Second International Conference, ICGT
2004, Proceedings, volume 3256 of Lecture Notes in Computer Science, pages
161–177. Springer, 2004.

[21] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In Proc. of the 3th International Conference on the Unified Modeling Language:
Modeling Languages and Applications (UML’00), volume 1939 of Lecture Notes
in Computer Science, pages 323–337. Springer, 2000.

[22] G. Engels, R. Heckel, and A. Cherchago. Flexible interconnection of graph trans-
formation modules. In H.-J. Kreowski, U. Montanari, F. Orejas, G. Rozenberg,
and G. Taentzer, editors, Formal Methods in Software and Systems Modeling, Es-
says Dedicated to Hartmut Ehrig, on the Occasion of His 60th Birthday, volume
3393 of Lecture Notes in Computer Science, pages 38–63. Springer, 2005.

[23] G. Engels, R. Heckel, G. Taentzer, and H. Ehrig. A combined reference model-
and view-based approach to system specification. International Journal of Soft-
ware Engineering and Knowledge Engineering, 7(4):457–477, 1997.

[24] M. D. D. Fabro, J. Bezivin, F. Jouault, E. Breton, and G. Gueltas. AMW: A
Generic Model Weaver. 1ères Journées sur l’Ingénierie Dirigée par les Modèles,
2005.

[25] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph
rewrite language based on the unified modeling language. In G. Engels and
G. Rozenberg, editors, Proc. of the 6th International Workshop on Theory and
Application of Graph Transformation (TAGT’98), volume 1764 of Lecture Notes
in Computer Science, pages 296–309. Springer, 2000.

[26] U. Golas, A. Habel, and H. Ehrig. Multi-amalgamation of rules with application
conditions in adhesive categories. Mathematical Structures in Computer Science,
24(4), 2014.

41

[27] U. Golas, L. Lambers, H. Ehrig, and F. Orejas. Attributed graph transformation
with inheritance: Efficient conflict detection and local confluence analysis using
abstract critical pairs. Theoretical Computer Science, 424:46–68, 2012.

[28] M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni. Spatial and temporal re-
finement of typed graph transformation systems. In L. Brim, J. Gruska, and J. Zla-
tuska, editors, Mathematical Foundations of Computer Science 1998, 23rd Inter-
national Symposium, MFCS’98, Proceedings, volume 1450 of Lecture Notes in
Computer Science, pages 553–561. Springer, 1998.

[29] M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni. Formal software speci-
fication with refinements and modules of typed graph transformation systems.
Journal of Computer and System Sciences, 64(2):171–218, 2002.

[30] C. Guy, B. Combemale, S. Derrien, J. R. Steel, and J.-M. Jézéquel. On model
subtyping. In A. Vallecillo, J.-P. Tolvanen, E. Kindler, H. Störrle, and D. Kolovos,
editors, Proc. 8th European Conf. on Modelling Foundations and Applications
(ECMFA’12), volume 7349 of LNCS, pages 400–415. Springer, 2012.

[31] A. Habel and K.-H. Pennemann. Correctness of high-level transformation sys-
tems relative to nested conditions. Mathematical Structures in Computer Science,
19(2):245–296, 2009.

[32] R. Heckel and A. Cherchago. Structural and behavioural compatibility of
graphical service specifications. Journal of Logic and Algebraic Programming,
70(1):15–33, 2007.

[33] R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical structur-
ing of typed graph transformation systems. Mathematical Structures in Computer
Science, 6(6):613–648, 1996.

[34] R. Heckel, G. Engels, H. Ehrig, and G. Taentzer. Classification and comparison
of modularity concepts for graph transformation systems. In Ehrig et al. [17],
chapter 17, pages 669–690.

[35] Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and E. Visser. Code generation by
model transformation: A case study in transformation modularity. Software and
Systems Modelling, 9(3):375–402, June 2010.

[36] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model transformation
tool. Science of Computer Programming, 72(1–2):31–39, 2008.

[37] J. Klein, L. Hélouët, and J.-M. Jézéquel. Semantic-based weaving of scenarios. In
Proc. 5th Int’l Conf. Aspect-Oriented Software Development (AOSD’06). ACM,
2006.

[38] J. Klein and J. Kienzle. Reusable aspect models. In Aspect-Oriented Modeling
Workshop at MODELS 2007, 2007.

42

[39] H. Kreowski and S. Kuske. Graph transformation units and modules. In Ehrig
et al. [17], chapter 15, pages 607–6380.

