
The MDENet Education Platform: Zero-Install
Directed Activities for Learning MDE

Steffen Zschaler1*, Will Barnett1, Artur Boronat2,
Antonio Garcia-Dominguez3, Dimitris Kolovos3

1*Department of Informatics, King’s College London, UK.
2School of Computing and Mathematical Sciences, University of

Leicester, UK.
3Department of Computer Science, University of York, UK.

*Corresponding author(s). E-mail(s): szschaler@acm.org;
Contributing authors: will.barnett@kcl.ac.uk;

artur.boronat@leicester.ac.uk; a.garcia-dominguez@york.ac.uk;
dimitris.kolovos@york.ac.uk;

Abstract
Setting up and configuring Model-Driven Engineering (MDE) tools is not
straightforward because the MDE tooling landscape is highly fragmented and
because many MDE tools are research prototypes with limited documentation.
This creates significant accidental complexity for learners of MDE, who have to
overcome installation and configuration hurdles before they can even begin to
focus on the core MDE concepts they should be learning. This is further com-
plicated by the complexity of modern MDE tools, which can overwhelm new
learners, making it difficult for them to work out what they should do next to
achieve a given goal. To address these challenges, we have developed a web-
based playground platform that enables learners to engage with MDE learning
activities without the need to install anything. The playground metaphor allows
teachers to expose only those functionalities directly required for the comple-
tion of a particular learning activity. We present the general architecture of the
platform, our approach to the declarative integration of new MDE tools, and
the way in which teachers can flexibly and declaratively define new MDE learn-
ing activities. We have used our platform in a range of different contexts, from
live tutorials and 10-week university courses, to developing documentation web-
pages for MDE tools. We describe examples of such uses, showcasing the flexible
configurability of the platform for different types of activities and contexts.

1

Keywords: MDE, education, online, no installation, playground

1 Introduction
Model-Driven Engineering (MDE) [7] is a paradigm where models play a central role
in the development of a software system. Over the last couple of decades MDE has
been an area of active research with advancements in techniques and tools, and success
stories in the real world [41]. In terms of education, there is a consensus that MDE is
a complex subject to teach [14, 27].

A particular challenge comes from the complexity and availability of suitable
tools [8, 12, 14]. We focus on two challenges in particular:

1. MDE tools are difficult to install and configure correctly. Most MDE tools depend
on a rich ecosystem of other tools and frameworks, all of which need to come
together in the right versions and configurations for a given tool to work.
Installing multiple tools can easily lead to conflicting demands for different ver-
sions of the same underlying tool or framework. Tools are typically implemented
in Java and often as part of the Eclipse ecosystem. As a result, learners of
MDE first have to overcome a significant hurdle in getting to a work-
able MDE tool installation on their computer before they can even
begin to learn MDE concepts and techniques. This challenge has also
previously been identified in surveys of learners of modelling in UML [1].

2. MDE tools are too powerful for learners. Even when a learner has successfully
installed the MDE tools required for a particular course, they can easily become
overwhelmed by the complexity of the tools themselves [38, 39]. Most MDE tools
are integrated into an IDE, which typically provides other capabilities, too. As
a result, there are usually hundreds of menu options and tool bar buttons to
choose from. Picking the right one for a given task quickly becomes challenging
for novice MDE users. As a result, learners of MDE have to first learn
which functionalities are relevant before they can focus on learning
MDE concepts and techniques. Note that, in the context of teaching and
learning programming, this challenge has also been recognised and has been the
foundation of the development of bespoke education-focused tools [28, 29, 35]

These challenges create accidental complexity [25] for learners of MDE. We want
learners to encounter difficulties, but these should be desirable difficulties [3] that
enhance their learning, such as guided practical engagement with the relevant con-
cepts. Ideally, learners would be able to focus on the MDE concepts and techniques
they are trying to understand, rather than first having to overcome several accidental
challenges.

There are good reasons for the added complexity for production MDE tools. Tools
need to flexibly support a broad range of use cases and functionalities. However, much
of this is not relevant for learners of MDE. We argue, therefore, that there is a need
for MDE tools specifically for the purpose of learning MDE.

2

A recent workshop at MODELS 2023 identified a broad range of requirements for
such modelling tools for teaching [27]. Here, we focus on a subset of these requirements.
More specifically, we aim to address the following requirements:

(R1) Learners should be able to undertake MDE learning activities without the need
to install and configure MDE tools.

(R2) Learners should be able to engage in different types of activities, such as typical
model management activities or the creation of new languages using language
workbenches.

(R3) Learners should be able to transition their MDE learning activities easily to a
real-world tool environment.

(R4) Teachers should be able to easily and collaboratively define new learning
activities.

(R5) Teachers should be able to control and constrain learners’ possible interactions
with the MDE tools so that they can guide learners and avoid overwhelming
them with complexity.

(R6) Teachers should be able to flexibly combine a range of MDE tools.
(R7) Tool providers should be able to easily contribute a new MDE tool for use in

learning activities.
We address these requirements by providing an online playground environment for

MDE learning activities—the MDENet Education Platform (EP in the rest of the
paper). The web-based nature of the playground means there is no need to install
anything beyond a basic web browser. The playground metaphor means that learn-
ers will only be exposed to a minimal interface focused on the files and functions
required for a given learning activity. We provide a declarative language for flexibly
defining learning activities. Learning activities are packaged as GitHub repositories,
enabling teacher–teacher collaboration as well as providing learners with the ability
to undertake the activities directly in standard IDEs if desired. Modelling tools for
teaching should address requirements beyond the list above [27]. For example, such
tools should provide support for automated assessment and rich feedback to learners.
We do not currently address these further requirements in the EP. Note that the EP
uses GitHub repositories to store assignments. This allows using GitHub Actions for
auto-grading—for example by using the popular GitHub Classroom1 service.

This paper extends a paper presented at the MODELS Educators Symposium [2].
We extend that paper by giving an updated account of the EP’s architecture and
design, as well as describing three case studies of how the EP has been used in dif-
ferent learning contexts and with different tools included in the learning activities.
The EP already supports a breadth of MDE tools, including Epsilon, Emfatic, OCL,
YAMTL, and Xtext, covering a spectrum of different installation requirements and
user interactions, and the case studies we present showcase how some of these are
integrated into learning activities.

The remainder of the paper is structured as follows: We introduce the three types
of stakeholders and their respective use cases in Sect. 2. Section 3 uses a running
example to illustrate an overview of the design of the EP. Section 4 describes three case
studies of where the platform has been used, demonstrating different aspects of how

1https://classroom.github.com

3

Fig. 1 Stakeholders and key usage scenarios for the EP

we address the requirements above. Finally, after a brief discussion of related work
in Sect. 5, Sect. 6 summarises the paper, indicates some future work, and provides
information on how to get involved.

2 Key Platform Users
Three types of key stakeholders are involved in teaching modelling and model-driven
engineering (cf. Fig. 1):

1. Learners access the platform to complete learning activities created by a Teacher.
2. Teachers create lessons to deliver to their learners as activities on the platform,

and they make available the activity files from a location accessible to their
learners.

3. Tool providers create platform services for their existing tools. Activities use these
services to perform MDE functions, such as model-to-model transformations,
model validations, etc.

We next describe typical use cases for each of the three key stakeholders.

2.1 Learners
Learners are interested in working through learning activities in order to improve their
practical and conceptual understanding of MDE. Broadly, they are therefore inter-
ested to complete learning activities (UC1). To do so, they access the learning
activity via their teaching organisation’s Virtual Learning Environment (VLE) and
work through the activity in a guided fashion (R1). Teachers may get involved in this
– for example, by providing feedback or assessment of the learner’s work.

Learners may not complete an activity in a single sitting. They, therefore, need to
be able to save their progress and resume the learning activity (UC2) at a later
stage.

4

Finally, learners will eventually want to be able to learn about using real-world
MDE tools, transitioning away from the “safe space” of the EP (R3). To support this
step, learners need to be able to export the learning activity (UC3) in a way that
makes it accessible to standard tools – for example by extracting a suitably formatted
ZIP file or repository.

2.2 Teachers
Teachers create learning activities (UC4) (R4). They may do so from scratch,
and in this case are interested in being able to succinctly describe their learning activ-
ity, incorporating the most appropriate set of MDE tools (R6), including language
workbenches (R2), and then store the learning activity so they can use it again and
again in their teaching. In creating learning activities, teachers want to be able to
constrain what learners can do, to ensure learners focus on the task at hand (R5)

To increase efficiency, teachers are also interested in reusing existing learning
activities (UC5). To this end, learning activities should be stored in ways that can
be easily shared with and accessed by other teachers. Of course, direct reuse of a
learning activity as is may not always be appropriate. In those situations, teachers
may wish to revise or extend the learning activity (UC6).

2.3 Tool Providers
A large community of researchers and practitioners develop MDE tools for a wide
range of model-management and language engineering tasks. Tool providers are inter-
ested in making their tools accessible to learners of MDE (R7). To contribute a
tool (UC7) to the EP, a tool provider needs to identify the key functionality and
features that a learner needs to be able to access. They need to be able to package
these functionalities in individually accessible parts, so that they can be appropriately
combined in learning activities of different complexity levels.

3 Architecture and Design of the EP
The EP builds on the Epsilon Playground [33] but generalises the architecture to
allow the declarative description of learning activities and the flexible integration of
a wide range of MDE tools. The EP also integrates with GitHub to provide a way for
learners to save their work and easily transition to the use of real-world MDE tools
and environments.

In this section, we give an overview of the key components of the EP. First, we
introduce an example learning activity, which we will use throughout the further
explanations. We then start with a general overview of the architecture. Next, we
describe how activities are defined and executed by the EP. We then describe how tools
can be integrated with the EP, and the implicit model-type conversion provided by
the EP to make tool integration easier. Finally, we briefly touch on support available
for teachers and tool providers to make it easier to work with the EP.

5

1 2 3 4

6

5

Fig. 2 The Epsilon EVL example in the EP. Numbered circles indicate different parts referenced
from the text.

3.1 Running Example
To make the description of the design, implementation, and use of the EP more con-
crete, we introduce a running example, to which we will refer as required. We reuse
an example from the Epsilon Playground [33] focusing on the validation language
EVL [31], which we have ported to the EP.2 The EP is available on GitHub3. The
example can be directly accessed on the publicly hosted version of the platform4.

Figure 2 shows the interface that learners see when completing the activity. In
addition to a menu area (1) on the left, there are five panels: The contents of panel 2
are the constraints to check against the model 3 and its metamodel 5 . Panel 4
displays the result of evaluating the constraints for the model. The console 6 shows
error messages.

Learners edit constraints in Panel 2 and then click on the run button . This
triggers the evaluation of the constraints the learner has provided. If there are errors
in the constraint definition (for example, errors in the EVL syntax), these are reported
in the console panel 6 . Otherwise, the platform presents an annotated version of the
model in Panel 4 . In Fig. 2, the constraints were successfully evaluated, and two
violations were identified (one task is missing a duration specification and “Charlie”
is a person who is not involved in any project task).

3.2 Platform architecture
The EP is a single-page web application, with most of the functionality running
directly in the learner’s browser. Figure 3 gives a high-level overview of the key com-
ponents of the EP. The Platform Server provides the HTML and JavaScript to
be executed in the learner’s browser. It also runs the Token Server, which provides
authentication services for access to GitHub repositories (see below).

