Move your MDE teaching online: The MDENET Education
Platform

Steffen Zschaler
szschaler@acm.org
King’s College London
Department of Informatics
London, UK

Antonio Garcia-Dominguez
a.garcia-dominguez@york.ac.uk
University of York
Department of Computer Science
York, UK

Abstract

Teaching MDE is challenging, not least because the tools developed
by the community can be difficult to install and configure as well as
complex to master and use. To reduce the complexity for learners of
MDE, enabling them to focus on the core MDE concepts, we present
the MDENET Education Platform — an online, playground-based
platform for learning MDE without the need for tool installation.
Teachers declaratively describe learning activities, carefully con-
trolling the complexity of the user interface learners are exposed to.
We give an overview of the platform and highlight some current
applications. The demonstration will show the use of the platform
from the perspective of learners and teachers.

CCS Concepts

« Social and professional topics — Software engineering edu-
cation; - Software and its engineering — Domain specific lan-
guages; Software development techniques.

Keywords

MDE, education, online, no installation, playground

ACM Reference Format:

Steffen Zschaler, Will Barnett, Artur Boronat, Antonio Garcia-Dominguez,
and Dimitris Kolovos. 2024. Move your MDE teaching online: The MDENET
Education Platform. In ACM/IEEE 27th International Conference on Model
Driven Engineering Languages and Systems (MODELS Companion °24), Sep-
tember 22-27, 2024, Linz, Austria. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3652620.3687780

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687780

Will Barnett
will.barnett@kcl.ac.uk
King’s College London

Department of Informatics
London, UK

Artur Boronat
artur.boronat@leicester.ac.uk
University of Leicester
School of Computing and
Mathematical Sciences
Leicester, UK

Dimitris Kolovos
dimitris.kolovos@york.ac.uk
University of York
Department of Computer Science
York, UK

1 Introduction

Model-Driven Engineering (MDE) [2] is a paradigm where models
play a central role in the development of a software system. In terms
of education, there is a consensus that MDE is a complex subject to
teach [6, 15]. A particular challenge comes from the complexity and
availability of suitable tools [3, 4, 6]. We focus on two challenges:

(1) MDE tools are difficult to install and configure correctly. Most
MDE tools depend on a rich ecosystem of other tools and
frameworks, all of which need to come together in the right
versions and configurations for a given tool to work. As a
result, learners of MDE first have to overcome a signif-
icant hurdle in getting to a workable MDE tool instal-
lation on their computer before they can even begin
to learn MDE concepts and techniques.

(2) MDE tools are too powerful for learners. Even when a learner
has successfully installed the MDE tools required for a par-
ticular course, they can easily become overwhelmed by the
complexity of the tools themselves [22, 23]. As a result,
learners of MDE have to first learn which function-
alities are relevant before they can focus on learning
MDE concepts and techniques.

These challenges create accidental complexity for learners of
MDE. We want learners to encounter difficulties, but these should
be desirable difficulties [1] that enhance their learning, such as
guided practical engagement with the relevant concepts. Ideally,
learners would be able to focus on the MDE concepts and techniques
they are trying to understand, rather than first having to overcome
several accidental challenges. We argue, therefore, that there is a
need for MDE tools specifically for the purpose of learning MDE.

To address these challenges, we present an online playground
environment for MDE learning activities—the MDENET Education
Platform (EP in the rest of the paper). The web-based nature of the
playground means there is no need to install anything beyond a
basic web browser. The playground metaphor means that learners
will only be exposed to a minimal interface focused on the files and
functions required for a given learning activity. We provide a declar-
ative language for flexibly defining learning activities. Learning

https://orcid.org/0000-0001-9062-6637
https://orcid.org/0000-0001-5146-2529
https://orcid.org/0000-0003-2024-1736
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0002-1724-6563
https://doi.org/10.1145/3652620.3687780
https://doi.org/10.1145/3652620.3687780
https://doi.org/10.1145/3652620.3687780

MODELS Companion "24, September 22-27, 2024, Linz, Austria

activities are packaged as GitHub repositories, enabling teacher—
teacher collaboration as well as providing students with the ability
to undertake the activities directly in standard IDEs if desired.

