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Abstract Recently there has been increased interest in com-
bining Model-Driven Engineering (MDE) and Search-Based
Software Engineering (SBSE). Such approaches use meta-
heuristic search guided by search operators (model mutators
and sometimes breeders) implemented as model transforma-
tions. The design of these operators can substantially impact
the effectiveness and efficiency of the meta-heuristic search.
Currently, designing search operators is left to the person
specifying the optimisation problem. However, developing
consistent and efficient search-operator rules requires not
only domain expertise but also in-depth knowledge about
optimisation, which makes the use of model-based meta-
heuristic search challenging and expensive. In this paper, we
propose a generalised approach to automatically generate
atomic multiplicity preserving search operators (aMPSOs)
for a given optimisation problem. This reduces the effort re-
quired to specify an optimisation problem and shields op-
timisation users from the complexity of implementing effi-
cient meta-heuristic search mutation operators. We evaluate
our approach with a set of case studies, and show that the au-
tomatically generated rules are comparable to, and in some
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cases better than, manually created rules at guiding evolu-
tionary search towards near-optimal solutions.

Keywords model driven optimisation · search-based
software engineering · multi-objective optimisation

1 Introduction

Search-based software engineering (SBSE) [23] has seen in-
creasing interest over the past decade. SBSE views software
engineering as a problem of searching a, potentially very
large, design space for optimal solutions and proposes tech-
niques and tools for automating this search, frequently using
meta-heuristic search techniques. As a result, more design
alternatives can be explored more quickly than would be
possible manually. More recently, there has been an increas-
ing interest in applying SBSE techniques in the context of
MDE [9], making the benefits of domain-specific modelling
languages (DSMLs) available in an SBSE context.

Typical approaches (e.g., [2, 18]) use evolutionary algo-
rithms (EA). Users provide small endogenous model trans-
formations (e.g., expressed as Henshin rules [43]) to specify
mutation operators, which are then used for generating new
candidate solution models. Writing these transformations is
difficult: naı̈ve implementations can easily cause the search
to get stuck in local optima or to work very inefficiently.

In this paper, we present a novel technique for automati-
cally generating mutation operators from a declarative spec-
ification of an optimisation problem. We generate operators
that are consistency preserving, a key property for enabling
the search to move out of local optima (without consistency
preservation, operators would temporarily try to invalidate
constraints, which would be penalised by the search algo-
rithm). In particular, the approach we describe is focused on
multiplicity constraints. We call such operators multiplicity-
preserving search operators (MPSOs).
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We will show, through case-study–based experimental
evaluation, that our automatically generated MPSOs result
in search that is at least as efficient and effective as (and in
some cases better than) search based on rules created man-
ually. At the same time, the automatic generation avoids the
complexity and effort of manual creation and reduces the
likelihood of erroneous or sub-optimal search operators be-
ing used. To the best of our knowledge, only [42] proposed
an alternative approach for automatic generation of search
operators, based on meta-learning. In contrast, our proposed
technique avoids the need for a learning phase for each new
problem.

This paper extends the work in [13], where we provided
a general description and classification of MPSOs, followed
by a description and evaluation of an algorithm for generat-
ing atomic MPSOs that preserve multiplicity constraints. In
this paper, we add the following additional material:

1. Detailed examples of rule application patterns for the
generated aMPSOs;

2. A description and examples of the types of generated
iterative aMPSOs;

3. Additional experiments to evaluate the efficiency of aMP-
SOs, in particular with respect to non-multiplicity con-
straints;

4. An analysis of the impact of changing mutation step size
when using aMPSOs; and

5. A more extensive discussion of related work.

The remainder of this paper is structured as follows: In
Sect. 2 we introduce some relevant background, followed by
a running example in Sect. 3. Section 4 contains the main
contributions, describing MPSOs and the generation algo-
rithm. Section 5 presents the experimental setup, followed
by Sect. 6 in which we discuss results. In Sect. 7 we evalu-
ate related work.

2 Background

In this section, we briefly describe the relevant background
to our research. In particular, we cover key MDE concepts,
followed by an introduction to Search-Based Model Engi-
neering (SBME) and a discussion of higher-order transfor-
mations.

Model-driven engineering MDE considers models to be the
primary artefact in software development [7]. Models are
expressed in higher-level languages providing abstractions
that are just right for the problem to be solved. Such lan-
guages are often called domain-specific modelling languages
(DSMLs), and their (abstract) syntax is captured in meta-
models (object-oriented models of the language concepts
and their relationships). Model transformations—programs

that take one or more models and produce new model(s)
from them—are fundamental to MDE and to the power-
ful automation support it provides. Model transformations
are often expressed using specialised languages and tools.
Henshin [43] is one example, based on graph-transformation
theory.