Three key components run in the learner’s browser:

2This primarily required creating declarative specifications of the activities and the Epsilon tools in the
format required by the EP.

3https://github.com/mdenet/educationplatform-docker
4https://tinyurl.com/epEpsilon

6

https://github.com/mdenet/educationplatform-docker
https://tinyurl.com/epEpsilon

Fig. 3 High-level architecture of the EP.

1. The MDENet Education Platform provides the main entry point. It is respon-
sible for reading activity specifications and activity files and setting up the user
interface.

2. The Activity Manager is responsible for parsing and validating activity descrip-
tions (see Sect. 3.3), enabling the EP to configure the appropriate user interface.

3. The Tool Manager keeps track of the tool services in use by the current learning
activity. Tool Services implement wrappers around MDE tools to make them
accessible to the EP (see Sect. 3.4). They are implemented (and typically hosted)
by tool providers.

We implement a simple token server [15] to manage GitHub OAuth authentication
tokens, which works together with a GitHub App5 and enables read and write access
to the repository underlying a learning activity (assuming this is compatible with the
learner’s access rights on GitHub). This means learners can easily save the current
state of work as a commit to the underlying repository; the EP supports this directly
through a “Save” button in the left-hand menu. Learners can then resume the activity
at a later time (UC2).

3.3 Defining activities
Learning activities are stored in GitHub repositories. Two types of files have to be
provided:

1. A YAML [17] or JSON [20] file declaratively describing the configuration of the
EP for the learning activity.

2. Any other files required for the learning activity—for example, models, language
grammars, meta-models etc.

Learning activities are provided as a complete repository. This means teachers can
include arbitrary files and folder structures beyond the files directly required for the

5https://docs.github.com/en/apps

7

https://docs.github.com/en/apps

Fig. 4 Meta-model of the activity-specification language

learning activity. As a result, learners can transition to using regular IDEs and MDE
tools if the repository contents has been set up so that it works directly with regular
tools, and the learning activity definition only picks out those files directly required for
the task at hand (R3). Learners can then checkout the repository to their computer
outside of the EP to access it through regular tools and can even go back and forth
between both modes of access at will.

3.3.1 Activity configuration
A learning activity is presented to the learner as a single web page with a collection
of panels (2 – 6 in Fig. 2). Teachers provide activity-configuration files to define
the panels and functionalities available to the learner. An activity-configuration file
may define multiple activities; these are shown as separate links in the left-hand side
menu of the EP. In our running example, this menu can be seen in 1 in Fig. 2 and
contains 3 activities, one of which is currently shown in the main platform space.

To describe the set of learning activities available (UC4), a teacher uses a domain-
specific language (R4), currently encoded as a JSON schema [26] (and, thus, also
accessible via YAML [17]). We provide a graphical overview of the abstract syntax of
the activity-specification language in meta-model notation in Fig. 46. In the following,
we introduce the language step by step by walking through an example using the
YAML notation.

Two kinds of common attributes used throughout the activity-configuration files
are id and name (sometimes title). An id uniquely identifies the object that it is

6Note this is an approximation of the JSON schema adjusted for readability as a meta-model. A
transformation creating instances of the meta-model from JSON files will be presented in Sect. 4.3.2

8

1 activities :
2 - id: evl
3 title : Validate Project Plan
4 icon : evl
5 tools :
6 - http ://127.0.0.1:8070/ tools # Epsilon
7 - http ://127.0.0.1:8071/ emfatic_tool .json # Emfatic
8 panels :
9 # Listing 2

10 layout :
11 # Listing 3
12 actions :
13 # Listing 4

Listing 1 Basic activities definition

an attribute of and can be used in cross-references. A name or title is the text to
display in user interfaces for the object.

Listing 1 shows the start of the top-level structure of the activity-configuration file
for our running example (showing only one of the three defined activities). We have
already described the id and title attributes. The icon attribute specifies the name
of an icon defined in the images css static resource file for the icon in the activity
menu (see 1 in Fig. 2).

The tools array provides a list of URLs of the tool services for the MDE tools used
in the activity. We support limited rewriting of these URLs. Specifically, a teacher
can use the form {{ID-<panel-id>}} (where <panel-id> is the identifier of a panel
in the current activity) which will be replaced by a URL for a tool service that has
been generated as part of the completion of another activity. We will discuss this in
more detail when we discuss language-workbench activities in Sect. 3.3.2. A complete
example can be found in Sect. 4.2.3 on Page 25.

Tools can be deployed in arbitrary locations, which is why the tools array accepts
fully specified URLs to identify the location of any tools. In Listing 1, the URLs we
show are those used when hosting a local version of the EP, including the Epsilon
tools and support for Emfatic [16]. For tools hosted with the platform, the EP is able
to rewrite URLs using the notation {{BASE-URL}}:<port> followed by the name of
a JSON/YAML file with the tool description. This is translated (based on a registry
of port numbers) into appropriate paths at the base URL where the EP has been
deployed. The two tool URLs from Listing 1 can then also be written as

6 - {{ BASE -URL }}:8070/ tools # Epsilon
7 - {{ BASE -URL }}:8071/ emfatic_tool .json

This notation will work regardless of whether the activity is executed on the publicly
hosted EP, on a developer’s personal PC, or on a different server.

An activity definition further includes the definition of panels, their visual layout,
and actions available to the learner. We will first consider the definition of panels and
layouts, which specify what the learner can see in the browser.

An activity can define multiple panels. Each panel definition has id and name
attributes as discussed above; the name is shown as the title bar of the panel on
the platform. The ref attribute is used to identify the type of panel. Each tool can
contribute new panel types, specifying syntax highlighting rules for text panels, panel

9

1 - id: panel -evl
2 name : Constraints (EVL)
3 ref: evl
4 file : psl.evl

Listing 2 Activity configuration panels

icons, and buttons available by default. In addition, the EP defines some stock panel
types; in particular, the console and composite panel types are defined directly by the
EP. The ref attribute is also used to identify the type of the panel’s contents. This
will become important when we discuss how the EP automatically transforms between
types of contents when invoking functionality from different tools (cf. Sect. 3.5).

The file attribute is used to identify the file to be shown in the panel. This can
be an arbitrary URL, but is normally a path relative to the path of the activity-
configuration file in the containing GitHub repository. If so, the EP will commit any
changes to the panel contents back to that file when the learner chooses to save their
work (UC2). Panels, thus, allow teachers to focus learners’ attention on just the files
they require for the current activity (R5).

Listing 2 shows the definition of the EVL panel for our running example. This
assumes that the repository contains a file called psl.evl in the same folder as the
activity-configuration file. The contents of that file will be shown in the panel and
any changes will be committed back to that file when the learner chooses to save. The
panel makes reference to the evl panel type, which is provided by the Epsilon tool
previously referenced by its URL.

Two types of panels are worth discussing separately:
1. Editor definition panels. A key type of learning activity is about how to define

new modelling languages and tools. This requires learners to go through a two-
stage process where they first define a language and then try it out. The EP
provides some special notation to couple these stages and we will discuss these in
detail in Sect. 3.3.2 when discussing “language-workbench activities” in general.

2. Composite panels. At times, different perspectives on the same artefact are useful,
but there may not be enough space on the screen to show them all simultaneously.
For this purpose, the EP provides the option of defining composite panels, which
contain other panels themselves. This is done by setting the ref attribute to
composite. Special “toggle” buttons can be defined as part of the composite
panel to allow learners to show and hide individual sub-panels. Composite panels
can, in principle, be nested arbitrarily deeply. In practice, we have not yet found
the need to define more than one level of nesting.

Panels can define buttons that the learner can use to trigger specific actions. Tool
providers typically define default buttons for the panel types they contribute. These
buttons can be overridden by teachers by providing a separate array of buttons in
a panel specification (R5). Each element in such an array can either be a reference
to one of the default buttons defined by the tool provider or a full separate button
definition. We will describe button definitions in more detail in Sect. 3.4.

Once panels have been defined, the teacher needs to specify how these will be
displayed. Note that it is possible to define panels that will not be shown. This can

10

1 layout :
2 area :
3 - [panel -evl , panel -model , panel - problems]
4 - [panel -console , panel -mm ,]

Listing 3 Activity configuration layout

1 actions :
2 - source : panel -evl
3 sourceButton : action - button
4 parameters :
5 program : panel -evl
6 flexmi : panel - model
7 emfatic : panel -mm
8 output : panel - problems

Listing 4 Activity configuration actions

be a useful way of loading files required for certain functions without exposing the
learner to the additional complexity. We will see examples of this in some of the case
studies described in Sect. 4. Panels are shown by including them in the layout two-
dimensional array. This has one element for each row of panels. Where arrays are of
uneven lengths, panels will be resized to cover multiple rows automatically. Listing 3
shows the layout definition for our running example. Note how the panel-problems
panel (Panel 4 in Fig. 2) is automatically expanded to fill both rows.

The final component of an activity definition is the definition of actions. These
are used to define what happens when a learner clicks on a button on one of the
panels. There are two parts to this:

1. Tool providers define web-based API endpoints (called functions) through which
specific tool functionality is exposed. These have a name and a set of formal
parameters. Buttons are associated with functions in the button definition. We
discuss these in more detail in Sect. 3.4.

2. For a specific learning activity, an action specifies which panels provide the val-
ues for the various parameters (alternatively, values can be provided directly)
and which panel will be used to display the output from the tool function.
An action can also reference a separate console which can be used to display
stdout/stderr output to the learner in addition to the actual function result.

Listing 4 shows an example action definition for our running example. This
defines what happens when the learner clicks on the action-button button in
the panel-evl panel (the button with on it). The tool provider has already
defined this button to invoke a tool function that evaluates the EVL code over
a model and meta-model. Here, we define where the EVL code (program) comes
from (panel panel-evl) and what the model (panel-model) and meta-model
(panel-mm) are for which the constraints are to be evaluated. Finally, we state
that the result of the function invocation should be shown to the learner in panel
panel-problems.

11

3.3.2 Language-workbench activities
A key aspect of MDE is the development of new, typically domain-specific, modelling
languages. Therefore, the EP needs to be able to support learning activities that
require learners to develop their own modelling languages (R2). Such activities take
two steps:

1. Learners create a description of their modelling language. This may be a meta-
model, a grammar, a specification of the graphical syntax, a code generator
template, validation code, etc.

2. Learners use the language they have defined. They can see how their language
description has been translated into editors and other tools for their language.

By defining a new language, learners effectively create a new tool. In fact, many
existing MDE tools define their own language; typically, these are packaged as plugins
for IDEs such as Eclipse, IntelliJ, or VSCode. Thus, learners temporarily act as tool
providers.

To hide the details of how MDE tools are integrated into the EP from learners, we
allow activities to be coupled dynamically within an activity-configuration file. With
this capability, teachers define language-workbench activities by

1. defining an activity for learners to provide relevant descriptions of their new lan-
guage. A button in this activity triggers a tool function provided by the creator of
the language workbench to generate a new MDE tool encompassing the learner’s
new language.

2. defining a separate activity that is configured to use the language tool dynami-
cally generated from the learner’s language description.