The remainder of the paper is structured as follows: We briefly
recap related work in Sect. 2. Section 3 gives an overview of the
EP, followed by a brief description of some recent applications in
Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Related work

Following a workshop at MODELS’23, an expert voice paper in
SoSyM [15] recently catalogued requirements for teaching tools for
modelling. Ease of installation, configuration, and use, as well as
the teacher’s ability to constrain what students can do are part of
the requirements discussed.

No other generic playground solution for MDE exists, but there
are playgrounds for specific tools. For example, the Epsilon Play-
ground [16] enables web-based use of the various tools and lan-
guages in Epsilon [17]. It uses Functions-as-a-Service (FaaS) for its
back-end functions allowing on-demand scalability and minimal
running costs when the platform is not being used. Langium [25]
also provides a bespoke playground service for basic language-
workbench functionalities. A web-based platform for the Monti-
Core language workbench [19] based on JupyterLab [5] has been
used for teaching the tutorials of a conference and lectures on the
use and engineering of Domain Specific Languages (DSL).

In addition to the increasing number of playgrounds, there are
web-based versions of IDEs such as Eclipse [9, 10] and Visual Studio
Code [24]. Some code repositories use such online IDEs to provide
direct access to repositories, including in educational settings. For
example, GitHub Classroom offers access to Codespace IDEs (based
on VSCode) for students undertaking activities provided through
GitHub repositories [13].

Online MDE platforms have seen increasing interest recently—
examples include AToMPM [26], Freon [27], and Gentleman [20]—
though note that these tools have not been developed specifically for
educational purposes. Umple [21], is an online modelling platform,
focused on UML-style models and code generation from them. It
is education-focused, but only provides support for a fixed set of
modelling languages and tools.

3 Platform description

The EP builds on the Epsilon Playground [16] but generalises the ar-
chitecture to allow the declarative description of learning activities
and the flexible integration of a wide range of MDE tools. The EP
also integrates with GitHub to provide a way for students to save
their work and easily transition to the use of real-world MDE tools
and environments. In this section, we give an overview of the key
components of the EP. The EP is available on GitHub?, including a
video demonstrating an example activity. A publicly hosted version
is also available at ep.mde-network.org.

The EP is a single-page web application, with most of the func-
tionality running directly in the learner’s browser. Figure 1 gives a
high-level overview of the key components. A platform server
provides the HTML and JavaScript to be executed in the learner’s
browser. It also runs the Token Server [7], which manages GitHub

Thttps://github.com/mdenet/educationplatform-docker

Steffen Zschaler, Will Barnett, Artur Boronat, Antonio Garcia-Dominguez, and Dimitris Kolovos

Browser

= MDENet Education Platform

ILearmnel 7—T
chMgt ActivXMgt

‘ Tool Manager

p a1
O «abstract»
’ Tool Service
ITéolService

Figure 1: High-level architecture of the EP.

Platform Server

ITokeTeNer

‘ Token Server

a]
Activity Manager

i ‘

e)
o GitHub

IGEHUDAPI

OAuth authentication for access to the repository underlying a
learning activity. This means learners can easily save the current
state of work as a commit to the underlying repository; the EP
supports this directly through a “Save” button in the menu.

Three key components run in the learner’s browser:

(1) The MDENet Education Platform is the main entry point.

(2) The Activity Manager is responsible for parsing and val-
idating activity descriptions, enabling the EP to configure
the appropriate user interface.

(3) The Tool Manager keeps track of the tool services in use
by the current learning activity. These implement wrappers
around MDE tools to make them accessible to the EP. They
are implemented (and typically hosted) by tool providers.

Learning activities. Learning activities are stored in GitHub repos-
itories. Two types of files have to be provided:

(1) A YAML [8] or JSON [11] file declaratively describing the
configuration of the EP for the learning activity.