Search-based model engineering Search-based approaches
in software engineering often use evolutionary search tech-
niques. Evolutionary search (ES) [17] starts from a popu-
lation of candidate solutions and evolves these iteratively
by applying mutation (and possibly breeding) operators to
generate new candidate solutions. In each evolution step, all
new candidate solutions’ fitness is evaluated against the pro-
vided objective functions and this is used to rank solutions
and select the best ones to carry over to the next generation.
This process is repeated until a given number of iterations
is reached or a different stopping condition is met. A par-
ticular type of evolutionary algorithms are multi-objective
evolutionary algorithms (MOEAs) [17], which can handle
multiple, possibly conflicting objective functions. A com-
mon problem with ES is that it may get stuck in so-called lo-
cal optima; that is, solutions that are better than their neigh-
bours (solutions that can be reached by a single application
of a mutation operator) but that are not globally optimal.
A typical reason for algorithms to get stuck in a local op-
timum is the inability of the mutation operators to generate
solutions that are better than the current best solution found
. In this paper, we aim to generate atomic mutation opera-
tors that seek to alleviate this problem, ensuring that they
can always be applied successfully to generate new search
solution candidates.

Evolutionary algorithms have been applied to MDE in
multiple ways [9,26]: some approaches (e.g., [2,18]) encode
candidate solutions as sequences of transformation rules ap-
plications and apply genetic algorithms to solve the search
problems. Other approaches (e.g., [47]) directly use models
as candidate solutions. In both cases, model transformations
are used to specify the available mutation operators. Fitness
functions and constraints are specified as model queries us-
ing OCL or Java.

Higher-order transformations The term higher-order trans-
formations (HOTs) [44] refers to transformations that pro-
duce new model transformations. These are particularly use-
ful when building advanced tools for MDE. In this paper,
we are building on work on HOTs in two areas: generat-
ing consistency-preserving edit operations and generating
model-repair transformations.

In [28], the authors introduce the SiDiff Edit Rule Gen-
erator (SERGe). SERGe is an Eclipse plugin to automati-
cally generate consistency preserving edit operations (CPEOs),
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encoded as Henshin transformation rules, from an EMF meta-
model. A CPEO is an atomic operation that, when applied
to a consistent model instance, always generates a trans-
formed consistent model instance. SERGe generates a com-
plete set of CPEOs that can generate or delete any consistent
model instance through repeated applications. SERGe re-
quires input metamodels to adhere to additional constraints
on the supported multiplicities [27, Sect. 7.3.1]. Our rule-
generation algorithm is based on the SERGe algorithm but
additionally modifies the generated rules to ensure efficient
search.

The term model repair refers to the process of evolving
an inconsistent model to make it consistent with its meta-
model. In [38], the authors propose an approach for automat-
ically generating repair operators encoded as Henshin rules,
which can be used to repair an inconsistent model. The gen-
erated repair rules can be applied in a semi-interactive way
to transform an invalid model into a valid instance of the
metamodel. We make use of the catalogue of repair opera-
tions identified in [38].

Henshin Model Transformations In this paper, we use Hen-
shin as a model transformation framework [6]. Henshin is an
Eclipse plugin that offers an in-place model transformation
language built to run directly on EMF models. Users can
specify model transformations using either a diagram editor
or an XText based DSL [43]. Henshin uses typed attributed
graph theory to encode transformations for EMF models [8].

A Henshin transformation rule consists of a left-hand
side (LHS) and a right-hand side (RHS) graph. Henshin trans-
formation rules can be applied both in a deterministic and
non-deterministic way, configurable from the transforma-
tion engine. Through deterministic rule application, the tool
applies the matches found for a transformation rule in se-
quential order. When using non-deterministic matching, Hen-
shin randomly selects a match to apply from the list of matches
found.

The LHS of a Henshin transformation rule supports spec-
ifying application conditions to identify the conditions under
which a transformation rule can be applied. Application con-
ditions are patterns used to indicate the absence or presence
of a graph pattern in a model [6]. A negative application
condition (NAC) specifies a graph pattern to indicate the ab-
sence of a subgraph before the graph transformation is ap-
plied, while a positive application condition (PAC), specifies
a graph pattern to indicate that a subgraph is present before
the graph transformation is applied.

