Requirements for Modelling Tools for Teaching

Jorg Kienzle"?", Steffen Zschaler?, William Barnett?,
Timur Saglam®*, Antonio Bucchiarone®, Silvia Abrahao®,
Eugene Syriani’, Dimitris Kolovos®, Timothy Lethbridge?,
Sadaf Mustafiz'®, Sofia Meacham!!

*ITIS Software, University of Malaga, Spain.
2*School of Computer Science, McGill University, Montreal, Canada.
3Department of Informatics, King’s College, London, United Kingdom.
4KASTEL, Karlsruhe Institute of Technology, Germany.
SFBK, Fondazione Bruno Kessler, Trento, Italy.
6JUMTI, Universitat Politecnica de Valencia, Spain.
"DIRO, Université de Montréal, Canada.
8Department of Computer Science, University of York, United Kingdom.
9School of Electrical Engineering and Computer Science, University of
Ottawa, Canada.
0Department of Computer Science, Toronto Metropolitan University,
Canada.
HDepartment of Computing and Informatics, Bournemouth University,
United Kingdom.

*Corresponding author(s). E-mail(s): Joerg.Kienzle@mcgill.ca;
Contributing authors: Steffen.Zschaler@kcl.ac.uk;
Will.Barnett@kcl.ac.uk; timur.saglam@kit.edu; bucchiarone@fbk.eu;
sabrahao@dsic.upv.es; syriani@iro.umontreal.ca;
dimitris.kolovos@york.ac.uk; timothy.lethbridgeQuottawa.ca;
sadaf.mustafiz@torontomu.ca; smeacham@bournemouth.ac.uk;

Abstract

Modelling is an important activity in software development and it is essential
that students learn the relevant skills. Modelling relies on dedicated tools and
these can be complex to install, configure, and use — distracting students from
learning key modelling concepts and creating accidental complexity for teachers.
To address these challenges, we believe that modelling tools specifically aimed at

use in teaching are required. Based on discussions at a working session organised
at MODELS 2023 and the results from an internationally shared questionnaire,
we report on requirements for such modelling tools for teaching. We also present
examples of existing modelling tools for teaching and how they address some of
the requirements identified.

Keywords: modelling, education, tools, requirements

1 Introduction

Modelling is a crucial aspect in software development and beyond [71]. It enables
designers and engineers to efficiently explore the design space, and provides stake-
holders with suitable representations of the system under study. Models are crucial in
helping all involved parties understand, analyze, and design complex (software) sys-
tems. For the modelling benefits to materialise, the aforementioned activities have to
be supported by modelling tools.

However, most of the academic and industrial tools currently available are not ideal
for teaching modelling [12, 21]. Academic tools suffer in general from low maturity
and robustness, and are difficult to install and maintain due to accumulated technical
debt. This is mainly due to the fact that developing stable and usable (modelling)
tools requires significant development effort and investment, and unfortunately this
effort is usually accompanied by too little reward in terms of academic credit.

Industrial tools, on the other hand, come often with prohibitively high pricing and
complexity, and no out-of-the-box support for teaching-related features, e.g., support
for online collaboration, automated grading, and pedagogical feedback adapted to the
student’s level.

Motivated by this situation, we organised a one-day working session on modelling
tools for teaching (MTT) at the 26th International Conference on Model-Driven Engi-
neering Languages and Systems'. From the discussions that day it is clear that our
community believes that there is a real need for modern, intuitive MDE tools dedi-
cated to teaching that are capable of demonstrating that models are highly beneficial
development artefacts. We need tools that can inspire our students to use MDE for
real, i.e., to drive other development activities, as opposed to simply creating pretty
drawings to please the teacher. Because of the limited resources available for develop-
ing MTTs we can only succeed if we work towards a common infrastructure for tools
that we can collaboratively maintain and extend.

As a first step in that direction, we elaborated in our working session a set of
requirements for MTTs. We present them in this paper organised as follows. Section 2
presents a brief summary of our working session and explains the questionnaire we
sent out to the modelling community after the workshop. Section 3 lists the modelling-
related capabilities that we envision are important for MTTs. Section 4 presents what
we deem important pedagogical functionality that MTTs should provide. Section 5
discusses some technical requirements on MTTs. Section 6 concludes the paper by

Lhttps://modellingtoolsforteaching.github.io/

https://modellingtoolsforteaching.github.io/

presenting some examples of existing MTTs and how they relate to some of the
requirements discussed.

2 Methodology

We briefly describe the methodology used to elicit the requirements presented in this
paper.

2.1 Workshop Summary and Pilot Survey

The purpose of the one-day working session at MODELS 2023 was to engage in pro-
ductive discussions regarding the requirements and necessary infrastructure for MTTs.
Targeted invitations were sent to research groups actively involved in developing tools
used for teaching computer science in undergraduate or graduate classes.

In the first session, participants were allotted five minutes each to present the
MTTs they were working on, focusing on their teaching-related aspects. Subsequent
sessions, attended by an average of 25 people, were dedicated to brainstorming among
attendees.

At the conclusion of the workshop, all participants were surveyed regarding their
perceptions of the importance of tools, languages, features, and educational practices
discussed earlier. The survey aimed to serve as a prototype for wider circulation within
the community. Despite being produced within a half-hour timeframe, the survey
yielded valuable insights:

e Participants expressed a keen interest in teaching using class diagrams and state
machines, alongside other model types albeit with lesser importance.

® Important attributes for modelling technology in teaching included being free,
being user-friendly, having multi-platform compatibility (including having a web-
based version), having a comprehensive user manual, having a library of examples,
being reliable, having performance analysis capabilities with feedback, having fast
response time, being capable of code generation, and having a textual interface
available.

Post-workshop, reflection on the prototype survey results led to the revision of
questions and the preparation of a formal survey for broader circulation, as discussed
in the following section.

2.2 Survey Conducted Following the Workshop

A subgroup of the authors refined the pilot survey? over the course of three months
following the workshop. Ethics approval was obtained to circulate the revised survey by
the end of January 2024. Targeted sampling methods were employed for distributing
the survey using the following steps:
1. Each workshop attendee was tasked with ensuring that the survey reached
relevant individuals within their institution, including themselves.

2The questions and answer options are openly available from the King’s College London research data
repository, KORDS, at https://doi.org/10.18742/25429270

https://doi.org/10.18742/25429270

Table 1 Summary of Survey Questions about Modelling Tools for Teaching (MTT)

Question Theme

1 Confirmation of consent and teaching experience

2 Number of years they have been teaching

3 Extent of to which they teaching software modelling

4 Satisfaction with current modelling tools for teaching

5 Improvement areas for MTT (open ended)

6 Importance of teaching specific modelling languages at undergraduate level
7 General user experience attributes with MTT (9 items)

8 Editing and collaboration features of MTT (5 items)

9 Language and language-Manipulation Features of MTT (10 items)
10 Analysis features of MTT (5 items)

11 Transformation features of MTT (7 items)

12 Platform capabilities for MTT (9 items)

13 Business and economic issues related to MTT (5 items)

14 Languages they would like the tool to generate

15 Teaching practices an MTT should support (13 items)

16 Modelling tools currently used (16 items)

17 Academic rank (for demographic analysis)

18 Continent (for demographic analysis)

19 Gender (for demographic analysis)

2. Additionally, participants were encouraged to reach out to colleagues in other
institutions within their geographic region and beyond.

3. The survey was also disseminated through the LinkedIn and X accounts of several
authors.

By the end of February 2024, we had gathered 59 valid responses. Only one response
was excluded due to incomplete answers to the questions. Given the richness and
depth of the data collected, we have decided to publish a comprehensive analysis in a
separate paper. In that paper, we will first present the detailed questions of the survey
as described in Table 1, followed by the main insights obtained from the responses.
Here, we provide a brief characterization of survey respondents and then focus on
some central themes.

We asked about the participant’s general background and demographics:

¢ Teaching Experience and Duration (Q2): Respondents to the survey broadly
have substantial experience teaching modelling: 30% of respondents said they
have been teaching modelling for 20 or more years. A further 23.3% have taught
modelling for 10-19 years and 25% for 5-10 years. Only two respondents said
that they “do not teach modelling (yet)”.

e Extent of Teaching Software Modelling (Q3): A significant portion of
respondents teach software modelling to varying degrees, with 39% heavily
involved, 54% moderately involved, and 7% teaching minimally.

e Satisfaction with Current Technology (Q4): Mixed satisfaction levels were
observed among respondents regarding the current technology available for teach-
ing software modelling, with no respondents indicating being very satisfied,
54% expressing satisfaction to some extent, and 36% indicating some level of
dissatisfaction.

® Demographics (Q17-19): Participants were roughly evenly divided among full
professors, associate professors and assistant professors. Responses were 74 per-
cent from Europe; 16 percent from North America, and 10 percent from elsewhere.
Respondents were 75 percent male and 25 percent female.