(2) Any other files required for the learning activity—for exam-
ple, models, language grammars, meta-models, etc.

Teachers can include arbitrary files and folder structures beyond
the files directly required for the learning activity. Setting up the
repository to work directly with regular tools makes it possible for
learners to engage through the EP as well as through a regular IDE.

To describe the set of learning activities available, a teacher uses a
domain-specific language, currently encoded as a JSON schema [14]
(and, thus, also accessible via YAML [8]). We provide a graphical
overview of the abstract syntax of the activity-specification lan-
guage in meta-model notation in Fig. 22.

These descriptions include:

(1) A reference to the tools used by the learning activity. These
are referenced through their URL, where tool providers make
available a hosted wrapper around their tool.

(2) A definition of the panels that learners should be able to
interact with and the files providing the contents for these
panels. Panels can be of a range of different types as provided
by the different tools used in the activity. They can contain
text or graphics, depending on need.

This is an approximation of the JSON schema adjusted for readability as a meta-model.

https://ep.mde-network.org
https://github.com/mdenet/educationplatform-docker

Move your MDE teaching online: The MDENET Education Platform MODELS Companion '24, September 22-27, 2024, Linz, Austria

ActivityConfiguration
[ActivityConfiguration

[ToolurL

H Activity

= id : String

‘,/—‘ 3 title : String
«
[05]kcols =3 icon : String

S urlPossiblyToRewrite : String |

[0..*] activities

[0..1] editorActivity

* 0..1] editorPanel
H LayoutRow LAl Bl [Q EditorDefinitionPanel] [[compositePanel]
1
(J
I J
0. panels Y7 [1.#] childPanels
1.4 col H panel [1.1] output
= id: String [1..1] sourcePanel

= name : String

[1..1] panel

[0..*] buttons
@ ButtonOrButtonRef

[

[0..*] actions

EE] Parameter [0.*] parametersA[E] Action]
C___________J

[ButtonRef] [El PanelRef] | H value |

\) () = value : String

= file : String

ToolSpecification J [1..1] ref [1..1] ref
[PanelDefinition [0-Ajbuttons E Button | [1..1] sourceButton

Figure 2: Meta-model of the activity-specification language

(3) A layout definition, identifying the panels to show on the
screen and their relative locations.

(4) Action definitions defining what happens in response to
learners clicking on buttons in the user interface.

Figure 3 shows an example of the interface that learners see when
completing an activity. Here, we reuse an example from the Epsilon
Playground [16] focusing on the validation language EVL [18],
which we have ported to the EP.3 In addition to a menu area (€))
on the left, there are five panels: The contents of panel @) are the
constraints to check against the model @) and its metamodel @.
Panel @ displays the result of evaluating the constraints for the
model. The evaluation is triggered when the learner clicks the run
button @ in Panel @). The console @ shows error messages if the
EVL script cannot be parsed correctly.

Listing 1 shows the declarative definition of the learning activity
in Fig. 3. After some preliminaries in Lines 2-4, the activity declares
(Lines 6-7) that it will use the Epsilon tools. Lines 9-27 define
the different panels that will be available to the learner, making
reference to the different files that should be shown in those panels,
where appropriate. Lines 29-32 describe which panels are visible
and how to arrange them on the screen. Finally, Lines 34-43 define
what happens when the learner clicks on the run button @ in
Panel @. This implicitly makes use of a web-API function provided
by the Epsilon tool service and linked to the run button by the tool
specification provided by the Epsilon tool service.

Language development activities. A key MDE aspect is developing
new, typically domain-specific, modelling languages. Therefore, the

3This primarily required creating declarative specifications of the activities and the
Epsilon tools in the format required by the EP.

EP needs to be able to support learning activities on that topic. Such
activities take two steps:

(1) Learners create a description of their modelling language
(via a combination of a meta-model, a grammar, a graphical-
syntax model, a generator template, validity constraints).

(2) Learners use the language they have defined. They can see
how their language description has been translated into
editors and other tools for their language.