Listing 5 shows an excerpt from a learning activity where learners produce an
Xtext grammar [23] and then try out the generated editor. There are two activities
here.

1. activity-xtext defines a panel where the learner can create the grammar.
This panel uses the xtext-grammar panel type provided by the Xtext tool,
which includes a button to trigger the generation of Xtext artefacts from the
grammar. In addition to the usual panel attributes, panel-xtext uses two
attributes editorActivity and editorPanel. These refer to the second activity
activity-editor and a panel in that activity (panel-editor).

2. activity-editor is the activity learners use to try out their new language.
Because the activity is referenced from a panel in the first activity, the EP only
makes activity-editor available through the menu if the generation action in
the first activity has been used by the learner and has produced an editor. The
API endpoint associated to this action is expected to return a URL pointing to
where the newly generated tool is available. This URL is made available to the
learning activity via the {{ID-panel-editor}} variable, which is used to load
the generated tool in the second activity.

12

1 activities :
2 - id: activity - xtext
3 panels :
4 - id: panel - xtext
5 name : Grammar
6 ref: xtext - grammar
7 file : Turtles . xtext
8 editorActivity : activity - editor
9 editorPanel : panel - editor

10 - ...
11 ...
12 - id: activity - editor
13 tools : [{{ID -panel - editor }}/ editor_tool .json , ...]
14 panels :
15 - id: panel - editor
16 ...

Listing 5 Configuring language-workbench activities

1 tool :
2 id: epsilon
3 name : Epsilon
4 functions :
5 # Listing 7
6 panelDefs :
7 # Listing 8

Listing 6 Tool configuration top-level structure

3.4 Contributing MDE tools
Tool services provide the functionality that the installed tools on a developer’s local
machine environment would normally provide—for example, model-to-model trans-
formation, text generation, or model validation. They make up the back-end of the
EP, providing a wrapper around an existing MDE tool. A tool service comprises a
(set of) tool function(s) and static resources.

The tool function provides a web-based API endpoint that conforms to the tool
interface specification. The static resources a tool provider must create (UC7) include:
a tool configuration file, highlighting rules, and icons. Tools are provided indepen-
dently of learning activities. They may be hosted on the same infrastructure as the
EP, but they may also be hosted on separate infrastructure—for example, controlled
by the tool provider (R7). Teachers reference tools by their URL to use them in an
activity they are creating.

3.4.1 Tool configuration
A tool-configuration file defines the tool functions and the panels that are available
for a learning activity to use. Figure 5 provides an overview of the concepts used in
tool-configuration files.

Listing 6 shows the top-level structure of a tool configuration using the example of
the Epsilon tool, which provides access to the various tools in the Epsilon suite [30].
Tool configurations have an id and a name. They then define two key contributions:
functions and panelDefs (panel definitions).

13

Fig. 5 Tool configuration meta-model.

A tool can declare multiple functions. Each function declaration has an id and an
explanatory name. The path attribute is a URL that the EP will send a POST request
to to invoke the function. It is up to the tool service (see below) how to implement
this API endpoint. The function declaration further declares the formal parameters
of the function and indicates its returnType.

Listing 7 shows the EVL tool configuration function declaration for our example.
As can be seen, parameter declarations normally have a name and a type. The latter
is used to support a limited degree of automatic type conversion (cf. Sect. 3.5). The
model parameter has an additional instanceOf attribute, indicating that whatever
is passed in through this parameter is expected to be a model that is an instance of
the meta-model passed in via the parameter named metamodel.

The path uses the special {{BASE-URL}} rewrite rule, which the EP will replace
with the location from which the tool configuration file was loaded. This allows tools
to be hosted in different locations without the need to change their specifications.

A tool further defines multiple panel definitions (panelDefs) to be instantiated
by the panels of activity configurations using the tool. Each panel definition has an
id, a name, and an icon (referencing an image provided via a separate CSS file).
The panelclass attribute identifies one of a fixed set of base panel types: consoles
(ConsolePanel), text editors with syntax highlighting and other IDE functionality
(ProgramPanel) based on the ACE editor framework7 and configured via a JavaScript
module separately provided by the tool service, and output panels that can show
code or diagrams (OutputPanel). The language attribute provides a string uniquely
identifying the type of the contents of a panel. This will be used together with the

7https://ace.c9.io/

14

https://ace.c9.io/

1 functions :
2 - id: function -evl
3 name : evl
4 parameters :
5 - name : program
6 type : evl
7 - name : metamodel
8 type : emfatic
9 - name : model

10 type : flexmi
11 instanceOf : metamodel
12 - name : language
13 type : text
14 returnType : text
15 path : {{ BASE -URL }}/ services / epsilon

Listing 7 Tool configuration function definition for EVL tool

1 panelDefs :
2 - id: evl
3 name : evl
4 panelclass : ProgramPanel
5 icon : evl
6 language : evl
7 buttons :
8 - id: action - button
9 icon : run

10 actionfunction : function -evl
11 hint : Run the program
12 - id: help - button
13 icon : info
14 url: https :// www. eclipse .org/ epsilon /doc/evl/
15 hint : EVL Language Reference

Listing 8 Panel definition for the EVL panel

type attributes of function parameters to ensure correct input is provided to tool
functions. It is also used to select the correct set of highlighting rules from the rules
provided separately by the tool. Listing 8 shows the EVL panel definition.

Panel definitions may optionally define an array of buttons. Each button can
either be an action button (allowing learners to trigger a specific tool function) or a
help button (linking to additional material learners can use to learn more about the
contents of that specific panel). Listing 8 shows examples of each type of button.

3.4.2 Tool service
A tool’s functionality is provided by a tool service through web API endpoints. These
can be implemented in a variety of ways. For many tools, the services will be imple-
mented as stateless functions-as-a-service, but some tools (e.g., language workbenches
like Xtext) will use a stateful server as the tool service. Requests and responses use
standard JSON encoding for parameters and result data.

3.5 Dynamic invocation of MDE tool functions
As learners progress through learning activities, they edit the contents of panels and
click on the buttons available. Action buttons are linked to tool-service functions as

15

described in Sect. 3.4.1. When the learner clicks on such a button, the EP evaluates
the linked action definition (cf. Listing 4) to identify the panels whose contents is to
be provided as parameter values to the tool-service function.

Tool-service functions expect parameters to be of particular types. In particular,
models provided are expected to be instances of a particular meta-model and to be
presented in a specific concrete syntax.

As different tools are combined in the same learning activity (R6), information will
not always be available in the precise type expected by tool-service functions. Rather
than requiring tools to provide variants of tool-service functions for a wide range
of input types (and type combinations)—which would not scale—the EP provides
support for limited implicit type conversion when invoking tool-service functions.

To achieve this, the EP:
1. Includes type information in ToolFunction Parameter specifications to docu-

ment the type of information expected by the tool-service function.
2. Includes type information in panel definitions (provided by tool configurations)

indicating the type of information in a particular panel.
3. Allows tools to register conversion functions from one type to another. These are

defined similarly to action functions and are also implemented via a web-based
API endpoint.

4. Compares input value types against the expected tool-service function types.
5. Identifies suitable conversion functions to translate provided types to required

types and calls them.
6. Calls the requested tool function.

Types are represented by strings. Type equality is simply string equality; the EP
does not currently provide support for type hierarchies or other advanced features.

The pseudocode in Algorithm 1 shows how the EP handles type conversion when
a tool function is triggered by a user clicking on an action button. When an action
button is pressed, a params object is created using the corresponding button’s action
from the activity-configuration file. The params object maps function names to a
value and type. The value is the input to the tool function and is the contents of a
displayed panel that is specified by the configuration file’s activity parameter to panel
mapping.

For each of the parameters in params, Line 3, the EP checks to see if the parameter
type matches the corresponding tool function’s parameter type, Line 5, to determine
if any type conversion is necessary. If the types match, the value params is inserted
into the requestData array on Line 14. If the types do not match, the EP tries to
convert the input value to a type that matches the tool function’s parameter type
using a conversion function.

To convert a model, the meta-model is required by the conversion function. Con-
verting the format in which meta-models are represented does not require additional
reference to an explicit meta-meta-model. The EP handles each of these cases sepa-
rately. On Line 6 the parameter is checked for a meta-model dependency. If such a
dependency exists, this will be captured by the instanceOf element’s presence in the
parameter definition (cf. Listing 7), which is extracted on Line 9.

16

Algorithm 1 Pseudocode representation of tool-service function parameter type con-
version

1: params: map of activity action parameters to their type and value
2: tf : object describing a tool function
3: for all p in params do
4: tfp← tf .getParam(p)
5: if p.type ̸= tfp.type then
6: if ¬tfp.hasMetamodel() then
7: cr ← convert(p.value, p.type, tfp.type)
8: else
9: mm ← params[p.instanceOf]

10: cr ← convertIncludingMetamodel(
p.value, p.type,
mm.value, mm.type, tfp.type)

11: end if
12: requestData[p.name]← cr
13: else
14: requestData[p.name]← p.value
15: end if
16: end for
17: call(tf .id, requestData)

If there is no meta-model dependency, the EP converts the input parameter using
the convert() function. If there is a dependency, the EP converts the input parameter
using the convertIncludingMetamodel() function. This function has five parameters:
input value, input type, meta-model value, meta-model type, and target type. Note
that convertIncludingMetamodel() may only be able to do the conversion by first
converting the meta-model itself to a format that can be accepted by an available
conversion function.

The result of either conversion is assigned to cr on Lines 7 or 10, which is inserted
into the requestData array on Line 12. Following all the parameters in params being
processed, the requestData variable holds the inputs to the tool function with the
types it expects. The tool function is finally called by the call() function on Line 17.
The call() has two parameters: the id of the tool function, and an array containing
the parameters and their values.

Conversion functions are identified from the tool configurations referenced by the
activity. To minimise the complexity of the type conversion, only direct conversions
using a single function are considered; conversions are not chained. If no suitable direct
conversion can be found, the EP reports a configuration error. The EP currently does
not perform conversions on tool-service function results, but we plan to introduce this
in the future.

3.6 Support available for teachers and tool providers
To support teachers in defining activities (R4) and tool providers in contributing
tools to the EP (R7), the abstract syntax of the activity-configuration and tool-
configuration languages has been captured in a set of JSON schema definitions [26].
These are used by a VSCode [40] plugin8 which provides a degree of validation
and code-completion support for teachers creating new learning activities and tool

8https://github.com/mdenet/educationplatform-vscode/

17

https://github.com/mdenet/educationplatform-vscode/

providers contributing new MDE tools. There is also a repository of example activi-
ties9 that can serve as starting points for teachers to extend and refine, as well as a
template repository that can be used as a starting point for new tool definitions10.

JSON schemas do not provide support for well-formedness constraints beyond syn-
tactic and multiplicity constraints. When loading a configuration file, the EP provides
more detailed validation feedback if required. We plan to translate the current JSON
schemas into full DSMLs, which will provide more powerful validation and feedback
to teachers and tool providers before loading activities into the EP.

4 Case Studies
In this section, we present three case studies of different uses of the EP. Each of these
demonstrate how different requirements established in Sect. 1 have been addressed
by the EP. To structure the case studies, we formulated three exploratory research
questions:
(RQ1) How can the EP reduce entry barriers for learners and provide a practical,

scalable, and supportive learning environment?
(RQ2) How effectively does the EP empower educators to design, manage, and control

tailored learning activities in MDE education?
(RQ3) What mechanisms and processes enable the EP to accommodate contributions

from diverse stakeholders, including tool providers, to extend its applicability
and utility?