Question 5 was an open-ended question about areas of modelling that could be
improved and features that were required. The respondents identified several areas
for improvement in software modelling tools for teaching, including various user expe-
rience issues, collaborative editing support, executability, support for modelling for
particular architectures or frameworks, analysis capabilities, a strong preference for
a web-based interface, and concern about outdated tools, standards, and languages.
Many of these will be discussed in detail in the remainder of the paper.

The responses to Question 6 on the importance of teaching certain modelling
languages are presented in Section 3.1.1.

Questions 7 through 13 ask about the significance of 50 distinct qualities and
features within the realm of modelling tools and languages, in the context of teaching
modelling. Each item was subject to assessment on a 6-point scale, where respondents
were tasked to rating their perceived importance.

The scale encompassed the following criteria:

e Harmful: Signifying qualities or features that would introduce unwarranted
complexity into the process, assigned a weighted score of -1.

¢ Not needed / not something I would judge a tool by: Reflecting aspects
perceived as extraneous or irrelevant to the evaluation of a tool, assigned a
weighted score of 0.

® Good to have at a basic level: Denoting qualities or features that are beneficial
but not imperative, allocated a weighted score of 1.

® Important to have at a moderate level: Identifying qualities or features of
moderate significance, granted a weighted score of 2.

e Essential to have reasonably good capability for this: Highlighting qual-
ities or features deemed fundamental with a reasonable level of proficiency,
assigned a weighted score of 3.

® Critical: Must be as extensive and good as possible, indicating qualities or
features of utmost importance, demanding the highest level of capability, and
assigned a weighted score of 4.

This evaluation framework aimed to discern the varying degrees of importance
attributed to each quality and feature, thereby facilitating a nuanced understanding
of their relevance in the context of teaching modelling. We will discuss the responses
to these questions in Sect. 7 after we have qualitatively reported on the workshop
discussion that introduced these requirements.

Question 14 asked about code generation, and what programming languages a tool
should support. We will discuss these responses in more detail in Sect. 3.1.5.

Question 15 asked about teaching practices that should be supported (multiple
responses were possible). The most important practices to be supported include having
students build small models (97 percent need this); using the tool live in class (81
percent); supporting project-based learning (80 percent); supporting problem-based

learning (75 percent); having students analyze and criticize models (75 percent); and
having students improve an existing model (71 percent).

In Question 16, we asked about the tools respondents use in teaching modelling.
The top modelling tools or tool-types used by the participants were PlantUML,
EMF /Ecore/Emfatic, plain drawing tools (such as Draw.io), Visual Paradigm, X Text,
Umple, formal methods tools, MagicDraw, Figma, Papyrus and Sirius.

3 Modelling-Capability-Related Requirements

This section presents a list of modelling-capability-related requirements that were
identified as important for MTTs, organised into two categories that target distinct
groups of students.

Modelling tools are tools specific to a particular modelling formalism. Students
use them to learn how to model in one or several languages, learning their syntax,
structural and behavioural semantics. Such tools often come with a dedicated debugger
and various development services.

Language workbenches [30] are generic modelling environments to create and use
arbitrary modelling languages, like the Eclipse Modelling Framework (EMF) [72].
Students use them to learn to develop domain-specific modelling languages, with
an emphasis on metamodelling and grammar design. Although generic services
are provided, students need to develop their own model transformations and code
generators.

3.1 Teaching Modelling with Existing Languages

In this section, we present requirements on MTTs related to teaching modelling with
existing modelling languages.

3.1.1 Modelling Language Support

In our survey, we asked respondents “To what extent do you think each of the fol-
lowing modelling languages should be taught to undergraduates as a required part
of a computer science or software engineering program?” Here, we report on their
responses.

We asked respondents to rank a set of modelling languages on a scale from
“Harmful” to “Critical”. A detailed overview of the responses is shown in Fig. 1.

The top 4 modelling languages (based on average scores) are UML sub-languages:
class diagrams (with overwhelming support for criticality), state machines, sequence
diagrams, and use cases — possibly reflecting on the typical syllabus covered in the
teaching of modelling in software engineering courses at the undergraduate level. Inter-
estingly, this is followed by entity-relationship models and activity diagrams on places
5 and 6.

On the other end of the scale, we find formal-methods models other than OCL,
Petri nets, goal models, and feature models. Notably, formal methods models attracted
7 votes for “Harmful”, possibly reflecting a continuing perception that formal models
are difficult to engage with, especially at the undergraduate level.

Class models []

State machine models and variants [|
Sequence Diagrams | |
Use case models 1
Entity Relationship diagrams |
Activity Diagrams [|
Textual requirements models [|
User interface and interaction models |

Data flow models
Component diagrams |
Models of the software engineering process ||
ocL [
| |
u

Software configuration models (e.g Dockerfile)

Feature models]
Goal models [|]
Petri Nets [| |
Formal methods models (e.g. Alloy, NuXMV) other than OCL | | [}

m Harmful Not needed May be useful Needed m Critical

Fig. 1 Responses to Q6 on required modelling languages. This was a semantic-difference scale ques-
tion and each coloured bar represents the percentage of responses for each possible answer, centred
on “Not needed”.

3.1.2 Textual Interface Support

Although software modelling is widely thought of as focusing on diagrams, there are
also many textual modelling languages including OCL [58], USE [66] and Umple [50].
In fact, experience has shown that modelers find it very useful to be able to define
their models textually as well as graphically [6].

Graphical languages have many advantages, such as taking advantage of two
dimensions and arbitrary shapes. But there are a variety of benefits of using textual
modelling languages in teaching. Students are used to textual editors from coding,
hence editing text can be faster and more productive than editing graphics. Copying
and pasting in particular can be easier. Furthermore, commenting and annotating can
be easier in a textual format, since there are no layout constraints.

In the survey, we asked about the importance of having a textual interface available.
61% of respondents considered this important, essential, or even critical.

Proper support for textual modelling also requires support for syntax checking
and validation, syntax highlighting, auto-completion, debugging, and navigation (the
ability to quickly jump between different sections, e.g. by clicking references).

3.1.3 Support for Consistency Checking

Modelling tools for teaching should support conformance checking to ensure that stu-
dents create model instances that adhere to the structure described in the language
metamodel, making the modelling process for students less error-prone. Support for
validation checks to make certain that all language constraints are upheld is also
required (e.g., a state diagram has only one start state). Warnings and error messages
should be generated to inform students of modelling mistakes.

3.1.4 Support for Views and Consistency between Views

A fundamental aspect of MDE is the use of multiple models (views) to describe a
given system [20]. These models may vary depending on the level of abstraction (e.g.,

from requirements models to architecture models) and also on the viewpoint (e.g.,
structural versus behavioral models) [10]. When teaching modelling, it is important
that the student learns to define models that focus on different sets of concerns and
that can be described using one or more languages (notations).

Maintaining the consistencies of the models manually is a tedious endeavour with-
out dedicated support from the modelling tool [43]. In Abrahao et al. [1], model
integration has been identified as a challenge affecting user experience with MDE
tools. According to the authors, vertical and horizontal model integration (syntactic
and semantic) is essential to ensure consistency. Therefore, a MTT should help stu-
dents understand how the views of the systems are related. Ideally the tool should
propagate changes in one view to the other views in order to maintain consistency, or
alternatively the tool could signal a validation error.

3.1.5 Support for Model Execution/Enactment/Experimentation

Students need to be able to do something with the models they produce so that these
models become more than “nice drawings”. We differentiate three different purposes.

For Comprehension

Models can have different degrees of formality. While modelling with a low degree of
formality is suitable for communication and documentation purposes, informal models
lack the ability to be used as input to the software development lifecycle. It is therefore
desirable to teach students to create models that are both understandable to stake-
holders and that can be used to guide subsequent phases of software development. As
several empirical studies show, models play a fundamental role in helping students
and practitioners in understanding software specifications (e.g., software requirements
[2], source code [70]). MTTs, therefore, need to present models in ways that facilitate
comprehension — including appropriate concrete syntax.

For Production

Another crucial use of models, specifically in industrial settings, is integrating them
into software systems. Generating textual artifacts from models can be automated
through template-based code generation [73] and this needs to be supported in MTTs.
Especially source code generation enables students with a programming background
to better engage in MDE and understand its concrete usefulness. Some models can be
integrated into programs directly when they are executable, such as models developed
in GEMOC studio [9].

In our survey, we asked respondents “If you would like code generation (model to
text) to be part of your teaching process, which languages are the most important for
a modelling tool to be able to generate?” 3 respondents replied “None”, presumably
indicating that they do not use model-to-text transformation in their teaching, but
the overwhelming majority of respondents appears to include code generation in their
teaching. Figure 2 provides an overview of these responses.

Java is clearly the leading target language for educators teaching model-to-text
transformation (with 51 of 59 respondents choosing it), closely followed by Python (38
respondents). Surprisingly, SQL appears in third place, with C++ only some distance

60
® Java

%0 = Python

saL

m C++

* m C-Sharp

20 Formal methods languages
m PhP

10 . . = Ruby

o - -- m Other (please specify)

Count

Fig. 2 Overview of responses to the question on desired target languages for model-to-text gener-
ation. The chart excludes the three responses indicating ‘None’. Note that multiple responses were
possible for this question.

behind. Other languages mentioned included JavaScript, Kotlin, C, Go, Rust, and
“textual artifacts that are not specifically related to a programming language”.