The Henshin visual syntax uses colours and tags to high-
light the presence of a node or edge in the LHS or RHS
of the graph transformation rule. Nodes and edges found in
the LHS graph are marked by�delete� and�preserve�,
while nodes found in the RHS graph are marked by�create�
and �preserve�. NACs for nodes and edges are marked

with�forbid� (to indicate that a node should not be present).
PACs are marked with �require� (to indicate that a node
or edge should be present). Henshin uses the red color to
mark elements with�delete� tags, grey for�preserve�
elements, green for�create� elements, blue for�forbid�
elements and brown for�require� elements.

MDEOptimiser MDEOptimiser (MDEO) 1 is an SBME op-
timisation tool that allows users to specify optimisation prob-
lems in MDE using a DSL. The tool can be used as an
Eclipse plugin as well as in standalone mode using a com-
mand line interface. With the help of the Scale [11] exper-
iments orchestration language, MDEO can be used to run
large scale parallelised experiments using Amazon Web Ser-
vices cloud infrastructure. The search algorithms supported
by MDEO are implemented using MOEAFramework 2.

Figure 1 shows an overview of the inputs required to
specify a problem to be solved using MDEOptimiser. The
user must provide a set of inputs consisting of a problem
description and a problem instance model.

The set of required user inputs is composed of the fol-
lowing elements:

– A problem metamodel describing the structure of prob-
lems and solutions;

– A set of endogenous model transformations typed over
the problem metamodel, called mutation operators;

– A set of solution constraints. These are either multiplic-
ity constraints refining the problem metamodel multi-
plicities or additional well-formedness constraints im-
plemented using OCL or Java. These constraints together
with the problem metamodel are used to define the solu-
tion metamodel, that is, the metamodel to which all valid
problem solutions conform to;

– A set of objective functions implemented as OCL or Java
queries over solution models;

– A valid instance of the problem metamodel, providing
initial problem constraints;

Using these inputs, MDEO runs an ES algorithm to find
near-optimal models. The input model is used to generate
the initial population by making one copy for each popu-
lation individual followed by a random mutation to ensure
variation. The tool uses the specified mutations to gener-
ate new candidate solutions in each algorithm step. Figure 2
shows an overview of how new search solution candidates
are generated at each algorithm step. Candidate solutions
are evaluated after each generation, using the specified con-
straint and objective functions. Algorithm 1 shows the pseu-
docode of an evolutionary algorithm that uses only muta-
tion to generate new search solution candidates. MDEO cur-
rently supports mutation only evolutionary algorithms. Ef-

1 https://mde-optimiser.github.io
2 https://moeaframework.org

https://mde-optimiser.github.io
https://moeaframework.org
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Fig. 2: MDEOptimiser new candidate generation overview [26]

ficient breeding operators for graph structured models are
difficult to produce.

Algorithm 1 Abstract Mutation Only EA
1: procedure EA(µ,λ ) . µ evolved solutions generate λ offspring
2: Population← []
3: for µ times do
4: Population← Population∪ INITIALISESOLUTION()
5: end for
6: Population← EVALUATE(Population)
7: repeat
8: NewSolutions← []
9: while SIZE(NewSolutions)< λ do

10: C← SELECT(Population)
11: NewSolutions← NewSolutions∪MUTATE(COPY(C))
12: end while
13: Population← EVALUATE(Population,NewSolutions)
14: until Termination Condition
15: return Population
16: end procedure

Evolutionary Search Parameter Control When using EAs,
a key challenge arises from the need to configure ideal algo-
rithm parameters, both, off-line, before the start of the search
and, on-line during the search [3]. The parameters used at
the start and during execution can help steer the search to-
wards having a greater chance of finding near-optimal solu-
tions. Common evolutionary algorithm parameters that can
have a direct impact on algorithm performance and the qual-
ity of produced solutions are: crossover rate, used to con-
trol the probability of applying the recombination opera-
tors when generating a new offspring solution; mutation rate
which controls the probability of applying a mutation to
a new solutions; mutation step size denotes the degree of
changes caused by a mutation operator to an offspring solu-
tion; population size controls the size of the algorithm pop-
ulation; and termination condition defines the search algo-
rithm stopping criteria (e.g., a certain number of algorithm
steps have elapsed or there is no significant solution quality
improvement) [17].

The EA parameter search process can be separated in
two phases based on the stage when it takes place [17]:
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– Parameter tuning is used before starting the search and
the aim is to find the ideal parameter values to start the
EA with;

– Parameter control is concerned with changing parameter
values during search.