Following the recommendations in [45], the case studies are structured to address
these questions by focusing on their real-world context, integrating multiple sources
of evidence, and maintaining a clear chain of evidence. Each case study highlights how
specific aspects of the platform were used to address one or more of the requirements
outlined in Sect. 1, ensuring a thorough and exploratory approach to understanding
the EP’s impact and capabilities.

4.1 Epsilon and MDE DevOps
One of the authors (Garcia-Dominguez) presented a tutorial titled “Managing your
models as part of a DevOps pipeline” at the 2023 MDENet Annual Symposium11. The
tutorial was dedicated to showcasing how model-driven approaches could be combined
with DevOps practices: whether by executing model management workflows from
continuous integration processes, or by having model management operations support
DevOps tasks like interacting with APIs to produce artifacts (e.g. release notes based
on the GitHub issues API).

In order to allow attendees (a mixed audience from industry and academia) to
interactively try out the examples in the tutorial without having to install and set up
an entire development environment, the EP was adopted. This section discusses how
workspaces were automatically provisioned for each attendee via the EP and GitHub,

9https://github.com/mdenet/educationplatform-examples/
10https://github.com/mdenet/educationplatform-tooltemplate
11Materials available from: https://github.com/agarciadom/mdenet-mde-ci-tutorial

18

https://github.com/mdenet/educationplatform-examples/
https://github.com/mdenet/educationplatform-tooltemplate
https://github.com/agarciadom/mdenet-mde-ci-tutorial

and the design and implementation of the various EP activities that were part of the
tutorial.

4.1.1 Automated provisioning of attendee workspaces via GitHub
The tutorial materials were set up as a GitHub template repository, allowing atten-
dees to launch the EP in different ways depending on their needs (R1) (R3). If the
participant did not need to save their changes, they could launch the EP directly on
the tutorial materials by following a link in the repository’s README file. This did not
require a GitHub account.

On the other hand, if the participant wanted to persist their changes (e.g. to see
the automated execution of the CI pipelines after experimenting with the examples),
they needed to have their own repository with a copy of the materials. Participants
could use existing GitHub facilities to create a repository using the tutorial materials
as a template, but they would also need to install the MDENet GitHub application
into their GitHub account, so the EP could commit their changes on their behalf.

To avoid this complexity, a GitHub Classroom organisation was created for the
tutorial, with the MDENet GitHub application pre-installed into it. A Classroom
assignment was created using the template repository as a starting point, and atten-
dees were given an invitation link to have GitHub create a repository within the
organisation, which they could use from the EP.

Having created a repository and given the MDENet GitHub application access to
it, the next task was telling the EP to open their repository. This required following a
link which included the address of the repository. Rather than requiring participants
to manually construct the appropriate URL (which would be prone to mistakes), the
repository automatically updated its own links in the README by using a GitHub
create workflow. Participants only needed to wait briefly for the workflow to complete
after creating the Classroom repository, and from then on they only had to follow the
updated link.

In general, the attendees did not require assistance with this automated
setup (R1), which closely mirrored what would be typically used in an MDE course
(UC1–2).

4.1.2 Model-driven development of Java state machines
The first group of activities that attendees are walked through is the model-driven
development of a Java program that implements a state machine. These include:
AV The definition of a state machine model and checking its internal consistency via

the Epsilon Validation Language (EVL).
AT A model-to-model transformation into a Java abstract syntax model via the

Epsilon Transformation Language (ETL).
AG The generation of Java code from the Java abstract syntax model using the

Epsilon Generation Language (EGL) and the EGL Co-Ordination Language
(EGX).

The above activities reused the tools available from the Epsilon Playground mostly
as-is, except for minor changes (R7): adding the JSON metadata needed to describe

19

them as EP tools, and a repackaging as a Micronaut application in order to produce
a compact Docker image12.

The Epsilon scripts being edited from the activities are exercised in two ways:
• From the EP activities, they are executed independently from each other: while

in AV and AT the participant edits the source state machine model and the
EVL/ETL scripts, in AG the participant edits the EGL and EGX scripts and
an example Java abstract syntax model which is unrelated to the state machine
model. The use of a separate Java abstract syntax model is to avoid overwhelming
the participant with an overly complex model while learning about EGL and
EGX.

• When the participants save their changes, they are committed and pushed by the
EP to GitHub, which triggers a CI workflow previously prepared in the repository.
The CI workflow uses an existing GitHub action13 to run a model management
workflow that runs the entire chain of EVL, ETL, and EGL/EGX scripts to
generate the final Java code of the state machine, and build it with Gradle.

In combination, this set of activities show how it is possible to showcase various
model management languages from the EP, and then have the scripts edited by the
participants integrate with the existing GitHub CI infrastructure and popular build
tools (Gradle) (R3). The use of CI also makes it possible to deliver automated feed-
back on the edits made by the participants: in an educational setting, this capability
could be used to deliver immediate formative feedback.

4.1.3 Generation of release notes from GitHub issues API
Besides executing model management operations from CI pipelines, the tutorial
included an activity where model management technologies were used to consume
information from an existing API, which is more typical of a DevOps environment.
The EP activity (shown in Figure 6) allows participants to experiment with the trans-
formation of the JSON output from the GitHub issues API14 2 to a Markdown
document 3 , using an EGL template 1 . Rather than introducing a new model man-
agement language, this activity was intended to show attendees that JSON documents
could also be used by Epsilon as a model, where its metamodel was implied by the
JSON document structure rather than explicitly defined as in EMF models.

Similarly to the AG activity in Section 4.1.2, the activity operates from a JSON
document in the repository, but the EGL script itself is later used on live responses
from the GitHub issues API from a GitHub Actions workflow. This workflow is config-
ured to run periodically, using the existing facilities from GitHub Actions, and upload
the resulting Markdown as a build artifact.

4.1.4 Transitioning to an IDE
As a last detail, the repository was designed so that participants could at any time
transition from the EP to an IDE (R3): in this case, the Eclipse IDE, since the most

12The Micronaut application with the Epsilon tools for the EP is available from: https://github.com/
epsilonlabs/playground-micronaut

13The GitHub action used to run Epsilon workflows is available from: https://github.com/
committed-consulting/epsilon-ci-action

14https://docs.github.com/en/rest/issues?apiVersion=2022-11-28

20

https://github.com/epsilonlabs/playground-micronaut
https://github.com/epsilonlabs/playground-micronaut
https://github.com/committed-consulting/epsilon-ci-action
https://github.com/committed-consulting/epsilon-ci-action
https://docs.github.com/en/rest/issues?apiVersion=2022-11-28

Fig. 6 Screenshot of the Github Issues JSON EP activity. Numbered circles indicate different parts
referenced from the text.

mature tooling for the Epsilon languages is Eclipse-based. The repository is already a
combination of a generic Eclipse project and a Gradle project, which are both directly
usable from Eclipse if Epsilon is installed.

This shows an important contrast with the Epsilon Playground: whereas in the
Epsilon Playground the examples are entirely self-contained and can be exported in an
executable form from their Download button, the MDENet EP expects the teacher to
have prepared the repository in advance to make it usable from a desktop IDE. While
this requires more preparation from the teacher, it also avoids any assumptions from
the web-based environment, allowing the teacher to integrate with the IDE and/or
build system that better suits their requirements.

4.1.5 Analysis of Research Questions
The case study has provided the following answers to the above research questions:

RQ1: How can the EP reduce entry barriers for learners and provide a practical,
scalable, and supportive learning environment?

Prior to the EP, learners would have needed to download and unpack the starting
code for the tutorial, install a recent version of the Eclipse Modelling Tools distribu-
tion, set it up with the appropriate plugins from third-party update sites (specifically,
Epsilon), import the starting code into their IDE, and resolve any technical issues
around their Java environment. The EP simplified this (R1) to one click if they did
not want to save their changes (following a link in the README), and only a few
more clicks if they did want to save them (creating a repository via GitHub Classroom,
waiting for a few seconds, then following a link).

Likewise, any UI elements that were not needed for the learning experience but
which would be part of a full-featured IDE were avoided by using the EP, allowing

21

them to focus on the core topic instead of having to deal with the steep learning curve
of a full IDE (R5). Once the learners were comfortable with the concepts, they could
transition their work (R3) to the same fully-featured IDE that they would use in a
professional setting, by simply cloning their repository and setting it up in the IDE
as usual.

RQ2: How effectively does the EP empower educators to design, manage, and
control tailored learning activities in MDE education?

This case study allowed the teacher to cover every stage of a model-driven con-
tinuous integration and delivery pipeline (R2)(R4), from the modeling of the state
machine to the compilation of the generated code and its packaging as a library.
Learners could practice with each stage of the pipeline independently without having
to learn the specifics of running each type of Epsilon script, and the CI/CD configu-
ration was already done for them in the starting code (which they would have had to
learn to do from scratch otherwise).

The compatibility with GitHub Classroom also opens up new opportunities for
monitoring the progress of the experience, e.g. by using the reporting tools in GitHub,
and regularly inspecting the current state of the various learners’ repositories. Exclud-
ing the test repository created by the teacher, there were another 11 repositories
created within the GitHub Classroom organisation created for this tutorial. This
excludes attendees who simply followed the link in the README without creating
their own repository (as they were happy to try out the EP without saving their
changes).

RQ3: What mechanisms and processes enable the EP to accommodate contribu-
tions from diverse stakeholders, including tool providers, to extend its applicability and
utility?

This tutorial was initially based on the Eclipse Epsilon tool server that was adapted
by the EP developers from the first version of the Epsilon Playground, which was based
on Google Cloud Functions. The Epsilon developers have contributed a new version
of the Epsilon tool server, based on a new framework (Micronaut) with significant
improvements in performance and space savings. Since the only requirement is to
maintain compatibility with the EP tool API, it has been trivial to swap out the old
Epsilon tool server with this new one (R7) without impacting any of the existing
teaching materials.

4.2 Developing DSMLs in Xtext
In this section, we describe how the EP was used as part of a course on MDE taught
to third-year undergraduate students and master’s students at King’s College Lon-
don. Through this, we demonstrate how new tools can be easily contributed to the
EP (R7) and how they can be combined with existing tools to provide rich learning
activities to learners of MDE (R6). The learning activity teaches the use of language
workbenches (R2).

We begin by briefly summarising the context in which these activities were intro-
duced, before describing the new Xtext tool service we have implemented. We then
show two example learning activities demonstrating the basic use of the Xtext tool
service and its combination with existing Epsilon tools.

22

4.2.1 Context: teaching MDE at King’s
At King’s, we teach a course on MDE to third-year undergraduate students and to
master’s students. The focus of this course is on developing domain-specific mod-
elling languages (DSMLs), validations, transformations, and other model-management
tools. Learning outcomes include understanding core principles of MDE, including
constituent elements of language definition in different formalisms, and concepts and
technologies for model transformation and code generation, as well as abilities to
develop a DSML and support tooling (transformations, code generators, validators).
A large part of the practical work in the course uses Xtext [23] to create DSMLs
and their supporting infrastructure, but we also use Epsilon tools, and students get
some exposure to other approaches for developing DSMLs. The course is taken by
between 60 and 100 students each year, comprising both 3rd-year BSc students and
MSc students.