For Analysis

The benefits of modelling can be further demonstrated during teaching by leveraging
simulation, model checking, or traceability analysis methods. This will allow students
to understand the behaviour of systems, verify the correctness of models, and validate
the design. The need for simulation technologies is even more prevalent now with the
Internet of Things and cyber-physical systems, since having the means to analyze and
validate the system before incorporating changes into the running system is of critical
importance [41]. Modelling environments for teaching should have integrated support
for interactive simulation and (virtual) experimentation [55] enabling exploration and
what-if analysis with parameter estimations.

Moreover, support for formal verification of models is essential for teaching
modelling of critical systems [22, 77]. Model checking tools, such as SPIN [37] or
UPPAL [48], could be integrated with MTTs to make them easily available and allow
students to verify their models.

3.1.6 Support for an MDE Process

When modelling is used throughout the software development lifecycle, i.e., from
requirements engineering to architecture to design, implementation and testing, teach-
ers typically ask the students to follow a specific MDE process. An MTT that is
process-aware could provide students with systematic guidance on which models to
elaborate using which modelling language at what time, as well as help in maintaining
horizontal and vertical traceability between the models. For collaborative tasks, sup-
port for identifying dependencies between the models would also improve coordination
between teams and help in monitoring the progress of projects.

Moreover, it would be valuable for MTTs to provide means for generating skele-
tons of downstream models (e.g., deriving a partial design class model from a domain
model or generating an activity diagram from a use case model) or even models at the
same level of abstraction (deriving a partial domain model from a use case model).
In addition to support forward engineering, tool support for reverse engineering to
generate (partial) upstream models would be very useful for students to gain an under-
standing of how code is represented at higher levels of abstractions, and to learn how
to refactor models and then generate other views, code, or documentation from them
(see [11], for instance).

In the context of teaching MDE processes, tool support for explicitly modelling
processes and traceability analysis would be valuable. Traceability information gener-
ated from software or business process model enactments can be used for dependency
visualization, origin tracking (for instance, backtracking from design to requirements
artifacts), change impact analysis, change propagation as well as for streamlining and
optimizing processes (as seen in [34]).

3.2 Teaching the Development of New Modelling Languages

In this section, we collect requirements on MTTs used for teaching students how to
develop new modelling languages. Tools for the development of modelling languages
are typically called Language Workbenches.

3.2.1 Support for Different Modelling Paradigms

An important skill that students need to acquire during an advanced MDE course
or a course on software language engineering is the development of a new modelling
language, or adapting an existing modelling language and its modelling editor to fit a
certain domain and/or certain needs.

For textual modelling, the tool should allow students to develop a grammar, speci-
fying tokens and production rules from which a parser can be generated as with Xtext®.
To improve the user experience, students should be able to specify the styling prop-
erties of keywords or rules in the textual language, customizing the font style, colors,
and layout. From that, the MTT should generate an editor with common services as
described in subsection 3.1.2.

When a graphical notation is better suited for the modelling language, the MTT
should allow individual metamodel elements to be mapped to their correspond-
ing graphical representation. To this aim, different techniques could be supported,
e.g., specifying the mapping through programming (GMF [63]), by annotating the
metamodel (Eugenia [45]), or by explicitly modelling the concrete syntax (Sirius [78]).

3.2.2 Experimentation Capabilities

When designing domain-specific languages, it is important for users to also be able
to create sample models side-by-side to experiment with different design alternatives.
To facilitate this exploratory style of language development it is desirable for tools to

3https://eclipse.dev/Xtext/

10

https://eclipse.dev/Xtext/

provide coordinated visualisation capabilities for both models and metamodels (e.g.
using object/class diagram notations or even by supporting custom graphical notations
using metamodel annotations in the style of Eugenia [45]). It is also important that
they tolerate (and highlight) inconsistencies in models as metamodels evolve.

3.2.3 Automated Model Management

As the crux of model-driven engineering is automated model processing, suitable
tools must naturally provide support for composing, and executing a wide range
of model management activities, e.g., model-to-text transformation, in-place and
mapping model-to-model transformation, model validation, model comparison and
merging, pattern matching, model migration and model simulation.

Ideally, users should not be required to perform any configuration (e.g. to specify
which program runs against which model, or which metamodel a model conforms
to) by default. Offering configuration facilities to support arbitrary complex model
management scenarios is not advisable as the tool then starts entering the realm of
IDEs, which is undesirable. However, the tool should offer a smooth transition into
an actual IDE, for example by allowing the user to download their artefacts (model,
metamodel, model management program) in a format that can be imported into an
IDE (e.g. by auto-generating a .project file for Eclipse or a Gradle/Maven build
file for compatible IDEs) or by providing a hyperlink that sets up and launches a
web-based IDE (e.g. VS Code, Gitpod) with the user’s artefacts.

4 Teaching-Related Requirements

In this section we elaborate on specific pedagogical support we believe our MTTs
should provide to support teaching. We first discuss the importance of aligning MTTs
with educational terminology and standards as well as integrating them with tradi-
tional learning systems, and then split our discussion into modelling-specific support
for the teachers and for the students.

4.1 Alignment with Educational Terminology and Standards

Ensuring accessibility and quality of learning for a diverse audience necessitates the
widespread utilization of Open Educational Resources (OER) [36, 59, 76] in all edu-
cational endeavors. In this context, the education system has used competences to
organise learning and quantify personal and professional growth. Proficiency levels
categorizing competence items enhance the assessment process, providing valuable
insights into individual mastery.

To fortify this educational approach, there is a need to align with the competencies
and skills elaborated in the most recent Computing Curricula of the ACM [31], but also
with established models like O*NET*, ESCO®, and EntreComp®, ensuring that skill
development resonates with industry standards. Competences, conceptualised as sets
of interconnected concepts, encapsulate knowledge, principles, and practices crucial for

4Occupational Information Network: https://www.onetonline.org/
‘?European Skills, Competences, Qualifications and Occupations: https://esco.ec.europa.eu/
SBuropean Entrepreneurship Competence Framework: https://ec.europa.eu/social/main.jsp?catld=1317

11

achieving learning goals. The compilation of these elements in the competence portfolio
offers a structured overview of skills, knowledge, and aspirations, guiding students
through competence requirements and acquired competences, where teachers play a
central role in ensuring a logical progression.

To this end, teachers define learning paths, segmenting them into focused learn-
ing fragments centered on specific topics. These fragments, supported by associated
learning activities, orchestrate a guided process facilitated by the progress edges.
The progress edge introduces multiple outcomes from each learning activity, creat-
ing a dynamic learning experience that fosters personalised learning through diverse
outcomes, tailored paths, adaptive feedback, learning flexibility, and heightened
motivation.

4.2 Integration with Learning Environments

As suggested in [3], external tools, such as MTTs, should be integrated with tradi-
tional Virtual Learning Environments (VLEs) to maximise the benefits for students
and educators. This will enable the utilisation of common VLE provisions such as col-
laboration, communication, assessment and feedback structures, etc. that have been
proven necessary, effective and pedagogically sound [17]. This will provide seamless
integration within the students’ environments and a more connected and insightful
learning experience. Additionally, it not only makes learning more accessible, but also
allows us to gather valuable information about how students interact with these tools.
By collecting learning analytics [47] through these tools, educators can understand
each student’s progress, tailoring support to individual needs and facilitating fur-
ther the individual learning paths. In essence, the integration of modelling tools into
VLEs supports a personalised educational journey that incorporates familiar proven
pedagogical methods.

4.3 Support for Teachers

We first discuss requirements from a teacher perspective.

4.3.1 Modelling Concepts and Example Library

Students learn well from concrete examples [56], but creating substantial high-quality
examples requires a significant effort from teachers. Modelling tools for teaching
should, therefore, have the ability to integrate with repositories of sample learning
activities, which should be made available as open education resources (OERs). This
could include: activities where students need to do the same activity with and with-
out modelling [60]; an annotated repository of example models, transformations and
other modelling artefacts; or examples of industrial use of MDE.

4.3.2 Assessment Support

Class sizes for software engineering courses continue to increase, and as a result,
the assessment of students is becoming more and more of an issue. We imagine
that an MTT could help a teacher discover or select modelling exercises from the

12

aforementioned model repository for assessment. Better even, the MTT could gen-
erate modelling exercises, or variations of a given modelling exercise, to prevent
cheating [33].

But most importantly, teachers need grading support. In our experience, the grad-
ing of models is often more time-consuming than the grading of code, because for a
given situation there is in many cases more than one way of modelling it. MTT's should
offer mechanisms for defining marking schemes, i.e., attaching of points to model ele-
ments, ideally in a language-independent way as done in [8, 38]. Automated grading
algorithms could compare a student’s solution with a teacher’s solution, or, for exe-
cutable models, run a set of model unit tests to determine the grade of the student.
Ideally, the tool would also generate feedback for the students to let them know where
and why they lost points. Again, it would be nice to have generic ways of providing
feedback that are independent of a specific modelling language.