3 Running Example

In this section, we introduce a running example of an SBME
optimisation problem that can be specified using MDEO.
Consider the scenario of a software development team who
use Scrum as an agile software development methodology.
Scrum is a process management framework that proposes
the use of fixed time iterations, also called sprints, during
which a set of tasks defined as user stories are implemented,
tested and released into the product under development [39].

We will briefly introduce the core Scrum concepts as
described in [39]. The key artifacts of Scrum are the prod-
uct, the product backlog and the sprint backlog. The prod-
uct backlog is the list of all user stories that, when imple-
mented, will result in a completed product. The sprint back-
log is the list of user stories which the team aims to com-
plete in a sprint. Each user story has associated story points,
which serve as an estimate of the effort needed to com-
plete it. The product owner is in charge of prioritising the
backlog to make sure the most important user stories are
worked on first. For the duration of a project, the develop-
ment team completes several sprints. The average number
of story points resulting from the completed user stories in a
sprint is also known as team velocity.

In our example, we will consider that the user stories
forming the backlog have an Importance metric, denoting
how important they are for a stakeholder, in addition to the
Effort metric, which shows the required effort for comple-
tion. The product owner is required to prioritise these tasks
so that the average stakeholder importance is equally dis-
tributed across the sprints required to implement the work
items in the backlog. We call this objective the Stakeholder
Satisfaction Index, and we calculate it as the standard devi-
ation of average stakeholder importance across sprints.

In Fig. 3 we show a metamodel of this problem. The goal
of the problem is to assign WorkItem elements to a number
of Sprints with the following objectives: Objective 1 min-
imise the Sprint effort deviation; Objective 2 minimise
the Stakeholder Satisfaction Index. In Listings 1 and 2 the
two problem objective functions are given in OCL. Objec-
tive 1 calculates the standard deviation of Sprint Effort.
This objective is minimised to ensure that all Sprints have
close to identical Effort values. Objective 2 first calculates
the Importance standard deviation for each Stakeholder

across all Sprints. Then, to ensure that all stakeholders
have an even Importance distribution across all Sprints,
the objective calculates the standard deviation of all Stakeholders

1 c o n t e x t Plan def : M i n S p r i n t E f f o r t D e v i a t i o n : Real =
2 s e l f . model . s p r i n t s−>c o l l e c t ( commi t t ed I t em . e f f o r t−>sum (

) ) . s t a n d a r d D e v i a t i o n ( )

Listing 1: SP Objective 1 in OCL

1 c o n t e x t Plan def : C u s t o m e r S a t i s f a c t i o n I n d e x : Real =
2 s e l f . s t a k e h o l d e r s
3 −>c o l l e c t ( sh |
4 sh . s p r i n t s
5 −>c o l l e c t (
6 commi t t ed I t em
7 −>s e l e c t ( c i | c i . s t a k e h o l d e r = sh )
8 . i m p o r t a n c e
9 −>sum ( ) )

10 . s t a n d a r d D e v i a t i o n ( ) )
11 . s t a n d a r d D e v i a t i o n ( )

Listing 2: SP Objective 2 in OCL

Importance distributions. This objective is minimised to
prefer solutions with small standard deviations between Stake-
holders Importance distributions.

The problem has the following constraints: Constraint
1 all WorkItem entities must be assigned to a Sprint; Con-
straint 2 no solution must have fewer Sprints than to-
tal backlog effort divided by team velocity. In Listings 3
and 4 we give the two problem constraints in OCL. Con-
straint 1 counts the number of WorkItem entities that are
not asigned to a Sprint. This constraint is equivalent with
refining the metamodel multiplicity from a lower bound of
0 to a lower bound of 1 for the sprints edge between a
Plan and Sprint and also for the isPlannedFor edge be-
tween a WorkItem and a Sprint. Constraint 2 calculates
the total number of Sprints desired using total WorkItems
Effort and the maximum Effort that can be delivered in a
Sprint and the ensures that there are no planned Sprints

with more Effort than the team Effort velocity.
To explore the search space of the Scrum Planning prob-

lem, the mutation operators must create Sprint entities and
assign WorkItem elements to them, until all the WorkItem

elements belong to a Sprint. In Fig. 4 we include the mu-
tation operators implemented manually for this case study.
Fig. 4a shows the mutation operator to create a new Sprint

and assign to it a WorkItem that has not already been as-
signed to another Sprint. In Fig. 4b we include the opera-
tor that deletes an empty Sprint, which deletes a Sprint

that has no WorkItems assigned to it. In Fig. 4c we include
the operator used to add WorkItems to an existing Sprint,
ensuring that any WorkItems allocated by this operator are
not already assigned to another Sprint. Finally, in Fig. 4d
we include a mutation operator that unassigns a WorkItem

from a Sprint and assigns it to another Sprint. This oper-
ator can create empty Sprints, which can then be deleted
by the delete sprint operator in Fig. 4b.