A recurring challenge for our students was the installation and use of Eclipse
and the various tools required. There is limited TA support to help students resolve
technical challenges. Each year, this has caused a significant number of students to
struggle to work on the actual learning tasks, because they ran into problems with
Eclipse or the tools. In the 2023/24 academic year, we introduced the EP as an optional
alternative to reduce the need for students to struggle with Eclipse directly.

4.2.2 Xtext tool service: integrating a language workbench
Xtext is a language workbench [22]. This means there are two distinct phases that
Xtext learning activities need to be able to support: (a) language definition, where
learners define (parts of) their DSML using the relevant Xtext concepts; and (b) lan-
guage use, where learners experiment with their new DSML in an editor with error
feedback, code completion, etc., but also by integrating with further tools, such as
model transformations.

It is important that learners clearly understand the distinction between these
phases, as they will be undertaken by different roles in real-world DSML projects:
language engineers will define languages and language users will use them. We have
chosen to represent each phase by separate, but linked, learning activities:

1. In a first activity, learners define aspects of their language. They then select an
action button, which sends their definitions to the Xtext tool services, which
generates the full set of Xtext artefacts. For each learner, the Xtext tool service
generates a tool service providing a panel for editing models in the learner-defined
DSML and makes this available via a unique URL.

2. This dynamically generated tool service is then used by learners in a second
activity, where they can test their new language.

Note that this requires a stateful tool service that can maintain generated Xtext
artefacts for each learner. The service implements a single tool-service function that
accepts an Xtext grammar and, optionally, a scope provider, a validation implementa-
tion, and a code-generator implementation, each using the relevant Xtext interfaces.
The tool service function sets up an Xtext project structure and copies in the pro-
vided files, before triggering the Xtext generation process. As part of this, Xtext is

23

requested to generate web support15, which is then used as the basis for the dynami-
cally generated tool service. Generated tool services are removed from the server every
24 hours to manage memory usage on the server. In the future, we may implement
more sophisticated resource management.

The Xtext tool service uses code generation to produce a tool service implemen-
tation that is specifically adapted for the language defined by the learners and that
contributes the following: (a) a panel for editing models in the new DSML, including
code completion and error markers; (b) a conversion function for converting mod-
els in the DSML into plain XMI for use with other tools; (c) an action function for
converting models to a diagrammatic representation as an object diagram to allow
learners to explore parse results; and (d) an action function for triggering the Xtext
code generator.

4.2.3 Examples
The first activity learners engage with asks them to create a simple Xtext grammar,
generate the language infrastructure, and then experiment with their new language
in a simple editor. Similar to the activities presented in Sect. 4.1.2, we distribute
learning activities using GitHub Classroom, providing repositories with full Eclipse
projects so learners can use them both from the EP and directly from Eclipse (R3).
To further support learners, we provide GitHub actions that automatically run tests
for every change and allow learners to understand what part of the language they are
still missing in their grammar.

Figure 7 shows the first activity, where learners define a grammar (Panel 1) and
generate the Xtext artefacts (Button). As the generation process runs, learners will
receive feedback in the console panel 2 ; this is the same feedback they would receive
when generating Xtext artefacts in Eclipse and will include error information if there
are problems with the grammar defined. Note that the menu 3 currently only shows
one activity; this will be updated as soon as an Xtext editor has been successfully
generated from the learner’s grammar.

Listing 9 shows the corresponding activity configuration. This is fairly straightfor-
ward (R4), but note: (a) the use of the publicly hosted EP (Line 7); (b) the reference
to a second activity and panel on Lines 14–15, indicating the activity that uses the
generated Xtext editor; and (c) the use of the Xtext action function from the action
defined on Lines 26–34.

Figure 8 shows a screenshot of the second learning activity, where learners can
explore the DSML they have defined. Panel 1 shows an editor using the syntax
highlighting and code completion generated from the grammar. Panel 2 shows the
metamodel generated by Xtext, allowing learners to improve their understanding of
Xtext metamodel inference. They can view the metamodel textually (using the Ecore
XML rendering) or graphically as a class diagram. When learners click on the
button in Panel 1 , they can see a graphical representation of their current model
as an object diagram in Panel 3 . This helps conceptualise the result of parsing the
model text into the internal representation used for validation, code generation and
model transformation.

15https://eclipse.dev/Xtext/documentation/330 web support.html

24

https://eclipse.dev/Xtext/documentation/330_web_support.html

1

2

3

Fig. 7 Basic Xtext activity: defining the grammar

1

2

3

Fig. 8 Basic Xtext activity: exploring the language

Listing 10 shows the definition of this second activity. Note the use of the
{{ID-panel-turtles}} rewriting on Line 10 to load the definition of the tool service
dynamically generated for the learner. We use the same mechanism again on Line 26
to load the Xtext-generated meta-model. We use the emfgraph panel type provided
by the emf tool to show the model diagrams. This type of panel is able to show an
arbitrary SVG diagram. We generate the SVG using an action function (not shown

25

1 activities :
2 - id: edit - grammar
3 title : Create the Xtext grammar
4 icon : xtext
5
6 tools :
7 - https :// ep.mde - network .org/ tools / xtext / xtext_tool .json
8
9 panels :

10 - id: panel - xtext
11 name : Grammar
12 ref: xtext - grammar
13 file : uk.ac.kcl.inf.mdd1. turtles /src/uk/ac/kcl/inf/mdd1/ Turtles . xtext
14 editorPanel : panel - turtles
15 editorActivity : turtles - editor
16
17 - id: panel - console
18 name : Console
19 ref: console
20
21 layout :
22 area :
23 - [panel - xtext],
24 - [panel - console]
25
26 actions :
27 - source : panel - xtext
28 sourceButton : action - button
29 parameters :
30 languageName : uk.ac.kcl.inf.mdd1. Turtles
31 baseName : uk.ac.kcl.inf.mdd1. turtles
32 extension : turtles
33 grammar : panel - xtext
34 output : panel - console

Listing 9 Xtext activity definition: enabling grammar specification

here) that runs an EGL script [43] generating a PlantUML16 specification, from which
we then generate a SVG.

Finally, we briefly present in Fig. 9 an advanced activity combining Xtext and
ETL [32] (R6). Panel 1 is the generated Xtext editor, but in Panel 2 learners are
able to define an ETL transformation for models in their newly defined DSML. They
can then execute the transformation, which presents a visualisation of the resulting
model in Panel 5 as well as any additional output in the console 3 . Panel 4 can
be used to visualise the current model or the Xtext-generated meta-model. The activ-
ity also uses a hidden panel that loads the Xtext-generated meta-model, making it
available to be visualised via the button in the top-right corner of Panel 4 .

Key to the integration of tools in this activity (R6) is the EP’s ability to auto-
matically convert model types. This allows the contents of the Xtext editor panel to
be directly provided to the ETL tool, even though the ETL tool does not know the
learner-defined DSML. The dynamically generated Xtext tool service provides a con-
version function from DSML models to XMI, ETL can accept XMI input, and the EP
automatically recognises that it can apply this conversion.

16https://plantuml.com/

26

https://plantuml.com/

1 activities :
2 - id: edit - grammar
3 Listing 9
4
5 - id: turtles - editor
6 title : Turtles Editor
7 icon : xtext
8
9 tools :

10 - {{ID -panel - turtles }}/ editor_tool .json
11 - https :// ep.mde - network .org/ tools /emf/ emf_tool .json
12
13 panels :
14 - id: panel -turtles ,
15 name : Try out your language here
16 ref: xtext - editor
17 file : example /test. turtles
18 extension : turtles
19 - id: panel -mm - composite
20 name : The meta - model generated by Xtext
21 ref: composite
22 childPanels :
23 - id: panel -mm
24 name : XMI text format
25 ref: ecore
26 file : {{ID -panel - turtles }}/ xtext - resources / generated /meta - model .

ecore
27 - id: panel - diagram
28 name : Metamodel Diagram
29 ref: emfgraph
30 - id: panel -model - diagram
31 name : Model Diagram
32 ref: emfgraph
33 ...

Listing 10 Xtext activity definition: using the DSML

4.2.4 Analysis of Research Questions
The following analysis examines how the Xtext case study demonstrates the EP’s
effectiveness in addressing key challenges in MDE education, focusing on learner
accessibility, educator empowerment, and stakeholder contributions:

RQ1: How can the EP reduce entry barriers for learners and provide a practi-
cal, scalable, and supportive learning environment? Outside the EP, developing new
languages with Xtext introduces significant accidental complexity. Learners must:
(a) install Eclipse and Xtext, ensuring the use of matching versions; (b) learn how to
generate a new set of Xtext plugin projects in their Eclipse workspace; (c) learn how
to define an Xtext grammar for their language; (d) learn how to trigger the generation
process from the Xtext grammar; (e) learn how to run a second Eclipse instance with
their new language installed; (f) learn how to set up a project and file configured for
using their new language; and (g) use the Xtext editor to interact with their new lan-
guage. Using the EP, learners only need to do Steps (c) and (g), significantly reducing
the entry barriers and allowing learners to focus on MDE concepts rather than the
accidental complexity of the tooling (R1). Once learners have understood the key
MDE concepts, they are still able to clone the repository underlying the activity and
explore it directly in Eclipse (R3). We asked students for feedback and received three
responses – the platform was an optional part of the module and not all students

27

1

2

3

4

5

Fig. 9 Advanced Xtext activity, combining a learner-defined Xtext editor with an ETL transforma-
tion

engaged with it at this point – the number of responses is thus too low to allow robust
analysis. However, informal student feedback (including via the feedback button on
the hosted platform) indicates that students found the platform ‘intuitive’ (e.g., “I
liked how easy it was to visualise the meta-model”) and useful. We hope to be able
to collect more structured feedback in future instalments of this course.

RQ2: How effectively does the EP empower educators to design, manage, and con-
trol tailored learning activities in MDE education? In this case study, we have shown
how teachers can define learning activities (R4) focused on the definition of new
languages (R2) – specifically using Xtext. As shown in Fig. 9, teachers are able to
combine the definition of new languages with standard model-management activities
such as model transformations (R2) by combining a very diverse set of tools such
as Xtext and ETL (R6). This would create additional accidental complexity if done
directly in Eclipse: learners would need to also learn how to configure ETL to be able
to read a model expressed in their new language. The EP removes this complexity and
enables teachers to guide learners by limiting what they can do to a single button
for executing the ETL script on the current model without the need for learners to
configure the ETL engine first (R5).

RQ3: What mechanisms and processes enable the EP to accommodate contribu-
tions from diverse stakeholders, including tool providers, to extend its applicability and
utility? This case study has shown (cf. Sect. 4.2.2) how a new tool (Xtext) can be
easily added to the EP (R7) by (a) implementing a simple server wrapping the tool
and providing a web API; and (b) describing the tool capabilities in a JSON/YAML
tool specification.