4.3.3 Plagiarism Detection

Discouraging plagiarism in education is vital to uphold academic integrity, ensure
fairness in evaluation, and teach students about ethical behaviour in both academic
and professional environments. In large courses, however, manual inspection becomes
impractical [26]. Plagiarism tends to be more prevalent in mandatory assignments,
such as those in beginners’ courses [61], which typically involve a higher number of
students [16]. Thus, we identify the need for tool-based solutions to tackle the problem
at scale [69]. Plagiarism detection is well-researched for code [57], however not for
modelling assignments [52]. They pose a unique challenge due to the fact that models
typically operate at a higher level of abstraction, providing fewer details for detection.
Furthermore, approaches designed for code rely on linearization, a process that is not
trivial for models in general. Tool-based solutions should help teachers by identifying
suspicious candidates while leaving final decision-making to the teachers to uphold
ethical standards [49]. They also need to provide explainability and traceability in
order for teachers to understand why a student submission is identified as suspicious.

4.3.4 Collaboration

We differentiate collaboration between teachers and between teachers and students.

Collaboration between Teachers

We identified at least two forms of teacher—teacher collaboration that would be helpful
for developing complex learning activities in modelling.

In sequential collaboration, multiple teachers edit a shared learning activity, e.g.,
because one teacher reuses someone else’s learning resource in the context of their own
teaching, or because a team of teachers may be co-delivering the same course. This
requires strong version-management support, made additionally challenging by the
requirement to manage the consistency of a complete learning activity as individual
parts are modified by different teachers over time. Ideally, an MTT would support
authors of learning resources to review, comment on, and approve suggested changes by
other teachers. Especially when resources are shared across institutional boundaries,

13

a lightweight and asynchronous process of proposing changes to existing materials
may facilitate better-maintained resources than an environment characterised by a
“fork-and-forget” mentality.

In concurrent collaboration, multiple teachers are working on the same learning
activity at the same time. This can range from co-creation of learning activities to in-
class scenarios demonstrating collaborative modelling or even using teaching assistants
to help with in-class active learning activities. These types of collaboration require
typical concurrent editing capabilities, including mechanisms for conflict resolution,
and collaborative awareness in modelling tools.

Teacher—Student Collaboration

Teachers collaborate with students (i) synchronously to model behaviours and help
students overcome difficulties, as well as (ii) asynchronously to provide feedback and
assessment of modelling work. This requires effective mechanisms for appropriate inter-
action. For example, it is pedagogically inappropriate for the teacher to directly change
the student’s model. Instead, teachers need to be able to suggest model changes, pro-
vide critique and feedback on good and bad model elements etc. Ideally, such feedback
should be directly connected to the individual elements of the model, as this allows
students to easily understand the context the feedback is referring to.

This requires modelling-specific mechanisms that can be used with a wide range of
modelling languages and notations. In particular, the optimal mechanisms will depend
on the type of concrete syntax used. For example, for textual modelling languages,
mechanisms like patch annotation (e.g., in the style offered in GitHub pull requests)
can work very well for providing asynchronous model feedback.

Teacher-student collaboration on a large scale is currently facilitated through
one-to-many lectures and labs. This process could be enhanced by incorporating a
‘modelling-bot’ functionality, as discussed later in Sect. 4.4.1. Essentially, this bot will
be trained using resources from teachers, past assessments, and relevant data, aim-
ing to provide instant feedback at scale. It is important to note that while this does
not replace the unique teacher-student feedback mechanism, it does automate the
correction of common mistakes and repetitive aspects of the process, benefiting both
students and teachers. It is worth mentioning that while this approach is applicable
across various subjects, modelling particularly stands to benefit due to the nature of
its assessment. Unlike subjects with clear right or wrong answers, like mathematics,
modelling involves diagrams assessed based on quality [40, 53], which requires a more
nuanced evaluation that may be better supported through the interactive nature of a
bot.

4.3.5 Traceability

As discussed in Section 3.1, when teaching model-based development, students are
introduced to modelling the different aspects or views of a system at the right level
of abstraction using the most appropriate formalism. It is also essential for students
to understand that no model is an island. Models developed in downstream activities
must conform to models created in upstream activities. Tool support is required to

14

demonstrate the dependencies between the multitude of models, possibly with the use
of megamodels [7] and/or macromodels [68].

For software engineering projects that use modelling, an MTT should provide capa-
bilities for automatically checking if traceability is maintained between the modelling
artifacts. The checker would assess conformance between models, for example, whether
the design class diagram conforms to the domain model, or whether the sequence dia-
gram conforms to the textual use cases for an application. The checker could annotate
models and generate traceability information to highlight the missing links between
two modelling levels.

4.4 Support for Students

Next, we discuss requirements specifically to support students.

4.4.1 Modelling Assistants

In recent years, numerous techniques that assist modellers have been proposed. These
recommendation systems offer suggestions to the modellers based on certain fac-
tors, e.g., similarity between the current content of the model and existing models in
knowledge repositories, without specifically focussing on teaching [15, 18, 29, 51, 54].

The participants of the workshop felt that existing approaches (e.g., DoMoBot [67]
and SOCIO [65]) are going in the right direction, but that more can be done with
respect to teaching support. For example, chatbots and assistants for modelling should
take the current level of the student into account when providing feedback, i.e., not
reveal the correct solution immediately, but provide just enough of a hint for the
student to be able to determine the solution themselves. Furthermore, modelling assis-
tants that determine a specific weak point of a student could point them to the relevant
teaching material or suggest specific training exercises. As collaborative learning is
often more motivating [24], the modelling assistant could also group students accord-
ing to their level and suggest collaborative exercises tailored to the group’s learning
needs.

4.4.2 Constraining a Modelling Language

Modelling languages often provide many concepts and features, some of which are
fundamental, whereas others are advanced, i.e., not used very often and/or potentially
difficult to grasp for newcomers. For example, whereas the concepts of class, attribute,
and binary associations are fundamental to modelling using class diagrams, concepts
such as association classes or n-ary associations are less often used. To reduce the
cognitive load on students and to guide them in their learning, we imagine that it
would be very useful if MTTs provided support for restricting the available features of
a modelling language for a given exercise to those required for solving it. Over time,
and as the expertise of the student grows, more difficult exercises would give access
to more advanced features.

Restricting the available features of a language to a subset of the language also
makes sense to tailor it to the modelling activity that is being carried out. For exam-
ple, when creating a domain model, classes typically do not declare any operations,

15

nor does one bother modelling visibility. On the other hand, when a class diagram rep-
resents a software design, then being able to define operations for classes is essential.
In this case, association classes or n-ary associations are typically not used.

4.4.3 Collaboration
Modelling is often collaborative and MTTs should support this.

Direct Collaborative Modelling

Modelling tools for teaching should provide opportunities for students to store their
models on a standard version control system to allow asynchronous, offline collabora-
tion with other students. This requires students to understand version-control systems
and their practical use. Additionally, it may be important to provide adapted support
for model comparison and merging.

Students also expect to be able to collaborate synchronously; that is, multiple stu-
dents would edit the same model at the same time, possibly each using their computer.
Some modelling tools already support such collaborative modelling. For example, tools
such as Magic Draw, Enterprise Architect and MetaEdit+ [42] already support online
collaboration, including across different domains [35].

Indirect Collaboration

Students can benefit from learning from other students’ work [19]. One way of doing
this is to enable peer feedback, where students comment on other students’ solutions to
the same assignment. For this, as mentioned in subsection 4.3.2, it would be beneficial
if feedback could be given through direct annotation of models.

Another, more implicit mechanism is for students to receive feedback and sug-
gestions based on an analysis of other students’ submissions. For example, where a
student has not been able to complete a task successfully, the system could identify
other students who submitted similar, but successful solutions and use the delta to
suggest parts of the model the student should focus on to develop a correct solution.
Similar systems have been experimented with in the context of assessing programming
tasks [32], but they need to be developed for modelling education.

4.4.4 Gamification

There is strong interest in utilizing gamification in modelling, yielding promising ini-
tial results [13]. However, the predominant efforts thus far have involved modelers
manually creating ad-hoc gamification environments tailored to specific experimental
scenarios. A genuine push towards fully integrating gamification into modelling tools
remains outstanding. Notable exceptions, like [13, 23, 25, 62, 75], can be regarded as
early endeavors addressing the gamification of modelling, particularly in the context
of modelling education. These authors have introduced technical solutions that target
specific learning objectives, such as data/process, and UML class diagrams modelling.

New MTTs should incorporate a fully-fledged gamification environment. The
game definition mechanisms within this framework must distinguish various learning
dimensions, including learning abstraction, a modelling language, or a modelling tool.

16

5 Technical Requirements

In this section, we list the technical requirements for our envisioned MTTs. We split
the discussion into requirements to help the students, the teachers and to support the
development of the tools themselves.