Readers familiar with constraint solving may be tempted
to argue that this specific problem could be solved using an



6 Alexandru Burdusel et al.

Fig. 3: Scrum Planning metamodel.

(a) Create Sprint

(b) Delete Sprint

(c) Add WorkItem to Sprint

(d) Move WorkItem between Sprints

Fig. 4: Summary of the mutation operators implemented
manually for the Sprint Planning case study.

1 c o n t e x t Plan def : NoUnassignedWorkItems : I n t e g e r =
2 s e l f . b a c k l o g . work i t ems
3 −>s e l e c t ( i s P l a n n e d F o r−>isEmpty ( ) )−>s i z e ( )

Listing 3: SP Constraint 1 in OCL

1 c o n t e x t Plan def : AllowedMaxSpr in t s : I n t e g e r =
2 l e t e f f o r t = s e l f . b a c k l o g . work i t ems . e f f o r t−>sum ( ) in
3 l e t maximumVelocity = 25 in
4 l e t d e s i r e d S p r i n t s =
5 ( e f f o r t / maximumVelocity ) . round ( ) in
6 l e t nonEmtpySpr in t s =
7 p l a n . s p r i n t s
8 −>s e l e c t ( commi t t ed I t em−>notEmpty )
9 −>s i z e ( ) in

10 i f ( nonEmptySpr in t s > d e s i r e d S p r i n t s ) then
11 d e s i r e d S p r i n t s − nonEmptySpr in t s
12 e l s e
13 0
14 e n d i f

Listing 4: SP Constraint 2 in OCL

optimising constraint solver like Choco [1]. However, solv-
ing the problem in such a way would require substantial en-
coding effort to express the problem in a format that con-
straint solvers can understand, which is fairly far away from
the original problem description, even when using so-called
high-level languages like Essence [21]. Therefore, our work
aims to reduce the amount of encoding effort required as
much as possible.

4 Generating Mutation Operators

Rather than asking the user to manually specify the muta-
tion operators, our goal is to automatically generate them.
In this section, we identify requirements for good mutation
operators, introduce a general structure for mutation opera-
tors satisfying those requirements, and propose a systematic
algorithm for generating them.

As a result, a user will no longer be required to explic-
itly provide mutation operators as part of the optimisation
problem specification. Instead, they will specify the sub-
metamodel for which mutation operators should be gener-
ated. This explicitly separates the parts of the metamodel
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that specify problem constraints from those which hold so-
lution information. In our running example, the user would
specify that the Sprint node and all its edges can be mod-
ified. This will produce rules that create new Sprints and
assign WorkItems to them.

4.1 Requirements on mutation operators

Generally, any transformation typed over the problem meta-
model could be used as a mutation operator. However, here
we are focusing on transformations that make small-granular
changes (e.g., adding a node). This will allow a detailed ex-
ploration of the search space. To identify additional require-
ments on mutation operators, we will explore two problems
that can occur when operators are constructed naı̈vely: get-
ting stuck in local optima and changing applicability of rules
during different search phases.

The search process can get stuck in local optima when
the constraints prevent the mutation operators from gener-
ating new and diverse individuals with a single transforma-
tion application. Consider the Scrum planning use case in-
cluding the following two operators: one for creating a new
Sprint and one for moving a WorkItem from one Sprint
to another. Once all the WorkItem elements have been as-
signed to a Sprint, no more new Sprint nodes can be cre-
ated: because there are no more free WorkItem elements,
the lower-bound constraint that no Sprint should be empty
can no longer be satisfied for these new Sprints. If all the
WorkItems have initially been assigned to a small num-
ber of Sprints, and no new Sprints can be created, the
search will be unable to find solutions that have a good aver-
age distribution of WorkItems across the created Sprints.
Note that creating two mutation operators, one to create an
empty Sprint and one to move an existing WorkItem to the
newly created Sprint, won’t solve this problem: until the
constraint is satisfied, the search algorithm would have to
include the invalid solution in the archive and then apply the
required repair operator in one of the following iterations.
However, if all the other population individuals are valid,
they will dominate the one with the invalid Sprint, which
will be removed from the population. Generally, this prob-
lem is encountered where there are non-zero lower-bound
multiplicities. In these cases, we require mutation operators
to apply both edit and repair in one step.