28

4.3 YAMTL playground and analysis with the EP
Yet Another Model Transformation Language (YAMTL) [4, 5] is an expressive
model-to-model transformation language that is offered as an internal domain-specific
language (DSL) of JVM languages, including Java, Xtend, Groovy and Kotlin.
YAMTL is a model-to-model transformation tool available independently of any IDE,
where models can be typed with meta-models or can be imported from semi-structured
data using flexible models [6]. YAMTL model transformations can be used to define
model queries by using pattern matching, out-place model transformations by map-
ping an input model into a new output model, or in-place model transformations by
rewriting a given model17.

In this case study, we show how the EP has been instantiated to create an inter-
active playground for the YAMTL Groovy dialect, which is used within YAMTL’s
documentation, for showcasing examples to YAMTL learners (R1). Additionally,
we demonstrate how the experience garnered during the definition of the YAMTL
playground and documentation highlighted common problems, which we address by
deploying a collaborative tool that facilitates the inspection of activity configurations
for the EP (UC5–6), showcasing how to analyse YAML/JSON configuration files
with activity/tool specifications using YAMTL.

4.3.1 YAMTL playground and documentation
An out-place transformation in YAMTL consists of a header declaration specifying
the input and output meta-model, rules defining the transformation logic and helpers
defining reusable logic across rules. Rules consist of an input object pattern that is used
to match a graph of objects in the input model, and an output pattern that determines
the graph of objects to be created in the output model. Post-rule operations can also be
specified in each rule, defining additional logic at end of the rule application. Helpers
can be used to define attribute values, static operations or contextual operations, and
their evaluation is cached, speeding up computations.

The YAMTL playground, shown in Fig. 10, enables the development of YAMTL
model-to-model transformations using Groovy. The playground displays the model
transformation definition 1 in a Groovy editor, the source meta-model 2 and the
target meta-model 3 in Emfatic or XMI notation, while the source model 5 is
provided in XMI notation. The execution of the transformation produces an output
model 6 and transformation execution run-time statistics in the output console 4 .
All meta-models and models are presented in composite panels that show the mod-
els in textual format and can render them in class diagram notation for meta-models
and object diagram notation for models. The playground allows for interactive modi-
fications of transformations, meta-models, or models. A number of predefined model
transformations are given as examples in the left-hand side panel 7 .

Although YAMTL does not require any specialized local installation, the EP han-
dles the execution of YAMTL transformations from the browser, thus eliminating the
need to use an IDE or configure a Java project (R1). The backend service for YAMTL

17See the language reference at https://yamtl.github.io for further information.

29

https://yamtl.github.io

Fig. 10 YAMTL Playground

has been implemented using an AWS lambda function18 for executing the transforma-
tion engine (R7). Furthermore, models, meta-models, and transformations are stored
in a self-contained Git repository configured as a Gradle project19. This setup makes
it easy to reuse the software artifacts and execute them locally using an IDE of choice.
Users can seamlessly clone the repository, ensuring that all necessary dependencies
and configurations are included, which simplifies the process of running the examples
locally and integrating them into other projects or environments (R3). The activity
configuration files in the playground refer to the software artifacts contained in those
Git repositories using URIs, allowing the configuration of learning activities to be
deployed elsewhere, provided that all URIs correspond to accessible resources.

The playground is incorporated in YAMTL’s website as a companion tool for
a tutorial to learn the YAMTL language, which contains three types of exam-
ples20 (R5):

• Reverse List21: A basic example showcasing the fundamental use of the lan-
guage for reversing a list. This example helps learners understand the basic syntax
and operational semantics of YAMTL, particularly focusing on how to define
transformation rules and apply them to simple data structures.

• Workflow to HTML22: This example is centered around converting flowchart
elements into HTML elements, which involves multiple small examples demon-
strating a range of YAMTL operations, supporting learners in mastering different
aspects of model transformation. Key features covered include:

18https://github.com/yamtl/yamtl-playground-backend-tool
19https://github.com/yamtl/examples
20Borrowed from https://mde-docs.github.io/.
21https://yamtl.github.io/examples/linked-list-reversal-example.html
22https://yamtl.github.io/examples/flowchart-to-html-example.html

30

https://github.com/yamtl/yamtl-playground-backend-tool
https://github.com/yamtl/examples
https://mde-docs.github.io/
https://yamtl.github.io/examples/linked-list-reversal-example.html
https://yamtl.github.io/examples/flowchart-to-html-example.html

– Basic transformation logic: Learners begin by defining simple rules to
transform flowchart elements (such as nodes, actions, and transitions) into
corresponding HTML elements. This helps in understanding the fundamental
syntax and transformation process of YAMTL.

– Rule inheritance: By implementing rule inheritance, learners can create
reusable transformation logic. Abstract rules serve as templates that can be
extended by specialized rules, promoting modular and maintainable code.

– Lazy rules: The example introduces lazy rules, which are executed after
all non-lazy rules. This teaches learners about different execution strategies
within YAMTL, showing how to use lazy rules for efficiency.

– Transient rules: These rules perform calculations or updates without per-
sisting their output in the target model, helping learners understand how to
manage intermediate transformation steps effectively.

– Rule filtering and derived elements: Filtering allows specific input objects to
be transformed based on conditions, while derived elements enable the use of
contextually relevant objects within rules. These features demonstrate how
to create precise and context-aware transformations.

– Multiple sources and targets: The example shows how to handle multi-
ple input objects and produce multiple output objects within a single rule,
showcasing the flexibility of YAMTL in complex transformations.

– End of rule operations: This feature allows for additional operations after the
main transformation logic of a given rule, enabling additional side-effects.

– Rule priority: By setting rule priorities, learners can control the execution
order of rules, ensuring that the transformation process follows a specific
logical sequence.

– Helpers: Static attributes, static operations, and contextual operations are
introduced as helpers, providing reusable expressions and methods that
simplify the transformation logic.

Each feature is illustrated with practical examples, ensuring that learners can see
how theoretical concepts are applied in real-world scenarios. This detailed walk-
through not only enhances their understanding of YAMTL’s capabilities but also
equips them with the skills to tackle complex transformation tasks independently.

• Fill-in-the-Gap Examples23: These examples allow learners to practice the
use of the language at different levels of complexity. Tasks include:

– Creating an additional type of object in an output model within a rule. This
teaches learners how to extend transformation logic to produce new types of
objects, enhancing their understanding of output pattern specification.

– Specifying conditional application of rules. This helps learners understand
how to control the execution of transformation rules based on specific
conditions, emphasizing the importance of guards in rule application.

– Rule inheritance: This demonstrates how to reuse and extend existing trans-
formation logic by inheriting rules, promoting efficient rule management and
modular design.

23https://yamtl.github.io/exercises/flowchart-to-html-worksheet.html

31

https://yamtl.github.io/exercises/flowchart-to-html-worksheet.html

– Defining several output elements in a rule to create a complex graph of
objects in the output pattern. This example shows learners how to construct
complex output models from simpler input models, reinforcing their skills in
pattern matching and object graph construction.

– Using lazy and non-lazy rules. This distinction is crucial for learners to grasp
the execution strategy of YAMTL transformations, teaching them when and
how to use each type of rule for optimal performance.

– Resolving object references: This example focuses on managing references
between objects in the input and output models, a key aspect of maintaining
model consistency during transformation.

– Using helpers. This emphasizes the use of helper operations to encapsulate
reusable logic, promoting code modularity and maintainability.

Each of these examples is available on the interactive playground, and is accom-
panied by a solution and is available as a Gradle project, making it easier for learners
to validate their work and understand the correct application of YAMTL concepts in
practical scenarios.

While developing the YAMTL playground and documentation, we encountered
issues with activity configurations becoming lengthy and challenging to debug. This
motivated the development of a new tool within the EP to inspect and analyse these
configurations more efficiently, as explained in the following subsection.

4.3.2 Analysis of activity and tool specifications
In the EP, activities are defined using YAML or JSON configuration files that spec-
ify the layout of the front-end and the examples used in the activities. Analysing
these specifications is crucial for ensuring that activities are correctly configured
and function as intended, especially when dealing with complex configurations. This
analysis helps identify and resolve errors early, improving the overall reliability and
effectiveness of the configuration of learning activities.

During the development of the YAMTL playground, we observed that these con-
figuration files can become lengthy and challenging to debug because they lack type
discipline−meaning they do not enforce strict types−and specify references by name.
This is further complicated when multiple activities are included in the same configu-
ration file, displayed in the left-hand side panel of the EP. Therefore, thorough analysis
and debugging of these files are essential to maintain the integrity and functionality
of the learning activities.

To address these challenges, we used YAMTL to import activity configurations,
available as YAML or JSON files, as flexible models [6]. These are then transformed
into models of the meta-model presented in Figs. 4 and 5, so that they can be visu-
alised and analysed. YAMTL model queries24 are used to inspect them, aiding in both
understanding and debugging. By leveraging YAMTL’s support for flexible models,
model transformations, and model queries, users can efficiently examine and trou-
bleshoot their learning activities, ensuring they adhere to the intended structure and
behaviour ((R6) & (R7)). This tool has been configured as an EP activity itself25,

24https://yamtl.github.io/examples/query-dsl.html
25https://yamtl.github.io/examples/ep-inspection.html

32

https://yamtl.github.io/examples/query-dsl.html
https://yamtl.github.io/examples/ep-inspection.html

Fig. 11 YAMTL inspection of activity configurations for the EP

making the inspection logic accessible for any user to validate (and debug) new learn-
ing activities by providing the specification of their activities and tools ((R2) &
(R4)), as explained in sections 3.3 and 3.4, respectively.

The activity, shown in Fig. 11, uses the YAML configuration file 1 from the activ-
ity in Fig. 10 used to configure the YAMTL playground in the previous subsection.
This configuration file may include the specifications of activities and, optionally, the
specifications of tools. The YAMTL model transformation 3 converts the YAML/J-
SON file 1 into a model 2 that conforms to the EP meta-models, transforming
references by name in the YAML configuration file to references by value in the model.
The benefit of this transformation is that models can then be visualised as object
graphs using object diagram notation in the EP, as shown in the composite panel 2 ,
facilitating inspection and analysis of learning activities as explained next.

This activity uses another model query tool 6 for defining object-oriented queries
over models built atop YAMTL pattern matching facilities26. Queries are defined
as records, resembling JSON documents, with the following fields: a context type
from the meta-model 5 ; a where Groovy closure that specifies which objects from
the model 2 are affected by the query; and a query Groovy closure that traverses
the model from an instance of the context type, printing the desired information in
the output stream, which is displayed on the console 4 . If, in addition to activity
specifications, tool specifications are provided in 1 , users can perform full analysis
over the complete specification of an activity, which includes references to tool services.

The tool has been integrated by using an AWS lambda function that takes a
metamodel, a model and a query to perform the query. The output stream is captured
while the query is evaluated and returned as output so that it can be displayed in the

26https://yamtl.github.io/examples/query-dsl.html

33

https://yamtl.github.io/examples/query-dsl.html

console 4 . In the lambda function, the context type and the where clause are used
to define a pattern in a YAMTL rule with a single input element, while the query
closure is used as a post-rule operation27 (R7).