5.1 For Students

To allow them to focus on the actual modelling activity, students should be able to
use modelling tools without the need for installation or complex plugin management.
Web-based, playground-style solutions (like the Epsilon Playground” or [5]) may be
one approach here, but alternative options (e.g., integration into common platforms
like VS Code) may also be appropriate.

Students use many different computing platforms, and it is essential that the mod-
elling tools used in teaching are available across these platforms and don’t significantly
change the way they work when switching between platforms. Platform independence
especially concerns both the modelling artefacts and the user interface. Regarding the
former, models cannot break or deviate in their behaviour when working on differ-
ent platforms. Regarding the latter, it is important that demonstrations of teachers
or teaching assistants can be directly reproduced by students, independent of, for
example, their operating system.

Students have many demands on their time and will rarely be able to complete
an activity in one sitting. It is, therefore, essential that educational modelling tools
provide easy ways of saving intermediary model states and continuing from such a
saved state at a later time. Saving can be internal to the tool (e.g., to an internal
database) or can be to an external file. Importantly, it must be possible to export
work in a format that is appropriate for submission of assignments (or to submit
directly from within the tool if more appropriate). This includes simple choices such
as ensuring no absolute paths are used in exported files.

5.2 For Teachers

Teachers can have different requirements depending on a number of factors, including
the extent to which the tool will be used to support learning and assessment activities
within the course and the available technical skills and infrastructure.

Teachers who plan to use the tool extensively in their course and who have tech-
nical skills and resources may like to deploy a version of the tool (e.g. through a
Docker image) on local resources. This allows them to control when to upgrade to
the next version of the tool, to patch/work around any identified issues with the tool,
and to shield students from unexpected events. On the other hand, teachers who only
plan to use the tool for a small, non-critical part of their course are likely to pre-
fer a ready-to-use public instance (like those offered by the Epsilon Playground and
UmpleOnline [50]). In this case, teachers may require configuring the tool with cus-
tom examples (e.g. metamodels, grammars, models, model management programs)

Thttps:/ /eclipse.dev/epsilon/playground/

17

https://eclipse.dev/epsilon/playground/

to better integrate with the rest of the teaching material (e.g. example systems/do-
mains discussed in lectures). Ideally, doing so should not require teachers to install an
instance of the tool on their own resources; publicly-available instances should provide
built-in support for this. The Epsilon Playground, for example, allows users to con-
figure its set of examples by specifying the location of a JSON document as a URL
parameter®. Finally, students should be able to share their work with teachers (e.g. by
generating and sharing a unique URL as is the case with the Epsilon Playground) and
teachers must be able to export their students’ work and persist them in a standard
format to carry out further activities (e.g. inspection, marking).

5.3 For MTT Developers

MTTs should demonstrate common characteristics of well-engineered community-
driven software to facilitate adoption and continued development. The implementation
should be accompanied by tests that demonstrate the correct behaviour of the tool and
protect it against regressions. The architecture and code should be modular, to allow
adopters to add/disable components and services. The code should be implemented
using languages and frameworks that have a substantial user basis to facilitate long-
term maintenance. Finally, the use of a permissive open-source license is necessary to
facilitate contributions by the community.

6 Modelling Tool Examples

To illustrate the requirements discussed in Sections 3 to 5, we present in this section
how some of the existing academic tools nowadays address them.

6.1 Executable Modelling with Examples in Umple

Umple [50] is an open-source modelling language and technology designed to improve
both education about modelling and open-source development with models. Umple’s
textual syntax (cf. Sect. 3.1.2) incorporates a variety of model types including class
models, state machines and feature models. Most graphical representations can also
be edited, with the edits instantly reflected in the text. Umple generates code from
all its modelling constructs, enabling model-driven design of complete systems (cf.
Sect. 3.1.5). Where needed, user-defined code in traditional programming languages
including Java, PHP, and Python is embedded in the same files as the textual models.
The result is a textual format that resembles what students would be used to, given
their experience with any other compiler.

To make it clear to students that serious systems can be built with models, an
extensive online user manual and set of examples are available. Students also see the
write-compile-execute-repeat cycle and experience satisfaction when they get a system
working that is built from models.

A key feature of Umple is its extensive automatic analysis of model consistency
(cf. Sect. 3.1.3). Several hundred error messages and warnings are produced regarding

8See https://eclipse.dev/epsilon/doc/articles/playground /#custom-examples

18

https://eclipse.dev/epsilon/doc/articles/playground/#custom-examples

issues Umple detects in models. Each error or warning also has its own dedicated
manual page, with live examples showing how to correct errors.

6.2 Constraining Modelling Languages in TouchCORE

TouchCORE is an academic modelling tool that focuses on model reuse following the
Concern-Oriented Reuse approach. TouchCORE currently supports several standard
modelling notations, such as class diagrams, sequence diagrams and use case diagrams.
It is also possible to define new domain-specific languages and augment them with
concern-oriented capabilities by integrating them into TouchCORE using a plug-in
mechanism.

In addition to the language metamodel, a language definition in CORE requires
the language designer to specify a set of language actions that define the construc-
tion semantics. The actions encapsulate complete editing steps that are used by the
modeller when elaborating a model using the language. In other words, the language
actions constitute the API for building models with the language.

On top of the language actions, TouchCORE provides the notion of a perspec-
tive [4], which allows a modeller to group a set of language actions and make them
available to the user for creating models for a specific purpose. For example, a user
can select the Domain Modelling perspective, which then opens the class diagram edi-
tor, but is configured in such a way that it shields the user from the full power of
UML class diagrams (cf. Sect. 4.4.2). In the Domain Modelling perspective, it is not
possible to create operations for classes, nor can one specify visibility for attributes
or navigability of associations. On the other hand, if the user selects the Design Mod-
elling perspective, then the creation of operations and specification of visibility and
navigability is allowed. On the other hand, the use of association classes and n-ary
associations (where n > 3) is disallowed.

6.3 Web-based Playgrounds: Addressing No-installation
Requirements, Teacher Collaboration, and Constrained
Modelling Activities

In the world of programming languages, web-based playgrounds have been around
for some time. One of the most well-known such environments is perhaps w3schools.
com [64], which has been offering online training on the basics of a wide range of
programming languages, web frameworks, etc. for a long time.

With playgrounds no software installation or configuration is required (cf.
Sect. 5.1). All learning activities are accessible from within a web browser with no need
for the student to install complicated tools or set up development environments. Fur-
thermore, playgrounds are typically set up for specific activities and provide a bespoke,
typically simplified user interface exposing only the minimal functionality required to
support the activity (cf. Sect. 4.4.2). As a result, students can focus on the interactions
required for the activity without distractions from tool or language complexity.

As a result of these benefits, playgrounds have been experimented with by MDE
tool developers, primarily as a mechanism for enriching the online documentation of
their tools. For example, the Epsilon Playgroundprovides a range of examples for using

19

w3schools.com
w3schools.com

the Epsilon toolkit [44]. Similarly, the Langium Playground® allows experimentation
with the Langium language workbench.

The MDENet education platform [5]'° generalises from these ideas and aims to
develop a playground into which different MDE tools and techniques can be easily
integrated. Technically derived from the Epsilon Playground, the platform intro-
duces declarative specifications for learning activities and MDE tools. MDE tools are
expected to be packaged as web services offering an API for running tool-specific
actions (for example, a model-transformation tool would offer an API endpoint which
can accept a model, meta-model, and transformation specification and return the
transformed model). The platform then allows declarative activity specifications to
draw on a the whole range of tools available in this way and constructs a dedicated
playground from each such specification. Activity specifications and the associated
files can be stored in a GitHub repository, making them accessible to students, for
example via GitHub classroom and similar mechanisms. Students are even able to save
back their progress via the platform (cf. Sect. 5.1), which will create a commit in the
underlying repository (assuming the student has sufficient access rights).

Making activity specifications explicit as declarative models via the GitHub plat-
form makes it possible for these to be shared and co-developed by different teachers ,
helping to address some of the requirements on teacher collaboration (cf. Sect. 4.3.4).

6.4 Teaching Language Engineering in Graphical, Textual and
Projectional Language Workbenches

Students should be exposed to developing DSMLs using different modelling paradigms
(¢f. Sect. 3.2.1). AToMPM |[74] is a web-based graphical modelling environment. Being
bootstrapped, its editor is completely customizable, enabling teachers to adapt the
tool for specific assignments. Focusing solely on graphical models, students define the
concrete syntax of their DSML with SVG elements. As for the abstract syntax, stu-
dents usually define it using the built-in UML class diagram; however, teachers can
define other metamodelling languages (such as Entity-Relation) as well. AToMPM also
enables the definition of the semantics of the DSL with rule-based model transforma-
tions. Students develop different algorithmic skills than needed when programming,
being a declarative specification based on graph transformations. These transfor-
mations are mainly used to refactor, simulate, or analyze models. Using this tool,
students can observe live animations of their model while running the transformation
continuously or step-by-step.