The search can be split into two phases: in the first phase,
all candidate solutions conform to the problem metamodel,
but may not yet satisfy the additional solution constraints;
in the second phase, all candidate solutions satisfy the ad-
ditional solution constraints. These two phases potentially
require different repair steps. Consider again a mutation op-
erator creating a new Sprint node. In the first phase, the ap-
propriate repair is to find a WorkItem that has not yet been
assigned to another Sprint and assign it to the new Sprint.

MPSO

Edit Operation

Atomic

Node Edge

Compound

+ Repair Operation

Atomic

NAC ...

Iterative Recursive

Fig. 5: MPSOs structure

In the second phase, this rule is not applicable anymore be-
cause no unassigned WorkItems remain. However, there is
an alternative repair that takes a WorkItem from an existing
Sprint with at least two WorkItem elements assigned to it.
We need to generate appropriate mutation operators for each
phase of the search.

Mutation operators that satisfy the requirements imposed
by the conformance to the solution metamodel and the addi-
tional problem multiplicity constraints, we will call Multiplicity-
Preserving Search Operators (MPSOs).

4.2 General structure of MPSOs

As we have seen in the previous sub-section, MPSOs are
transformation rules that combine a change to the model (an
edit operation) with the necessary repair. In Fig. 5 we show
the structure of MPSOs as well as further categorising edit
and repair operations. We consider that edit operations can
be either atomic or compound (a composition of multiple
atomic operators). Atomic operators will either change a sin-
gle node or a single edge. A repair operation can be atomic,
iterative or recursive. Atomic repairs focus on a single edge
and will not create or delete nodes beyond the original edit
operation. An iterative repair is a combination of multiple
atomic repairs for the same edit, for example, where con-
straints on multiple edges would be broken by the edit. In
contrast, a recursive repair creates or removes nodes as part
of the repair, requiring recursive repair steps to be consid-
ered. In this paper, we only consider atomic edit operations
and atomic or iterative repair. We call the resulting operators
atomic multiplicity-preserving search operators (aMPSOs).

4.3 Generation algorithm

In our current approach, we focus only on multiplicity con-
straints. Supporting arbitrary constraints is not a trivial prob-
lem, and it is beyond the scope of this paper to also support
such constraints with our generation algorithm. In separate
work, Kosiol et al. [32] make the first steps towards support
for arbitrary constraints for aMPSOs and introduce a formal-
isation to reason about the impact of graph transformations
on graph constraints.
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Fig. 6: Multiplicity patterns

In [27, 28], Kehrer et al. introduce the concept of con-
sistency preserving edit operations (CPEOs) and propose a
mechanism for automatically generating them from a meta-
model with multiplicity constraints. CPEOs can be used as
MPSOs in cases where the solution metamodel only has
open multiplicities. Any multiplicity is open if the lower
bound is zero. Kehrer et al.’s mechanism does not support
the generation of CPEOs for edges with closed multiplici-
ties on both sides. Where only one multiplicity is closed, the
mechanism only generates a limited range of repairs, which
still causes the search to get stuck in local optima.

In this section, we propose an algorithm to generate aMP-
SOs. We will structure the discussion based on the type of
edit operations. For each edit operation, we will then dis-
cuss relevant repair actions. We distinguish edit operations
for nodes—namely create and delete—and for edges—add,
remove, change, and swap. The available repair operations
depend on the multiplicity pattern. Fig. 6 shows the labels
we will use in our discussion below. In Fig. 7 we include
an example metamodel that contains two nodes, A and B,
with multiplicity patterns supported by our rule generation
algorithm. We use this metamodel to show examples of gen-
erated rules in this section.

For each multiplicity pattern we consider, we aim to gen-
erate the minimal set of rules that would allow the search to
avoid getting stuck in local optima.

4.3.1 Manipulating nodes

In this section, we describe the repair operations required for
manipulating nodes. The types of aMPSOs that we generate
for this are composed of the atomic rule to create (delete)
a node and a repair operation to connect (disconnect) the
created (deleted) node to (from) mandatory neighbours (B
nodes). The choice of repairs that can be applied is given
by the multiplicity pattern between the node being edited
and its neighbours. For some repairs, there are many variants
in-between, however, we seek to minimise the number of
generated rules, so we only generate the rules described.