To support such activities, the EP allows activities to be coupled
dynamically within an activity-configuration file. Teachers define
language-workbench activities consisting of

(1) an activity for learners to provide descriptions of their new
language. A button in this activity triggers the generation of
anew tool service encapsulating the learner’s new language.

(2) a separate activity configured to use the tool service dynam-
ically generated from the learner’s language description.

Listing 2 shows an excerpt from an activity where learners create
languages with Xtext [12]. Students write a grammar and then try
out the generated editor. There are two activities:

(1) activity-xtext defines a panel where the learner can cre-
ate the grammar. This panel uses the xtext-grammar panel
type provided by the Xtext tool service, which includes a
button to trigger the generation of Xtext artefacts from the
grammar. In addition to the usual panel attributes, panel-xtext
uses two attributes editorActivity and editorPanel. These
refer to the second activity activity-editor and a panel
in that activity (panel-editor).

(2) activity-editor is the activity learners use to try out their
new language. Because the activity is referenced from a

MODELS Companion "24, September 22-27, 2024, Linz, Austria

@ MoENet Education Plati x +

€ 3 C O 127.001:8080/evlaactivities=http/127.00.1:8082/epsilon-example/epsilon-example_activity so

¢ Model

®
<nsuri psiz>
<project title="ACHE"> (3)
<person na e"/>

= ¥} Constraints(EVL) o ®
context Task { g
%]
Check that the start month 1 0 <person naf
constraint Validstart { <person na
check: self.start > 0 <task title="Analysis" start="1" dur="3">
message: "Start month must be positive" <effort person="Alice"/>
</task>
= <task title="Design" start="4" dur="6">
// Check that the duration i <effort person="Bob"/>
constraint Validouration { </task>
check: self.duration > @ <task title="Implementation" start="7" dur="0">
message: "Duration must be positive" <effort person="Bob" perc="50"/>

K

@ & Metamodel $ @

}

anamespace(uri="psl", prefix="")
; package psl; (5)
class Project {
attr String title;
attr String description;
val Task[*] tasks;

@diagran(direction="right")
(6] val Person[*] people;
}

/| For every persol
context Person {

& Console

Steffen Zschaler, Will Barnett, Artur Boronat, Antonio Garcia-Dominguez, and Dimitris Kolovos

¢! Problems

title = ACME \

Duration must be positive ™
T

Charlie is not involved in the project B‘

:Task
title = Design
start = 4

duration = 6

:Task
title = Analysis
start = 1

duration = 3

:Task

title = Implementation
start =7

:Person

name = Charlie

:Effort | [:Effort |

|percentage = 50| |[percentage = 50

|

‘name = Bobl

‘ name = Allcel

:Person :Person

Figure 3: The Epsilon EVL example in the EP. Numbered circles indicate different parts referenced from the text.

panel in the first activity, the EP only makes activity-e-
ditor available through the menu if the generation action
in the first activity has been used by the learner and has
produced an editor. The generation action returns the URL of
the newly generated tool service, which is made available to
the learning activity via the {{ID-panel-editor}} variable,
used to load the generated tool in the second activity.

MBDE tools. Tool services provide the functionality that the in-
stalled tools on a developer’s local machine environment would
normally provide—for example, model-to-model transformation,
text generation, or model validation. They make up the back-end of
the EP, providing a wrapper around an existing MDE tool. A tool
service comprises a (set of) tool function(s) and static resources.

The tool function provides a web-based API endpoint that con-
forms to the tool interface specification. The static resources a tool
provider must create include: a tool configuration file, highlighting
rules, and icons. Tools are provided independently of learning activ-
ities. They may be hosted on the same infrastructure as the EP, but
they may also be hosted on separate infrastructure—for example,
controlled by the tool provider. Teachers reference tools by their
URL to use them in an activity they are creating.