The Eclipse Modelling Framework offers a variety of modelling tools that allow
students to model both using a graphical or textual. However, Eclipse’s strength is
mostly in the former. A prominent textual modelling is Xtext [28], a textual model
editor generator. Using Xtext, students learn to define grammars as well as other
core language engineering components such as, validators, postprocessors, and textual
styling. It is compatible with Xtend [27], a template-based code generation engine.
This allows students to develop code-generation skills from high-abstraction models
targeting different programming languages and platforms. Within the Eclipse realm,

9https://langium.org/playground/
Ohttps://github.com/mdenet /educationplatform/

20

https://langium.org/playground/
https://github.com/mdenet/educationplatform/

they can also use the ATL [39] model-to-model transformation engine, specifically
tailored to translate models across modelling languages. ATL transformations are
developed with declarative rules augmented with OCL-like expressions.

Defining DSMLs with projectional language workbenches, like MPS, differs from
the previous modelling paradigms when developing the concrete syntax of the lan-
guage. In MPS, students define textual projections of their language. They then define
a Java code generator to give the operational meaning to their language. Alternatively,
Gentleman [46] is a web-based projectional editor generator where students develop
and use DSMLs in a web browser. In this case, they define projections for each meta-
model element in the form of a group of HTML widgets. Gentleman also supports
graphical projections.Teachers can easily integrate the generated projectional editors
into full-fledged web applications demonstrating to students how MDE technologies
can be interleaved with programming technologies seemlessly.

6.5 Gamification with Papygame

As a plugin for the Papyrus modelling tool!!, PapyGame aims to gamify the learning
of modelling by integrating a game view within the Papyrus UML editor. This gam-
ification (cf. Sect. 4.4.4) is made possible through the utilization of a Gamification
Engine, enabling the implementation of key gaming concepts associated with specific
learning paths. The tool utilises a gamification design framework accessible through
user interfaces in a web browser. This integration serves to enhance the learning expe-
rience for users, providing both effective and enjoyable ways to learn and practice
modelling skills. For educators, PapyGame stands as a valuable asset to enrich their
students’ learning experiences and foster improved learning outcomes.

6.6 Skills, Concepts, OER and Learning Paths in MDE
through the ENCORE Platform

The ENCORE platform [14] has been designed and developed to support teachers and
learners both in designing and in delivering personalised learning paths (cf. Sect. 4.1
and 4.2) in MDE based on a set of available OERs (¢f. Sect. 4.3.1). In ENCORE,
a learning path typically consists of a series of lessons and modelling activities that
build on one another to create a cohesive educational experience. The process for cre-
ating a learning path generally involves two main steps: i) creating the learning path
by identifying the learning objectives, selecting relevant content and assessment, and
using the most appropriate instructional strategies, e.g. lectures,, group activities or
assignments; and ii) delivering the learning path to students while monitoring stu-
dents’ progress and providing support when needed. Through the use of the ENCORE
Enabler for Educators (E4E), educators can access the ENCORE database and include
in the specific learning paths the relevant OERs that target specific skills in MDE. A
second enabler, the ENCORE Enabler for Learners (E4L), supports the delivery of the
resulting learning path to students by leveraging notebook interfaces. Each notebook
can be configured to provide and assess a specific learning path and can be augmented
with gamification mechanisms to promote students’ learning engagement.

Hhttps://ci.eclipse.org/papyrus/view /PapyGame/

21

https://ci.eclipse.org/papyrus/view/PapyGame/

Ability for students to save and load models 1]
The tool is free to use for educators and students)]
Ability to run on all main laptop platforms |]
General ease ofuse [|]
Reliability] I
Ability to present comprehensive error or warning messages []]]
Online user manual [|]
Presence of a library/repository of examples [] _
The tool is free to use for all users 1]
Code generation from models [|]
Fast response time []]
Ability to have multiple diagrams showing different elements [|]
Version control of models, such as integration with Git tools [|]
Ability to run as a website: zero-footprint + no installation 1]
Ability to annotate, or comment on models .l]
The tool is open source []]
Ability to hide unneeded featuresto reduce complexity [|]
W Harmful B Not needed/ would not judge a tool by this ~ Good to have at a basic level
Important at a moderate level Essential to have reasonably good capability m Critical: As extensive and good as apossible

Fig. 3 Top responses to Q7 to 13 on required features of MTTs. This was a semantic-difference
scale question and each coloured bar represents the percentage of responses for each possible answer,
centred on “Not needed”.

7 Conclusion

While modelling is an important activity in software engineering, modelling tools are
often not good enough to be used efficiently and effectively in teaching contexts. Based
on discussions in a one-day working session at MODELS 2023, we have reported a
catalogue of requirements on future modelling tools for teaching (MTTs).

We conducted an international survey and asked participants which features they
would value particularly highly in a modelling tool for teaching. Fig. 3 gives an
overview over the top 17 features based on participants’ responses on a semantic-
difference scale.

Notably, participants strongly care about the usability aspects of modelling tools.
Respondents consistently underscore the significance of features such as general ease
of use, fast response time, and the ability to hide unneeded features. These elements
are foundational to the user experience, as they directly impact efficiency and user
satisfaction. A tool’s intuitive interface and seamless navigation are pivotal in facili-
tating the modelling process, enabling users to focus on their tasks without grappling
with unnecessary complexities. Note, also, that usability already played an important
role in the responses to the initial survey we conducted directly during the workshop.

Moreover, participants emphasise reliability. This encompasses not only the sta-
bility and robustness of the tool but also its ability to consistently deliver accurate
results and perform as expected under various conditions. Users prioritise tools that

22

they can rely on to execute tasks reliably, minimizing the risk of errors and disruptions
in their workflow.

In addition to usability and reliability, the data highlights the importance of func-
tionality geared towards enhancing collaboration and learning. Features such
as the ability for students to save and load models, version control, and the pres-
ence of a library/repository of examples facilitate knowledge sharing, iteration, and
experimentation.

Furthermore, accessibility and affordability emerge as significant determinants
of tool adoption and usage. The ability to run on all main laptop platforms and the
availability of free usage for educators and students are important to respondents.
These features ensure inclusiveness and democratise access to modelling tools, making
them accessible to a broader audience regardless of their technological or financial
constraints.

Developing the next generation of MTTs must be a community effort. We invite
everyone interested in these topics to join our efforts and build better tools for future
teaching of modelling.

Acknowledgments. We thank all the participants of the Workshop on Modelling
Tools for Teaching'? held in conjunction with MODELS 2023 in Visteras, Sweden for
their contributions to the discussions that led to this paper. Zschaler and Barnett’s
contributions were partially supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) as part of MDENet — the expert network in model-driven
engineering — (grant reference EP/T030747/1). Abrahao’s contributions were par-
tially supported by the State Research Agency (AEI) under the UCI-Adapt project
(PID2022-140106NB-100). Kienzle’s contributions were partially supported by Junta
de Andalucia under project QUAL21 010UMA.

2https://modellingtoolsforteaching.github.io/

23

https://modellingtoolsforteaching.github.io/

References

[1]

Silvia Abrahao, Francis Bordeleau, Betty H. C. Cheng, Sahar Kokaly, Richard F.
Paige, Harald Storrle, and Jon Whittle. User experience for model-driven engi-
neering: Challenges and future directions. In 20th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS
2017, Austin, TX, USA, September 17-22, 2017, pages 229-236. IEEE Computer
Society, 2017.

Silvia Abrahao, Carmine Gravino, Emilio Insfrdn, Giuseppe Scanniello, and
Genoveffa Tortora. Assessing the effectiveness of sequence diagrams in the com-
prehension of functional requirements: Results from a family of five experiments.
IEEE Trans. Software Eng., 39(3):327-342, 2013.

Carlos Alario-Hoyos, Miguel L. Bote-Lorenzo, Eduardo Gémez-Sénchez, Juan 1
Asensio-Pérez, Guillermo Vega-Gorgojo, and Adolfo Ruiz-Calleja. Glue!: An
architecture for the integration of external tools in virtual learning environments.

Computers & FEducation, 60(1):122-137, 2013.

Hyacinth Ali, Gunter Mussbacher, and Jérg Kienzle. Perspectives to promote
modularity, reusability, and consistency in multi-language systems. Innovations
in Systems and Software Engineering, 18(1):5-37, 2022.

Will Barnett, Steffen Zschaler, Artur Boronat, Antonio Garcia-Dominguez, and
Dimitris Kolovos. An online education platform for teaching MDE. In Proc.
Educators Symposium at MODELS 2023, 2023.

Jean Bezivin, Robert France, Martin Gogolla, Oystein Haugen, Gabriele Taentzer,
and Daniel Varro. Teaching modeling: Why, when, what? In Sudipto Ghosh,
editor, Models in Software Engineering, pages 55—62, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez. Modeling
in the large and modeling in the small. In Furopean Workshop on Model Driven
Architecture, pages 33-46. Springer, 2003.

Weiyi Bian, Omar Alam, and Jorg Kienzle. Is automated grading of models effec-
tive? assessing automated grading of class diagrams. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, pages 365-376, 2020.

Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien
Deantoni, and Benoit Combemale. Execution framework of the GEMOC Stu-
dio (tool demo). In International Conference on Software Language Engineering,
pages 84-89. Association for Computing Machinery, 2016.

24

[10]

[11]

[12]

[13]

[14]

[19]

Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. A feature-
based survey of model view approaches. Software & Systems Modeling, 18:1931—
1952, 2019.

Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot. Modisco:
A model driven reverse engineering framework. Information and Software
Technology, 56(8):1012-1032, 2014.

A. Bucchiarone, J. Cabot, R. F. Paige, et al. Grand challenges in model-driven
engineering: an analysis of the state of the research. Software Systems Modelling,
19:5-13, 2020.

Antonio Bucchiarone, Maxime Savary-Leblanc, Xavier Le Pallec, Antonio Cic-
chetti, Sébastien Gérard, Simone Bassanelli, Federica Gini, and Annapaola
Marconi. Gamifying model-based engineering: the PapyGame experience. Softw.
Syst. Model., 22(4):1369-1389, 2023.

Antonio Bucchiarone, Andrea Vazquez-Ingelmo, Alicia Garcia-Holgado, Simone
Barandoni, Gianluca Schiavo, Sebastien Mosser, Alfonso Pierantonio, Steffen
Zschaler, and William Barnett. Towards personalized learning paths to empower
competency development in model driven engineering through the ENCORE
platform. In Educators Symposium at MODELS 2023, 2023.

Loli Burgueno, Robert Clarisé, Sébastien Gérard, Shuai Li, and Jordi Cabot.
An NLP-based architecture for the autocompletion of partial domain models. In
Marcello La Rosa, Shazia Sadiq, and Ernest Teniente, editors, Advanced Infor-
mation Systems Engineering, pages 91-106, Cham, 2021. Springer International
Publishing.

Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall,
Susanne Hambrusch, Ellen Walker, and Stuart Zweben. Generation cs: The
growth of computer science. ACM Inroads, 8(2):44-50, may 2017.

Linda Castaneda and Neil Selwyn. More than tools? making sense of the ongoing
digitizations of higher education. International Journal of Educational Technology
in Higher Education, 15(1):1-10, 2018.

Thaciana G. O. Cerqueira, Franklin Ramalho, and Leandro Balby Marinho. A
content-based approach for recommending UML sequence diagrams. In Jerry
Gou, editor, The 28th International Conference on Software Engineering and
Knowledge Engineering, SEKE 2016, Redwood City, San Francisco Bay, USA,
July 1-3, 2016, pages 644—649. KSI Research Inc. and Knowledge Systems
Institute Graduate School, 2016.

Phoolan Chakarvarti. Investigating the effectiveness of peer feedback in devel-

oping critical thinking skills in undergraduate students. Journal of Education
Review Provision, 2(3):91-95, 2022.

25

[20]

[21]

[22]

[23]

[24]

[25]

Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio. Multi-view
approaches for software and system modelling: a systematic literature review.
Software € Systems Modeling, 18:3207-3233, 12 2019.

Federico Ciccozzi, Michalis Famelis, Gerti Kappel, Leen Lambers, Sebastien
Mosser, Richard F. Paige, Alfonso Pierantonio, Arend Rensink, Rick Salay, Gabi
Taentzer, Antonio Vallecillo, and Manuel Wimmer. How do we teach modelling
and model-driven engineering? a survey. In Proceedings of the 21st ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, pages 122-129, 2018.

Benoit Combemale, Xavier Crégut, Arnaud Dieumegard, Marc Pantel, and Faiez
Zalila. Teaching mde through the formal verification of process models. Electronic
Communications of the FASST, 52, 2012.

Valerio Cosentino, Sébastien Gérard, and Jordi Cabot. A model-based approach
to gamify the learning of modeling. In Proceedings of the 5th Symposium on Con-
ceptual Modeling Education and the 2nd International iStar Teaching Workshop
co-located with the 36th International Conference on Conceptual Modeling (ER
2017), Valencia, Spain, November 6-9, 2017., pages 15-24, 2017.

Eka Damayanti, Fitriani Nur, Santih Anggereni, and Ainul Uyuni Taufigq. The
effect of cooperative learning on learning motivation: A meta-analysis. Buletin
Psikologi, 31(1), 2023.

Johannes De Smedt, Jochen De Weerdt, Estefania Serral, and Jan Vanthienen.
Gamification of declarative process models for learning and model verification.
In Manfred Reichert and Hajo A. Reijers, editors, Business Process Management
Workshops, pages 432-443, Cham, 2016. Springer International Publishing.

Breanna Devore-McDonald and Emery D. Berger. Mossad: Defeating software
plagiarism detection. Proceedings of the ACM on Programming Languages,
4(OOPSLA):1-28, nov 2020.

Sven Efftinge, Jan Kohnlein, and Sebastian Zarnekow. Xtend — modernized java.
https://eclipse.dev/Xtext /xtend/, last visited 10 May, 2024.

Sven Efftinge, Jan Koéhnlein, and Sebastian Zarnekow. Xtext language develop-
ment framework. https://eclipse.dev/Xtext/, last visited 10 May, 2024.

Akil Elkamel, Mariem Gzara, and Hanene Ben-Abdallah. An UML class rec-
ommender system for software design. In 2016 IEEE/ACS 13th International
Conference of Computer Systems and Applications (AICCSA), pages 1-8, 2016.

Sebastian Erdweg, Tijs van der Storm, Markus Volter, Laurence Tratt, Remi

Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriél D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,

26

https://eclipse.dev/Xtext/xtend/
https://eclipse.dev/Xtext/

[31]

[32]

Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser,
Kevin van der Vlist, Guido Wachsmuth, and Jimi van der Woning. Evaluating
and comparing language workbenches: Existing results and benchmarks for the
future. Comput. Lang. Syst. Struct., 44:24-47, 2015.

CC2020 Task Force. Computing Curricula 2020: Paradigms for Global Computing
Education. Association for Computing Machinery, New York, NY, USA, 2020.

Sebastian Gross, Bassam Mokbel, Benjamin Paassen, Barbara Hammer, and Niels
Pinkwart. Example-based feedback provision using structured solution spaces.
International Journal of Learning Technology, 9(3):248-280, 2014.

Pablo Gémez-Abajo, Esther Guerra, and Juan Lara. Automated generation and
correction of diagram-based exercises for Moodle. Computer Applications in
Engineering Education, 31, 08 2023.

Omar Hassane, Sadaf Mustafiz, Ferhat Khendek, and Maria Toeroe. MAPLE-
T: A tool for process enactment with traceability support. In ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C), pages 759763, 2019.

Edvin Herac, Wesley K. G. Assuncgao, Luciano Marchezan, Rainer Haas, and
Alexander Egyed. A flexible operation-based infrastructure for collaborative
model-driven engineering. Journal of Object Technology, 22(2):2:1-14, July 2023.
The 19th European Conference on Modelling Foundations and Applications
(ECMFA 2023).

John Hilton. Open educational resources, student efficacy, and user perceptions:
a synthesis of research published between 2015 and 2018. FEducational Technology
Research and Development, 68(3):853-876, June 2020.

Gerard J. Holzmann. The model checker spin. IEEE Transactions on software
engineering, 23(5):279-295, 1997.

Mohsen Hosseinibaghdadabadi, Omar Alam, Nicolas Almerge, and Jorg Kienzle.
Automated grading of use cases. In Proceedings of the 26th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS ’23, pages
106-116, New York, NY, USA, 2023. Association for Computing Machinery.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model
transformation tool. Science of Computer Programming, 72(1):31-39, 2008.

Bilal Karasneh, Dave Stikkolorum, Enrique Larios, and M Chaudron. Quality
assessment of UML class diagrams. In Proc. Educators’ Symp at MoDELS, 2015.

Gabor Kecskemeti, Giuliano Casale, Devki Nandan Jha, Justin Lyon, and Rajiv
Ranjan. Modelling and simulation challenges in internet of things. IEEE cloud

27

42

43

[50

[51

[52

]

]

computing, 4(1):62-69, 2017.

Steven Kelly. Collaborative modelling with version control. In Federation of Inter-
national Conferences on Software Technologies: Applications and Foundations,
pages 20-29. Springer, 2017.

Heiko Klare, Max E. Kramer, Michael Langhammer, Dominik Werle, Erik Burger,
and Ralf Reussner. Enabling consistency in view-based system development —
the vitruvius approach. Journal of Systems and Software, 171:110815, 2021.

Dimitrios Kolovos, Richard Paige, Louis Rose, and Fiona Polack. The Epsilon
Book. Published on-line: http://www.eclipse.org/gmt /epsilon/doc/book/, 2009.

Dimitrios S. Kolovos, Antonio Garcia-Dominguez, Louis M. Rose, and Richard F.
Paige. Eugenia: towards disciplined and automated development of GMF-based
graphical model editors. Softw Syst Model, 16:229-255, 2017.

Louis-Edouard Lafontant and Eugene Syriani. Gentleman: A light-weight web-
based projectional editor generator. In Model Driven Engineering Languages and
Systems: Companion Proceedings, pages 1-5. ACM, 2020.