The query in the example finds out how the activity actions prompt
UI state changes, by listing the source-panel containing the action, the
button linked to the action, the argument binding for the parameters of
the MDE tool linked to the action, and the target-panel containing the
results of the tool and any additional output side effects, using the format
source-panel |-{ button(parameter-binding)}-> target-panel [output]. In
this query, when the button identifier cannot be resolved, MISSING is diplayed to
report an error. For the example provided in Fig. 11, the highlighed action in 1 is
imported as an instance of the Action class of the metamodel, shown in 5 , in 2 , via
the transformation in 3 . The query 6 is then used to validate that the sourceButton
associated with the action could be resolved to a button in a tool in 4 as it displays
the name of the button emfatic2cd-button and not MISSING. Note that the query
is obtaning the name of the button using the expression it.sourceButton.id where
it is an Action, which requires the reference Action.sourceButton to have been
resolved correctly.

The use of the console and query DSL provides several benefits:
• Improved debugging capabilities: The console allows users to see real-time feed-

back on their queries, including error messages and execution results. This
immediate feedback helps users quickly identify and correct issues in the con-
figuration of their learning activities. The query DSL simplifies the process of
writing and understanding complex queries, making it easier to trace the flow of
data and logic, and thereby pinpoint and resolve errors.

• Enhanced interactivity: The interactive nature of the playground enables users
to experiment with different analysis queries on-the-fly. This promotes a deeper
understanding of the underlying configuration models by allowing users to iter-
atively define complex model queries over the configuration of their learning
activities and find errors more easily.

• Efficiency in analysis and validation: By using the query DSL, users can create
reusable query definitions that can be easily modified or extended for different
analysis tasks. The console’s ability to display query results in a structured for-
mat helps users visualise the impact of their queries, ensuring that the output
conforms to the expected format.

4.3.3 Analysis of Research Questions
The following analysis examines how the YAMTL case study demonstrates the EP’s
effectiveness in addressing key challenges in MDE education, focusing on learner
accessibility, educator empowerment, and stakeholder contributions:

RQ1: How can the EP reduce entry barriers for learners and provide a practical,
scalable, and supportive learning environment? The YAMTL playground, as described
in Sect. 4.3.1, eliminates installation and configuration barriers by enabling the exe-
cution of model transformations directly in the browser (R1). This design provides

27For further information, see: https://yamtl.github.io/examples/query-dsl.html

34

https://yamtl.github.io/examples/query-dsl.html

immediate access to MDE activities, allowing learners to focus on core tasks without
technical overhead. The playground also offers self-contained examples that can be
downloaded and executed locally, ensuring a seamless transition to real-world envi-
ronments (R3). Furthermore, the examples and fill-in-the-gap exercises presented in
the playground, as detailed in Sect. 4.3.2, help scaffold learning, guiding learners in
experimenting with the language ((R4) & (R5)).

RQ2: How effectively does the EP empower educators to design, manage, and con-
trol tailored learning activities in MDE education? Prior to the EP, model management
solutions, such as model validation, were explained conceptually in lectures and their
implementation was demonstrated in lab sessions using Groovy programs with inter-
nal DSLs. Preparing learning resources involved explaining where to retrieve the code,
how to import the project, where each software artifact could be found, how addi-
tional tools (like EMF) worked, and then presenting the exercise. The EP simplifies
the process by providing readily available examples that illustrate the concepts from
lectures, offering two key benefits (R5): a) an online playground where learning activ-
ities can be configured and accessed, and b) a significant reduction in cognitive load,
allowing educators to focus on the core concepts discussed in lectures, thus bridging
the gap between theory and practice. In particular, educators benefit from the flexible
configuration mechanisms provided by the EP, as discussed in Sect. 3.4.

RQ3: What mechanisms and processes enable the EP to accommodate contributions
from diverse stakeholders, including tool providers, to extend its applicability and util-
ity? This case study demonstrates how the platform can be extended with additional
functionality. Sect. 4.3.1 illustrates how to integrate the YAMTL model-to-model
transformation language, available as an internal DSL in the Java ecosystem (with
Groovy used in the examples), where the back-end transformation engine is deployed
on AWS using a serverless model. This functionality is particularly useful for a teacher
who illustrates MDE examples using YAMTL (R5) and enables other stakeholders
to reuse YAMTL learning activities and tools within the EP. Sect. 4.3.2 explains how
the EP can be extended to enhance the configuration and debugging of MDE learning
activities. JSON configurations are transformed into meta-model-based models using
YAMTL, enabling model analysis for collaborative debugging of activities (R4) using
a query language built on YAMTL, as well as model visualization with third-party
tools (R6), an EP tool that renders EMF metamodels and models as PlantUML dia-
grams (class diagrams and object diagrams, resp.). The model analysis use case also
allows tool providers to collaboratively debug activity configurations (R7), while help-
ing them become more familiar with the EP’s activity configuration language through
the use of queries to navigate and analyze specific activities (R2).

5 Related Work
To the best of our knowledge, no other generic playground solution for MDE exists.
Playgrounds for specific tools do exist. For example, the Epsilon Playground [33]
enables web-based use of the various tools and languages in Epsilon [30]. Its architec-
ture makes use of Functions-as-a-Service (FaaS) for its back-end functions, allowing
on-demand scalability and minimal running costs when the platform is not being

35

used. As discussed in Section 3, the EP has been inspired by the Epsilon Playground,
however, it has a more elaborate and flexible architecture to allow for declarative
description of learning activities (which are hard-coded in the Epsilon Playground)
and for integration of a wider range of MDE tools (the Epsilon Playground only
supports languages of the Epsilon platform). Langium [44] also provides a bespoke
playground service for basic language-workbench functionalities. A web-based plat-
form for the MontiCore language workbench [34] based on JupyterLab [13] has been
used for teaching the tutorials of a conference and lectures on the use and engineering
of Domain Specific Languages (DSL).

The relative scarcity of web-based MDE playgrounds can be attributed to the niche
adoption of MDE technologies, as well as to the fact that most open-source model
management technologies (e.g. ATL, Acceleo, Xtext, Xpand) are implemented in Java.
In the absence of a fully-featured, freely-available and performant solution for trans-
forming Java source code or bytecode into JavaScript or WebAssembly, running such
a playground requires a client-server architecture. This approach, as demonstrated by
the MDENet Education Platform, incurs ongoing operational costs, which can be an
additional barrier.

In addition to web-based playgrounds, there are web-based versions of IDEs such
as Eclipse [18, 19] and Visual Studio Code [40]. Some code repositories use such online
IDEs to provide direct access to repositories, including in educational settings. For
example, GitHub Classroom offers access to CodeSpace IDEs (based on VSCode) for
learners undertaking activities provided through GitHub repositories [24].

Online MDE platforms have seen increasing interest recently—examples include
AToMPM [46], Freon [47], and Gentleman [36]—though note that these tools have
not been developed specifically for educational purposes. Umple [37] is an online
modelling platform, focused on UML-style models and code generation from them. It
is education-focused, but only provides support for a fixed set of modelling languages
and tools.

We are also aware that the desktop-based commercial MetaEdit+ language work-
bench can be accessed through a browser using a remote desktop service and integrated
with open-source model management tools [21]. However, as a commercial tool, it
incurs a significant licensing cost and none of the authors have used it for educational
purposes. Finally, PapyGame [9] is a Papyrus-based tool for gamifying software mod-
elling in an educational context. PapyGame currently is desktop-based but the authors
envision a web-based version in the future to address installation and configuration
challenges.

6 Conclusions and Outlook
We have presented the MDENet Education Platform (EP), an online playground
platform for teaching model-driven engineering. This allows learners to engage with
MDE learning activities without having to install tools (R1), including activities
that require the definition of new modelling languages (R2). Learners are able to
access the activities via the browser, but also via standard tools (R3), as long as
the teacher has provided a suitably structured repository with the activity. Teachers

36

Requirement Case Study 1 Case Study 2 Case Study 3

(R1) ✓ ✓ ✓
(R2) (✓) ✓ (✓)
(R3) (✓) (✓) ✓
(R4) ✓ ✓ ✓
(R5) ✓ ✓ ✓
(R6) ✓ ✓
(R7) ✓ ✓ ✓

Table 1 Mapping of requirements to case studies demonstrating how
they are addressed by the EP. ✓symbols in parentheses indicate partial
demonstration of a requirement. A detailed discussion is provided as a
subsection in each case-study description.

define new activities via a declarative specification in a GitHub repository (R4). The
specification gives them full control over what the learner can see and do (R5), so that
teachers can reduce the accidental complexity learners have to overcome. Teachers
are able to combine several different modelling tools into one learning activity (R6).
New tools can be contributed to the platform with relatively little effort by wrapping
them in a web-based API and providing a declarative description of the functionality
available (R7).

We have demonstrated the capabilities of the EP in three case studies, which
showcase how different sets of requirements are addressed by the platform. Table 1
summarises which requirements are demonstrated in which case study.

Future work.
An important focus of our work is to make it even easier for teachers to define learning
activities. To this end, we are working towards a DSML for activity specification, which
will provide improved capabilities for consistency checking as well as for discovering
capabilities while building activities.

We are also interested in empirical evaluation of the benefits of the platform in
diverse teaching contexts. We will continue to develop the platform and use it in
our teaching of modelling and MDE. This will provide opportunities for obtaining
more informal feedback from our students. We will also organise formal evaluation
experiments, which compare learners using Eclipse and the EP for a range of learning
activities.

At the moment, the EP does not yet support graphical modelling languages. We
plan to add capacity for such languages in the future, as well as support for Language
Server Protocol (LSP)28. This will also help improve the validation support for existing
MDE tools. We are also exploring opportunities for learners to engage with activities
through other user interfaces, most importantly Visual Studio Code, which would
enable more seamless integration with GitHub Classroom. The platform’s education
focus also creates opportunities to experiment with more powerful and interactive
ways of providing feedback on learners’ attempts at completing MDE assignments.

28https://microsoft.github.io/language-server-protocol/

37

https://microsoft.github.io/language-server-protocol/

Finally, we are working towards integrating the EP with learning-pathway tools—
like [10, 11]—so that it can more fully serve as a platform for Open Educational
Resources (OERs) [42] in MDE.

Getting involved.
This is still a relatively new project and we encourage the community to get involved.
We are very interested in learning from, and collaborating with, others who are trying
the platform in their own teaching. If you want to get involved, check out the platform
on GitHub29 and get in touch with the authors. A publicly hosted version of the
platform is available30 free of charge for reasonable use.

Acknowledgments. Zschaler and Barnett’s contribution was partly funded by
the UK Engineering and Physical Sciences Research Council (EPSRC) through the
MDENet grant (EP/T030747/1). The work of Kolovos and Garcia-Dominguez was
partly funded by the SCHEME InnovateUK project (#10065634).

References
[1] Luciane T. W. Agner, Timothy C. Lethbridge, and Inali W. Soares. Stu-

dent experience with software modeling tools. Software and Systems Modeling,
18(5):3025–3047, January 2019.

[2] Will Barnett, Steffen Zschaler, Artur Boronat, Antonio Garcia-Dominguez, and
Dimitris Kolovos. An online education platform for teaching MDE. In Proc.
Educators Symposium at MODELS 2023, 2023.

[3] Elizabeth L. Bjork and Robert A. Bjork. Making things hard on yourself, but
in a good way: Creating desirable difficulties to enhance learning. In M. A.
Gernsbacher, R. W. Pew, L. M. Hough, and J. R. Pomerantz, editors, Psychology
and the real world: Essays illustrating fundamental contributions to society, pages
56–64. Worth Publishers, 2011.