4 Applications

We have successfully used the EP in several teaching contexts:

(1) As part of a tutorial on MDE DevOps. This live tutorial used
GitHub Classroom and the EP to deliver a series of MDE
activities. These used the Epsilon toolkit and GitHub Actions
to demonstrate the use of MDE to drive DevOps pipelines.

(2) As part of a university course on MDE and language engineer-
ing with Xtext. We provided the EP as an optional alternative
to using Eclipse in a 10-week university course. Activities
included all stages of language development, as well as com-
binations of Xtext and ETL, enabling learners to build model
transformations on top of their own DSML.

(3) To develop an online playground for YAMTL. This online play-
ground? uses the EP to provide several activities to help
explore the capabilities of YAMTL in a practical setting.

5 Conclusions

We have presented the MDENET Education Platform, an online
platform for teaching MDE based on the playground metaphor. The
platform allows teachers to declaratively describe learning activities
and deliver them to learners via a GitHub repository. Learners can
do the activities without the need to install any software. They
are guided through the activity via a carefully restricted interface
providing only the functionality needed for the current activity.

Acknowledgments

Zschaler and Barnett’s work was partly funded through the UK En-
gineering and Physical Sciences Research Council (EPSRC) MDENet
grant (EP/T030747/1). The work of Kolovos and Garcia-Dominguez
was partly funded by the SCHEME InnovateUK project (#10065634).

References

[1] Elizabeth L. Bjork and Robert A. Bjork. 2011. Making things hard on yourself, but
in a good way: Creating desirable difficulties to enhance learning. In Psychology
and the real world: Essays illustrating fundamental contributions to society, M. A.
Gernsbacher, R. W. Pew, L. M. Hough, and J. R. Pomerantz (Eds.). Worth Publishers,
56-64.

[2] Marco Brambilla, Jordi Cabot, Manuel Wimmer, and Luciano Baresi. 2017. Model-
Driven Software Engineering in Practice (second edition ed.). Morgan & Claypool.

[3] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio.
2020. Grand challenges in model-driven engineering: an analysis of the state
of the research. Software and Systems Modeling 19 (2020), 5-13. Issue 1. https:
//doi.org/10.1007/s10270-019-00773-6

[4] Shalini Chakraborty and Grischa Liebel. 2023. We do not understand what it
says — studying student perceptions of software modelling. Empirical Software
Engineering 28, 6 (Nov. 2023). https://doi.org/10.1007/510664-023-10404-w

[5] Joel Chuks Charles, Nico Jansen, Judith Michael, and Bernhard Rumpe. 2022.

Teaching the Use and Engineering of DSLs with JupyterLab: Experiences and

Lessons Learned. In Modellierung 2022, Matthias Riebisch and Marina Tropmann-

Frick (Eds.), Vol. P-324. Gesellschaft fiir Informatik e.V., 93-110. https://doi.org/

10.18420/modellierung2022-014

Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sebastien

Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay, Gabi

Taentzer, Antonio Vallecillo, and Manuel Wimmer. 2018. How Do We Teach

—_
2

4https://yamtl.github.io/playground,/?activities=https://yamtl.github.io/playground-
activities/yamtl-demo-activity.yml

https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10664-023-10404-w
https://doi.org/10.18420/modellierung2022-014
https://doi.org/10.18420/modellierung2022-014
https://yamtl.github.io/playground/?activities=https://yamtl.github.io/playground-activities/yamtl-demo-activity.yml
https://yamtl.github.io/playground/?activities=https://yamtl.github.io/playground-activities/yamtl-demo-activity.yml

Move your MDE teaching online: The MDENET Education Platform

1| activities:

2 - id: evl

3 icon: evl

4 title: Validate Project Plan

5

6 tools:

7 - https://ep.mde-network.org/tools/epsilon/
tools

8

9 panels:

10 - id: panel-evl e

11 name: Constraints(EVL)

12 ref: evl

13 file: psl.evl

14 - id: panel-model e

15 name: Model

16 ref: flexmi

17 file: psl-evl.flexmi

18 - id: panel-mm e

19 name: Metamodel

20 ref: emfatic

21 file: psl.emf

22 - id: panel-console o

23 name: Console

24 ref: console

25 - id: panel-problems o

26 name: Problems

27 ref: problem

28

29 layout:

30 area:

31 - [panel-evl, panel-model, panel-problems]

32 - [panel-console, panel-mm]

33

34 actions:

35 - source: panel-evl

36 sourceButton: action-button

37 parameters:

38 emfatic: panel-mm

39 flexmi: panel-model

40 program: panel-evl

41 output: panel-problems

Listing 1: Example activity definition. Numbers in circles
map to the panels in Fig. 3

[7

8

[9

[10

[11

[12

[13

Modelling and Model-Driven Engineering? A Survey. In Proc. 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. 122-129. https://doi.org/10.1145/3270112.3270129
Curity. 2024. The Token Handler Pattern for Single Page Applications. Online:
https://curity.io/resources/learn/the-token-handler-pattern/, last accessed 12
June.
] Ingy dét Net, Tina Miiller, Pantelis Antoniou, Eemeli Aro, and Thomas Smith.
2021. YAML Ain’t Markup Language (YAML) revision 1.2.2. Online: https:
//yaml.org/spec/1.2.2/, last visited 21 May 2024. https://yaml.org/spec/1.2.2/
Eclipse Foundation, Inc. 2020. Eclipse Orion. Online: https://projects.eclipse.org/
projects/ecd.orion, last accessed 23 June 2024.
] Eclipse Foundation, Inc. 2024. Theia — Cloud and Desktop IDE Platform. Online:
https://theia-ide.org/, last accessed 23 June 2024.
] Ecma. 2017. ECMA-404: The JSON data interchange syntax. Ecma Interna-
tional — European Association for Standardizing Information and Communi-
cation Systems, Geneva, Switzerland. https://www.ecma-international.org/wp-
content/uploads/ECMA-404_2nd_edition_december_2017.pdf
Moritz Eysholdt and Heiko Behrens. 2010. Xtext: implement your language faster
than the quick and dirty way. In Companion Proc. ACM Int’l Conf. Object Oriented
Programming Systems Languages and Applications (OOPSLA’10) (OOSPLA’10).
ACM. https://doi.org/10.1145/1869542.1869625
GitHub. 2024. Using GitHub Codespaces with GitHub Classroom. Online:
https://docs.github.com/en/education/manage-coursework-with-github-
classroom/integrate- github- classroom-with-an-ide/using- github- codespaces-

=

[14

[15

(17

[18

[19

[21

[22

[24
[25

[26

[27

MODELS Companion "24, September 22-27, 2024, Linz, Austria

1 activities:

2 - id: activity-xtext

3 panels:

4 - id: panel-xtext

5 name: Grammar

6 ref: xtext-grammar

7 file: Turtles.xtext

8 editorActivity: activity-editor

9 editorPanel: panel-editor

10 -

11 .

12 - id: activity-editor

13 tools: [{{ID-panel-editor}}/editor_tool.
json, ... 1

14 panels:

15 - id: panel-editor

16

Listing 2: Configuring language-workbench activities

with-github-classroom, last accessed 23 April 2024.
] JSON Community. 2020. JSON Schema Specification, version 2020-12. Online:
https://json-schema.org/specification, last visited 22 May 2024.
] Jorg Kienzle, Steffen Zschaler, William Barnett, Timur Saglam, Antonio Buc-
chiarone, Silvia Abrahéo, Eugene Syriani, Dimitris Kolovos, Timothy Lethbridge,
Sadaf Mustafiz, and Sofia Meacham. 2024. Requirements for Modelling Tools for
Teaching. Software and Systems Modelling (2024). To appear..
Dimitris Kolovos and Antonio Garcia-Dominguez. 2022. The Epsilon Playground.
In Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings. Association for Computing
Machinery, 131-137. https://doi.org/10.1145/3550356.3556507
Dimitrios Kolovos, Richard Paige, Louis Rose, and Fiona Polack. 2009. The Epsilon
Book. Published on-line: http://www.eclipse.org/gmt/epsilon/doc/book/.
Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2009. On the
Evolution of OCL for Capturing Structural Constraints in Modelling Languages.
In Rigorous Methods for Software Construction and Analysis: Essays Dedicated to
Egon Bérger on the Occasion of his 60th Birthday, Jean-Raymond Abrial and Uwe
Glésser (Eds.). Springer Berlin Heidelberg, 204-218. https://doi.org/10.1007/978-
3-642-11447-2_13
Holger Krahn, Bernhard Rumpe, and Steven Vélkel. 2010. MontiCore: a Frame-
work for Compositional Development of Domain Specific Languages. Int’l Journal
on Software Tools for Technology Transfer (STTT) 12, 5 (Sept. 2010), 353-372.
Louis-Edouard Lafontant and Eugene Syriani. 2020. Gentleman: a light-weight
web-based projectional editor generator. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings. Association for Computing Machinery, Article 1, 5 pages.
https://doi.org/10.1145/3417990.3421998
Timothy C. Lethbridge, Andrew Forward, Omar Badreddin, Dusan Brestovansky,
Miguel Garzon, Hamoud Aljamaan, Sultan Eid, Ahmed Husseini Orabi, Mahmoud
Husseini Orabi, Vahdat Abdelzad, Opeyemi Adesina, Aliaa Alghamdi, Abdulaziz
Algablan, and Amid Zakariapour. 2021. Umple: Model-driven development for
open source and education. Science of Computer Programming 208 (2021), 102665.
https://doi.org/10.1016/].scico.2021.102665
Grischa Liebel, Omar Badreddin, and Rogardt Heldal. 2017. Model Driven Soft-
ware Engineering in Education: A Multi-Case Study on Perception of Tools and
UML. In IEEE 30th Conference on Software Engineering Education and Training
(CSEE&T’17). IEEE. https://doi.org/10.1109/cseet.2017.29
Grischa Liebel, Rogardt Heldal, and Jan-Philipp Steghofer. 2016. Impact of the Use
of Industrial Modelling Tools on Modelling Education. In IEEE 29th International
Conference on Software Engineering Education and Training (CSEE&T’16). IEEE.
https://doi.org/10.1109/cseet.2016.18
Microsoft. 2023. Visual Studio Code for the Web. Online: https://code.visualstudio.
com/docs/editor/vscode-web, last accessed 23 June 2024.
Markus Rudolph. 2023. The Langium Playground -- TypeFox Blog. Online:
https://www.typefox.io/blog/langium-playground, last accessed 23 June 2024.
Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Huseyin Ergin. 2013. AToMPM: A web-based modeling environ-
ment. In 16th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2013): Companion proceedings. 21-25.
] Jos Warmer and Anneke Kleppe. 2022. Freon: An Open Web Native Language
Workbench. In Proceedings of the 15th ACM SIGPLAN International Conference on
Software Language Engineering. 30--35. https://doi.org/10.1145/3567512.3567515

https://doi.org/10.1145/3270112.3270129
https://curity.io/resources/learn/the-token-handler-pattern/
https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://projects.eclipse.org/projects/ecd.orion
https://projects.eclipse.org/projects/ecd.orion
https://theia-ide.org/
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://doi.org/10.1145/1869542.1869625
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom/integrate-github-classroom-with-an-ide/using-github-codespaces-with-github-classroom
https://json-schema.org/specification
https://doi.org/10.1145/3550356.3556507
http://www.eclipse.org/gmt/epsilon/doc/book/
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1145/3417990.3421998
https://doi.org/10.1016/j.scico.2021.102665
https://doi.org/10.1109/cseet.2017.29
https://doi.org/10.1109/cseet.2016.18
https://code.visualstudio.com/docs/editor/vscode-web
https://code.visualstudio.com/docs/editor/vscode-web
https://www.typefox.io/blog/langium-playground
https://doi.org/10.1145/3567512.3567515

MODELS Companion "24, September 22-27, 2024, Linz, Austria

A Outline of planned demonstration

The demonstration will present the EP from the perspective of a
learner and a teacher.