Creating a node In this section, we introduce the types of
repair operations generated for creating a node A from Fig. 6.
For each repair, we include the multiplicity patterns for which
the generated repair is applicable. We include a summary of
the generated rules in Table 1. Figure 9 shows an example
for each type of generated node creation aMPSO.

The generated create node aMPSOs described in this
section follow a set of principles that seek to satisfy the mul-
tiplicity requirements of a node of type A for nodes of type

B that have to be assigned. These principles consist of: either
assigning existing B nodes and using a NAC to ensure their
constraints are not invalidated; relocating existing B nodes
from another single node of type A; or by getting each B
from a different existing source node A, making sure that
the source node lower bound constraint is not invalidated.
We will discuss these three options below. There are other
options for repairs (e.g. picking multiple Bs from the same
A, but not all Bs from the same A), however we are not con-
sidering these as we are interested in generating the smallest
possible set of rules, while still giving the search algorithm
different options for leaving a local optimum.

– NAC repair: The first type of aMPSO that we generate,
is for creating nodes that have a multiplicity pattern with
(n > 0). For this case, we generate a rule to create a node
of type A and connect it to n existing nodes of type B. If
(l < ∗), then a negative application condition (NAC) is
added for the connected nodes B to ensure that no upper-
bound multiplicity invalidations occur (no more than l
nodes of type A assigned for each B). Nodes that have
an open multiplicity don’t need a repair operation.

Example NAC repair rules Fig. 8a shows an example of
this aMPSO for the SP case study, generated for creat-
ing a Sprint node, that is connected to a note of type
WorkItem. The rule includes a NAC for the WorkItem

node which requires that the WorkItem node is not al-
ready assigned to a Sprint node.
An example of this aMPSO for multiplicity pattern (n =

1) and (l = 5) is included in Fig. 9e. The generated aMPSO
contains l forbid A nodes connected to node B.

– Single source lower bound repair: The second type of
aMPSO for creating a node is for creating nodes that
have a multiplicity pattern with (n > 0) and (l < ∗). This
pattern means that A must have at least n nodes of type
B assigned to it, and node B can have a limited number
of nodes of type A assigned to it. We generate a rule to
create a node of type A, and connect it to n nodes of
type B. Then, the upper-bound for the existing n nodes
of type B is repaired by deleting the edges between the
required n nodes of type B from a single existing node of
type A and creating edges between them and the newly
created node of type A. A positive application condition
(PAC) is generated for the existing source node A to en-
sure its lower-bound multiplicity (n) is not broken after
the node B used in the repair is unassigned. The multi-
plicity pattern for this aMPSO partially overlaps with the
pattern for NAC repair, and when this is the case during
the generation stage, both operators are generated.

Example single source lower bound repair rules In Fig. 8b
we show an example of this aMPSO for the SP case
study, generated for creating a Sprint node, when all
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Fig. 7: Metamodel used to show rulegen examples. Nodes A and B have the multiplicity pattern shown in Fig. 6.

Table 1: Create node aMPSOs. In the table, ‘c’ stands for ‘create’, ‘lb r’ for ‘lower-bound repair’, and ‘f#l’ for ‘forbid l’.
n=0 n = 1 and m >n n >1 and m >n n = m

k ≥ 0
l >k
l <* c A

c A add n B (f#l A)
c A lb r single B

c A add n B (f#l A)
c A lb r single B
c A lb r many B

c A add n B (f#l A)

k ≥ 0
l = * c A add n B

k = l c A lb r single B
c A add n B
c A lb r single B
c A lb r many B

N/A

WorkItems are already assigned to other Sprints. The
rule includes a PAC for the existing Sprint node from
which the WorkItem node used for the repair is taken,
to make sure that the lower-bound multiplicity is not in-
validated.
An example of this aMPSO for multiplicity pattern (n =

1), (m = ∗) and (k = 1), (l = 5) is included in Fig. 9c.
– Multiple sources lower bound repair: The third type of

aMPSO for creating a node is for creating nodes that
have a multiplicity pattern with (n > 1) and (l < ∗). This
pattern means that A must have at least n nodes of type
B assigned to it, and node B can have a limited number
of nodes of type A assigned to it. For this case, we gen-
erate a rule to create a node of type A and connect it to n
nodes of type B. Then, we repair the upper-bound for the
existing n nodes of type B by deleting the edges between
the required n nodes of type B from n existing nodes of
type A and creating edges between them and the newly
created node of type A. A PAC is generated for the ex-
isting nodes of type A to ensure that the lower-bound
multiplicity is not broken by this operation.