[40] S. Lack and P. Sobocinski. Adhesive categories. In I. Walukiewicz, editor,
FoSSaCS, volume 2987 of Lecture Notes in Computer Science, pages 273–288.
Springer, 2004.

[41] R. Machado, L. Foss, and L. Ribeiro. Aspects for graph grammars. ECEASST,
18, 2009.

[42] P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis, University
of Texas at Austin, 2001.

[43] J. Meseguer, M. Palomino, and N. Martı́-Oliet. Algebraic simulations. J. Log.
Algebr. Program., 79(2):103–143, 2010.

[44] A. Moreno-Delgado, F. Durán, S. Zschaler, and J. Troya. Modular DSLs for flex-
ible analysis: An e-Motions reimplementation of Palladio. In J. Cabot and J. Ru-
bin, editors, Proceedings 10th European Conference on Modelling Foundations
and Applications (ECMFA 2014), volume 8569 of Lecture Notes in Computer
Science, pages 132–147. Springer, 2014.

[45] OMG. Metaobject facility, 2014. http://www.omg.org/mof/.

[46] F. Parisi-Presicce. Transformations of graph grammars. In Cuny et al. [7], pages
428–442.

[47] J. E. Rivera, F. Durán, and A. Vallecillo. Formal specification and analysis of do-
main specific models using Maude. Simulation, 85(11-12):778–792, Nov. 2009.

[48] J. E. Rivera, F. Durán, and A. Vallecillo. A graphical approach for modeling
time-dependent behavior of DSLs. In IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC 2009, Proceedings, pages 51–55. IEEE,
2009.

[49] J. E. Rivera, F. Durán, and A. Vallecillo. On the behavioral semantics of real-
time domain specific visual languages. In P. C. Ölveczky, editor, Rewriting Logic
and Its Applications - 8th International Workshop, WRLA 2010, Revised Selected
Papers, volume 6381 of Lecture Notes in Computer Science, pages 174–190.
Springer, 2010.

[50] J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. Analyzing rule-based be-
havioral semantics of visual modeling languages with Maude. In Proc. of the 1st
Intl. Conf. on Software Language Engineering (SLE’08), volume 5452 of Lecture
Notes in Computer Science, pages 54–73, 2008.

[51] L. M. Rose, E. Guerra, J. de Lara, A. Etien, D. S. Kolovos, and R. F. Paige.
Genericity for model management operations. Software and System Modeling,
12(1):201–219, 2013.

43

[52] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume I: Foundations. World Scientific, 1997.

[53] D. C. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25–31, Feb.
2006.

[54] A. Schürr, A. Winter, and A. Zündorf. The PROGRES-approach: Language and
environment. In Ehrig et al. [17], chapter 13, pages 487–550.

[55] G. Taentzer and A. Schürr. DIEGO, another step towards a module concept for
graph transformation systems. Electronic Notes on Theoretical Computer Sci-
ence, 2:277–285, 1995.

[56] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the use of higher-
order model transformations. In R. F. Paige, A. Hartman, and A. Rensink, editors,
Proc. 5th European Conf. on Model Driven Architecture – Foundations and Ap-
plications (ECMDA-FA’09), volume 5562 of Lecture Notes in Computer Science,
pages 18–33. Springer, 2009.

[57] J. Troya, J. E. Rivera, and A. Vallecillo. Simulating domain specific visual models
by observation. In Proc. 2010 Spring Simulation Multiconference (SpringSim
’10), pages 128:1–128:8. ACM, 2010.

[58] J. Troya, A. Vallecillo, F. Durán, and S. Zschaler. Model-driven performance
analysis of rule-based domain specific visual models. Information and Software
Technology, 55(1):88–110, 2013.

[59] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. SIGPLAN Not., 35(6):26–36, 2000.

[60] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Araújo. MATA: A uni-
fied approach for composing UML aspect models based on graph transformation.
In S. Katz and H. Ossher, editors, Transactions on Aspect-Oriented Development
(TAOSD VI), Special Issue on Aspects and MDE, volume 5560 of LNCS, pages
191–237. Springer, Oct. 2009.

[61] S. Zschaler. Formal specification of non-functional properties of component-
based software systems: A semantic framework and some applications thereof.
Software and Systems Modelling (SoSyM), 9:161–201, Apr. 2009.

[62] S. Zschaler. Towards constraint-based model types: A generalised formal foun-
dation for model genericity. In C. Atkinson, E. Burger, T. Goldschmidt, and
R. Reussner, editors, Proc. 2nd Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling (VAO’14), 2014.

44