We will begin with the learner perspective, walking through a
learning activity where learners:

(1) Define a simple Xtext grammar;

(2) Generate the language infrastructure;

(3) Experiment with the resulting infrastructure; and

(4) Write a simple ETL transformation to transform models in

their language into optimised models in their language.

Figures 4 and 5 show screenshots of the two stages of this part

of the demonstration, respectively. Demonstration participants will

Steffen Zschaler, Will Barnett, Artur Boronat, Antonio Garcia-Dominguez, and Dimitris Kolovos

be able to explore the activities themselves via a link to a GitHub
Classroom repository.

In the second stage of the demonstration, we will show how
the above activity would be defined by a teacher. We will do this,
by walking participants through the repository that has been set
up for the activity; in particular the declarative description of the
learning activity. A video of a 90-minute step-by-step tutorial on
how to create learning activities can be found online®. Rather than
such a step-by-step tutorial, we will show and explain the relevant
parts of the activity definition, to ensure we stay within the time
available for a tool demonstration.

Shttps://www.youtube.com/watch?v=qqJI50qJqjs

https://www.youtube.com/watch?v=qqJI5OqJqjs

Move your MDE teaching online: The MDENET Education Platform MODELS Companion "24, September 22-27, 2024, Linz, Austria

= = Grammar [6]
MDENEt Platform grammar uk.ac.kcl.inf.mddl.Turtles with org.eclipse.xtext.common.Terminals
generate turtles "http://www.ac.uk/kcl/inf/mddl/Turtles"
L)
~ Create the Xtext grammar
‘ 9 TurtlesProgram:
statements += Statement+
3
Statement:
E save command="backward" *(" *5" ")’
H
@® About
Console &
Figure 4: Xtext activity: defining the grammar
= = Ty outyour language here %2 s Model/Metamodel Diagram %
1 backward(18) ~
g 2 forward(188) @
e 3 — ‘__""---k
4 backward(18) - f’)-s-:hements[o]/'statements[1]\\statementsﬁ"~‘_§gmmens[3]
= 5 m — [3 o | KL\:pSm 7
- . : : ‘LoopStatemen
6 18 times do [cemmand = backward| |command = forward| [command = backward|
7 turn right by 99.8 degrees { —
E 3 teps teps teps _+count ﬂlslanamenis[o] . statements[1]
9 pen down [Cintliteral | [Cntliteral | [Cintlieral | | .|muos.f| [Tur | [[PenM
® 10 | nand v [sat=10 | [al = 100 | [wl=10 | [wl=10 | [command = right| |state = down
[Transformation (ETL) [P 6}

RealLiteral
wal = 898
h ~

rule CopyMoveStatement
transform s : SourcelMoveStatement

to t : Target!MoveStatement { A T + Model
arget Mode

guard:
// Check previous element is not also a “.c‘-.-'eSta'v TurleProgram
(s aCnntainer(y statements indevfis) = A nAr]
< >
-
:MoveStatement LoopStatement
Console = ——
H,\\\
Transforming move statement: backward (org.eclipse.emf.: ¥ Y —y
I\dding a minus | ‘Addition] | IntLite ral | \:TumStakzment | |:PenMuveStatement |
Addj_ng a plus |Dpemnr=5equenne I +}| |val=10 | ‘mmmand=right| |5tate=du\\r|
S

Transformed to: backward (org.eclipse.emf.ecore.impl.Dy:))
left fight “right

[Cintliteral | [dniLiteral | [:Iniliteral | ‘Realliteral
= |val =10 | [val=100 | [val=10 | val = 99.3

< >

Figure 5: Xtext activity: combining a learner-defined Xtext editor with an ETL transformation

	Abstract
	1 Introduction
	2 Related work
	3 Platform description
	4 Applications
	5 Conclusions
	Acknowledgments
	References
	A Outline of planned demonstration