Anders Larrabee Sgnderlund, Emily Hughes, and Joanne Smith. The efficacy of
learning analytics interventions in higher education: A systematic review. British
Journal of Educational Technology, 50(5):2594-2618, 2019.

Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International
journal on software tools for technology transfer, 1:134-152, 1997.

Tri Le, Angela Carbone, Judy Sheard, Margot Schuhmacher, Michael de Raath,
and Chris Johnson. Educating computer programming students about plagiarism
through use of a code similarity detection tool. In 2013 Learning and Teaching
in Computing and Engineering, pages 98-105. IEEE, mar 2013.

Timothy C. Lethbridge, Andrew Forward, Omar Badreddin, Dusan Brestovan-
sky, Miguel Garzon, Hamoud Aljamaan, Sultan Eid, Ahmed Husseini Orabi,
Mahmoud Husseini Orabi, Vahdat Abdelzad, Opeyemi Adesina, Aliaa Alghamdi,
Abdulaziz Algablan, and Amid Zakariapour. Umple: Model-driven development
for open source and education. Science of Computer Programming, 208:102665,
2021.

Daniel Lucrédio, Renata P. M. Fortes, and Jon Whittle. MOOGLE: A metamodel-
based model search engine. Softw. Syst. Model., 11(2):183-208, May 2012.

Salvador Martinez, Manuel Wimmer, and Jordi Cabot. Efficient plagiarism

detection for software modeling assignments. Computer Science Education,
30(2):187-215, jan 2020.

28

http://www.eclipse.org/gmt/epsilon/doc/book/

[53]

[54]

[55]

[60]

[61]

Salisu Modi, Hanan Abdulrahman Taher, and Hoger Mahmud. A tool to auto-
mate student UML diagram evaluation. Academic Journal of Nawroz University,
10(2):189-198, 2021.

Angel Mora Segura, Ana Pescador, Juan de Lara, and Manuel Wimmer. An
extensible meta-modelling assistant. In 2016 IEEE 20th International Enterprise
Distributed Object Computing Conference (EDOC), pages 1-10, 2016.

Sadaf Mustafiz and Hans Vangheluwe. Explicit modelling of statechart simu-
lation environments. In Proceedings of the 2013 Summer Computer Simulation
Conference, SCSC’13, Vista, CA, 2013. Society for Modeling & Simulation
International.

Mariam Nainan and Balamuralithara Balakrishnan. Design and Evaluation
of Worked Examples for Teaching and Learning Introductory Programming at
Tertiary Level. Malaysian Online Journal of Educational Technology, 7:30—44,
October 2019.

Matija Novak, Mike Joy, and Dragutin Kermek. Source-code similarity detection
and detection tools used in academia: A systematic review. ACM Transactions
on Computing Education, 19(3):1-37, sep 2019.

Object Management Group. Object constraint language. https://www.omg.org/
spec/OCL, 2014. Last accessed 15 February 2024.

Daniel Otto. Adoption and diffusion of open educational resources (OER) in
education: A meta-analysis of 25 OER-projects. The International Review of
Research in Open and Distributed Learning, 20(5):122-140, May 2019.

José Ignacio Panach and Oscar Pastor. A practical experience of how to
teach model-driven development to manual programming students. FEnterprise
Modelling and Information Systems Architectures (EMISAJ), 18(6), 2023.

Chris Park. In other (people’s) words: Plagiarism by university students—
literature and lessons. Assessment & Evaluation in Higher Education, 28(5):471-
488, oct 2003.

Nicolas Pflanzl. Gameful business process modeling. In Jan Mendling and Stefanie
Rinderle-Ma, editors, Proceedings of the 7th International Workshop on Enter-
prise Modeling and Information Systems Architectures, EMISA 2016, volume
1701 of CEUR Workshop Proceedings, pages 17-20. CEUR-WS.org, 2016.

Frederic Plante. Introducing the GMF runtime. https://www.eclipse.org/

articles/Article-Introducing- GMF /article.html, 2006. Last accessed 15 February
2024.

29

https://www.omg.org/spec/OCL
https://www.omg.org/spec/OCL
https://www.eclipse.org/articles/Article-Introducing-GMF/article.html
https://www.eclipse.org/articles/Article-Introducing-GMF/article.html

[64]

[65]

[66]

[69]

[70]

Refsnes Data. W3Schools Website. http://www.w3schools.com. Last accessed 15
May 2024.

Ranci Ren, John W Castro, Adridn Santos, Oscar Dieste, and Silvia T Acufa.
Using the SOCIO chatbot for UML modelling: A family of experiments. IEEE
Transactions on Software Engineering, 49(1):364-383, 2022.

Mark Richters and Martin Gogolla. Validating UML models and OCL constraints.
In Andy Evans, Stuart Kent, and Bran Selic, editors, UML 2000 — The Unified
Modeling Language, pages 265-277. Springer Berlin Heidelberg, 2000.

Rijul Saini, Gunter Mussbacher, Jin L. C. Guo, and Jorg Kienzle. Automated,
interactive, and traceable domain modelling empowered by artificial intelligence.
Software and Systems Modeling, 21(3):1015-1045, 2022.

Rick Salay, John Mylopoulos, and Steve Easterbrook. Using macromodels to man-
age collections of related models. In Advanced Information Systems Engineering:
21st International Conference, CAiSE 2009, Amsterdam, The Netherlands, June
8-12, 2009. Proceedings 21, pages 141-155. Springer, 2009.

Timur Saglam, Larissa Schmid, Sebastian Hahner, and Erik Burger. How stu-
dents plagiarize modeling assignments. In Proceedings of the 26th International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, MODELS ’23, New York, NY, USA, 2023. Association for Computing
Machinery.

Giuseppe Scanniello, Carmine Gravino, Marcela Genero, José A. Cruz-Lemus,
Genoveffa Tortora, Michele Risi, and Gabriella Dodero. Do software models based
on the UML aid in source-code comprehensibility? aggregating evidence from 12
controlled experiments. Empir. Softw. Eng., 23(5):2695-2733, 2018.

Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2006.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. Systematic map-
ping study of template-based code generation. Computer Languages, Systems €
Structures, 52(1):43-62, 2018.

Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Hiiseyin Ergin. AToMPM: A web-based modeling environment.
In MODELS’13 Invited Talks, Demonstration Session, Poster Session, and ACM
Student Research Competition, volume 1115, pages 21-25, Miami FL, oct 2013.
CEUR-WS.org.

30

http://www.w3schools.com

[75] Olfa Chourabi Tantan, Daniel Lang, and Imed Boughzala. Towards gamification
of the data modeling learning. MCIS 2017 : 11th Mediterranean Conference on
Information Systems, Sep 2017, Genova, Italy, 2017.

[76] Unesco. Recommendation on open educational resources (OER). https://www.
unesco.org/en/legal-affairs /recommendation-open-educational-resources-oer,
November 2019. Accessed: 2023-07-19.

[77] Déniel Varré. Automated formal verification of visual modeling languages by
model checking. Software € Systems Modeling, 3:85—-113, 2004.

[78] V. Viyovié, M. Maksimovi¢, and B. Perisi¢. Sirius: A rapid development of

DSM graphical editor. In IEEFE 18th Int’l Conf Intelligent Engineering Systems
(INES’1}), pages 233-238, 2014.

31

https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer
https://www.unesco.org/en/legal-affairs/recommendation-open-educational-resources-oer

	Introduction
	Methodology
	Workshop Summary and Pilot Survey
	Survey Conducted Following the Workshop

	Modelling-Capability-Related Requirements
	Teaching Modelling with Existing Languages
	Modelling Language Support
	Textual Interface Support
	Support for Consistency Checking
	Support for Views and Consistency between Views
	Support for Model Execution/Enactment/Experimentation
	For Comprehension
	For Production
	For Analysis

	Support for an MDE Process

	Teaching the Development of New Modelling Languages
	Support for Different Modelling Paradigms
	Experimentation Capabilities
	Automated Model Management

	Teaching-Related Requirements
	Alignment with Educational Terminology and Standards
	Integration with Learning Environments
	Support for Teachers
	Modelling Concepts and Example Library
	Assessment Support
	Plagiarism Detection
	Collaboration
	Collaboration between Teachers
	Teacher–Student Collaboration

	Traceability

	Support for Students
	Modelling Assistants
	Constraining a Modelling Language
	Collaboration
	Direct Collaborative Modelling
	Indirect Collaboration

	Gamification

	Technical Requirements
	For Students
	For Teachers
	For MTT Developers

	Modelling Tool Examples
	Executable Modelling with Examples in Umple
	Constraining Modelling Languages in TouchCORE
	Web-based Playgrounds: Addressing No-installation Requirements, Teacher Collaboration, and Constrained Modelling Activities
	Teaching Language Engineering in Graphical, Textual and Projectional Language Workbenches
	Gamification with Papygame
	Skills, Concepts, OER and Learning Paths in MDE through the ENCORE Platform

	Conclusion
	Acknowledgments