[4] Artur Boronat. Expressive and efficient model transformation with an internal
dsl of Xtend. In Proceedings of the 21th ACM/IEEE International Conference
on MoDELS, pages 78–88. ACM, 2018.

[5] Artur Boronat. Incremental execution of rule-based model transformation.
International Journal on Software Tools for Technology Transfer, 1433-2787,
2020.

[6] Artur Boronat. Exploring flexible models in agile mde. In Proceedings of Agile
MDE 2024, co-located with STAF 2024, 2024.

29https://github.com/mdenet/educationplatform/
30https://ep.mde-network.org/

38

https://github.com/mdenet/educationplatform/
https://ep.mde-network.org/

[7] Marco Brambilla, Jordi Cabot, Manuel Wimmer, and Luciano Baresi. Model-
Driven Software Engineering in Practice. Morgan & Claypool, second edition
edition, 2017.

[8] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio.
Grand challenges in model-driven engineering: an analysis of the state of the
research. Software and Systems Modeling, 19:5–13, 2020.

[9] Antonio Bucchiarone, Maxime Savary-Leblanc, Xavier Le Pallec, Antonio Cic-
chetti, Sébastien Gérard, Simone Bassanelli, Federica Gini, and Annapaola
Marconi. Gamifying model-based engineering: the PapyGame experience. Softw.
Syst. Model., 22(4):1–21, March 2023.

[10] Antonio Bucchiarone, Andrea Vazquez-Ingelmo, Gianluca Schiavo, Simone
Barandoni, Alicia Garcia-Holgado, Francisco Jose Garcia-Penalvo, Sebastien
Mosser, Alfonso Pierantonio, Steffen Zschaler, and William Barnett. Towards
personalized learning paths to empower competency development in model driven
engineering through the ENCORE platform. In Proc. Educators Symposium at
MODELS 2023, 2023.

[11] Antonio Bucchiarone, Andrea Vazquez-Ingelmo, Gianluca Schiavo, Alicia Garcia-
Holgado, Francisco Garcia-Penalvo, and Steffen Zschaler. Designing learning
paths with open educational resources: A case study in model-driven engineering.
In 18th Iberian Conference on Information Systems and Technologies, 2023.

[12] Shalini Chakraborty and Grischa Liebel. We do not understand what it says
– studying student perceptions of software modelling. Empirical Software
Engineering, 28(6), November 2023.

[13] Joel Chuks Charles, Nico Jansen, Judith Michael, and Bernhard Rumpe. Teach-
ing the use and engineering of DSLs with JupyterLab: Experiences and lessons
learned. In Matthias Riebisch and Marina Tropmann-Frick, editors, Modellierung
2022, volume P-324, pages 93–110. Gesellschaft für Informatik e.V., 2022.

[14] Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sebastien
Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay, Gabi
Taentzer, Antonio Vallecillo, and Manuel Wimmer. How do we teach modelling
and model-driven engineering? a survey. In Proc. 21st ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, pages 122–129, 2018.

[15] Curity. The Token Handler pattern for single page applications. Online: https:
//curity.io/resources/learn/the-token-handler-pattern/, last accessed 12 June,
2024.

[16] Chris Daly. Eclipse Emfatic. Online: https://eclipse.dev/emfatic/, last visited
22 May 2024, 2004.

39

https://curity.io/resources/learn/the-token-handler-pattern/
https://curity.io/resources/learn/the-token-handler-pattern/
https://eclipse.dev/emfatic/

[17] Ingy döt Net, Tina Müller, Pantelis Antoniou, Eemeli Aro, and Thomas Smith.
Yaml ain’t markup language (yaml) revision 1.2.2. Online: https://yaml.org/
spec/1.2.2/, last visited 21 May 2024, 10 2021.

[18] Eclipse Foundation, Inc. Theia – cloud and desktop IDE platform. Online:
https://theia-ide.org/, last accessed 10 July 2023.

[19] Eclipse Foundation, Inc. Eclipse Orion. Online: https://projects.eclipse.org/
projects/ecd.orion, last accessed 10 July 2023, 2020.

[20] Ecma. ECMA-404: The JSON data interchange syntax. Ecma International
– European Association for Standardizing Information and Communication
Systems, Geneva, Switzerland, December 2017.

[21] EpsilonLabs. MetaEdit+ EMC Driver for Epsilon. Online: https://github.com/
epsilonlabs/emc-metaedit, 2019.

[22] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser,
Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning. Evaluating
and comparing language workbenches: Existing results and benchmarks for the
future. Computer Languages, Systems & Structures, 44:24–47, 2015. Special issue
on the 6th and 7th Int’l Conf Software Language Engineering (SLE 2013 and
SLE 2014).

[23] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than
the quick and dirty way. In Companion Proc. ACM Int’l Conf. Object Oriented
Programming Systems Languages and Applications (OOPSLA’10), OOSPLA’10.
ACM, October 2010.

[24] GitHub. Using GitHub Codespaces with GitHub Classroom. Online: https:
//docs.github.com/en/education/manage-coursework-with-github-classroom/
integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom,
last accessed 23 April 2024, 2024.

[25] Frederick P. Brooks Jr. No silver bullet: Essence and accidents of software
engineering. IEEE Computer, 20:10–19, April 1987.

[26] JSON Community. JSON schema specification, version 2020-12. Online: https:
//json-schema.org/specification, last visited 22 May 2024, December 2020.

[27] Jörg Kienzle, Steffen Zschaler, William Barnett, Timur Sağlam, Antonio Buc-
chiarone, Silvia Abrahão, Eugene Syriani, Dimitris Kolovos, Timothy Lethbridge,
Sadaf Mustafiz, and Sofia Meacham. Requirements for modelling tools for
teaching. Software and Systems Modeling, 2024. To appear.

40

https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://theia-ide.org/
https://projects.eclipse.org/projects/ecd.orion
https://projects.eclipse.org/projects/ecd.orion
https://github.com/epsilonlabs/emc-metaedit
https://github.com/epsilonlabs/emc-metaedit
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://json-schema.org/specification
https://json-schema.org/specification

[28] Michael Kölling. The problem of teaching object-oriented programming, part 2:
Environments. J. Object Oriented Program., 11(9):6–12, 1999.

[29] Michael Kölling. Teaching object orientation with the Blue environment. J.
Object Oriented Program., 12(2):12–23, 1999.

[30] Dimitrios Kolovos, Richard Paige, Louis Rose, and Fiona Polack. The Epsilon
Book. Published on-line: http://www.eclipse.org/gmt/epsilon/doc/book/, 2009.

[31] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. On the evo-
lution of OCL for capturing structural constraints in modelling languages. In
Jean-Raymond Abrial and Uwe Glässer, editors, Rigorous Methods for Software
Construction and Analysis: Essays Dedicated to Egon Börger on the Occasion of
his 60th Birthday, pages 204–218. Springer Berlin Heidelberg, 2009.

[32] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The Epsilon
transformation language. In Antonio Vallecillo, Jeff Gray, and Alfonso Pieran-
tonio, editors, Proc. 1st Int’l. Conf. on Theory and Practice of Model Trans-
formations (ICMT’08), volume 5063 of Lecture Notes in Computer Science.
Springer-Verlag, July 2008.

[33] Dimitris Kolovos and Antonio Garcia-Dominguez. The Epsilon playground. In
Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, pages 131–137. Association for
Computing Machinery, 2022.

[34] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: a framework
for compositional development of domain specific languages. Int’l Journal on
Software Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[35] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. The BlueJ
system and its pedagogy. Computer Science Education, 13(4):249–268, December
2003.

[36] Louis-Edouard Lafontant and Eugene Syriani. Gentleman: a light-weight web-
based projectional editor generator. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. Association for Computing Machinery, 2020.

[37] Timothy C. Lethbridge, Andrew Forward, Omar Badreddin, Dusan Brestovan-
sky, Miguel Garzon, Hamoud Aljamaan, Sultan Eid, Ahmed Husseini Orabi,
Mahmoud Husseini Orabi, Vahdat Abdelzad, Opeyemi Adesina, Aliaa Alghamdi,
Abdulaziz Algablan, and Amid Zakariapour. Umple: Model-driven development
for open source and education. Science of Computer Programming, 208:102665,
2021.

41

http://www.eclipse.org/gmt/epsilon/doc/book/

[38] Grischa Liebel, Omar Badreddin, and Rogardt Heldal. Model driven soft-
ware engineering in education: A multi-case study on perception of tools and
uml. In IEEE 30th Conference on Software Engineering Education and Training
(CSEE&T’17). IEEE, November 2017.

[39] Grischa Liebel, Rogardt Heldal, and Jan-Philipp Steghofer. Impact of the use of
industrial modelling tools on modelling education. In IEEE 29th International
Conference on Software Engineering Education and Training (CSEE&T’16).
IEEE, April 2016.

[40] Microsoft. Visual Studio Code for the Web. Online: https://code.visualstudio.
com/docs/editor/vscode-web, last accessed 10 July 2023, 2023.

[41] Paula Muñoz, Steffen Zschaler, and Richard F. Paige. Preface to the spe-
cial issue on success stories in model driven engineering. Science of Computer
Programming, 233:103072, 2024.

[42] OECD. Giving Knowledge for Free: The Emergence of Open Educational
Resources. May 2007.

[43] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. Polack. The
Epsilon generation language. In Ina Schieferdecker and Alan Hartman, editors,
Proc. 4th European Conf. on Model Driven Architecture (ECMDA-FA’08), pages
1–16. Springer, 2008.

[44] Markus Rudolph. The Langium playground -– TypeFox blog. Online: https:
//www.typefox.io/blog/langium-playground, last accessed 10 July 2023, 01 2023.

[45] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empir. Softw. Eng., 14(2):131–164, 2009.

[46] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Huseyin Ergin. AToMPM: A web-based modeling environment.
In 16th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2013): Companion proceedings, pages 21–25, 2013.

[47] Jos Warmer and Anneke Kleppe. Freon: An open web native language workbench.
In Proceedings of the 15th ACM SIGPLAN International Conference on Software
Language Engineering, pages 30––35, 2022.

42

https://code.visualstudio.com/docs/editor/vscode-web
https://code.visualstudio.com/docs/editor/vscode-web
https://www.typefox.io/blog/langium-playground
https://www.typefox.io/blog/langium-playground

	Introduction
	Key Platform Users
	Learners
	Teachers
	Tool Providers

	Architecture and Design of the EP
	Running Example
	Platform architecture
	Defining activities
	Activity configuration
	Language-workbench activities

	Contributing MDE tools
	Tool configuration
	Tool service

	Dynamic invocation of MDE tool functions
	Support available for teachers and tool providers

	Case Studies
	Epsilon and MDE DevOps
	Automated provisioning of attendee workspaces via GitHub
	Model-driven development of Java state machines
	Generation of release notes from GitHub issues API
	Transitioning to an IDE
	Analysis of Research Questions

	Developing DSMLs in Xtext
	Context: teaching MDE at King's
	Xtext tool service: integrating a language workbench
	Examples
	Analysis of Research Questions

	YAMTL playground and analysis with the EP
	YAMTL playground and documentation
	Analysis of activity and tool specifications
	Analysis of Research Questions

	Related Work
	Conclusions and Outlook
	Acknowledgments