Example multiple sources lower bound repair rule An
example of this aMPSO for multiplicity pattern (n = 2),
(m = ∗) and (k = 2), (l = 2) is included in Fig. 9d. The
rule creates a node A and connects it to 2 mandatory
B nodes disconnected from two other A nodes, while
ensuring that each source A node still satisfies the lower-
bound requirement.

For node pairs that have a fixed multiplicity (n=m∧k =
l), at both ends of any edge, we do not generate a create
node aMPSO. Any repair operation for this case requires
the creation of the nodes at the opposite end of the edge, and
thus a recursive repair.

Deleting a node As with the description for the create oper-
ations, we divide the explanation based on repair type. We
include a summary of the generated rules in Table 2. Fig-
ure 10 shows an example for each type of generated node
deletion aMPSO.

Similarly to the generated create node aMPSOs described
in the previous section, the delete node aMPSOs described
in this section follow a set of principles, that seek to satisfy
the multiplicity requirements of a node of type A for nodes
of type B, that have to be unassigned. These principles con-
sist of: either unassigning existing B nodes and using a PAC
to ensure their constraints are not invalidated; relocating ex-
isting B nodes from deleted node A to another single node
of type A; or by moving each assigned node B to a differ-
ent existing node A, making sure that the target node upper
bound constraint is not invalidated. We will discuss these
three-node deletion repair options below. It is possible to
use other repairs (e.g., moving multiple Bs to the same A,
but not all Bs to the same A node), however, we are not con-
sidering these as we are interested in generating the smallest
possible set of rules, while still giving the search algorithm
different options for leaving a local optimum.

– PAC repair: The first type of aMPSO that we generate is
for deleting nodes that have a closed multiplicity (k > 0).
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Table 2: Delete Node aMPSOs. In the table, ‘d’ stands for ‘delete’, ‘r lb sg’ for ‘repair lower bound single’, ‘r lb mn’ for
‘repair lower bound multiple’, and ‘f#m’ for ‘forbid m’.

m > n and m < * m = * n = m
k = 0 d A
k >0
l >k d A (require each B still has #k A)

k=l=1 d A r lb sg B (f#m A) d A r lb sg B N/A

k=l >1 d A r lb sg B (f#m A)
d A r lb mn B (f#m A)

d A r lb sg B
d A r lb mn B N/A

This pattern means that B must have at least k nodes of
type A assigned, and each node of type A must be as-
signed to at least n nodes of type A. For this case, we
generate a rule to delete a node of type A and for each of
its connected nodes of type B, a PAC is added to ensure
that no lower-bound multiplicity invalidations occur af-
ter the deletion of the A node. This rule is not generated
for cases where (k = l) because nodes with multiplicity
(k = l) cannot be repaired with a PAC.

Example PAC repair rules In Fig. 8c we include an ex-
ample of this aMPSO for the SP case study, generated
for deleting a Sprint node, that has a WorkItem as-
signed to it. For this example rule, there is no PAC gener-
ated for the WorkItem because there is no lower-bound
multiplicity limit. An example of the generated aMPSO
of this type for multiplicity (k= 2) is included in Fig. 10b.
The aMPSO deletes node A and requires that node B still
has 2 nodes of type B connected to it. For cases when
(k = 0), no PAC is generated for node B, and node A is
simply deleted. An example aMPSO for this scenario is
shown in Fig. 10a.

– Single target lower bound repair: This type of aMPSO
for deleting a node is for manipulating nodes that have a
multiplicity pattern (k = l and k > 0). This pattern means
that each node of type B must be assigned to k nodes
of type A. For this case, we generate a repair to satisfy
the lower-bound for the n nodes B, by creating edges
between them and another single existing node of type
A. A NAC is generated for the existing node A to ensure
that the upper-bound multiplicity is not broken if (m <

∗). This repair ensures that after the A node to which
k nodes of type B are assigned is deleted, the B nodes
are assigned to another node A not to invalidate their
multiplicity constraint.

Example single target lower bound repair rules Fig. 8d
shows an example of this aMPSO for the SP case study,
generated for deleting a Sprint node, that has a WorkItem
assigned to it. For this example rule, there is no NAC
generated because there is no upper-bound multiplicity
limit.
Fig. 10c shows an example of this aMPSO for multiplic-
ity pattern (m = 2). Because of the upper-bound multi-

plicity limit for node A is not ∗, the rule contains a NAC
repair. An example of the rule for the case when (m > 0)
and no NAC repair is necessary can be seen in Fig. 10d.

– Multiple target lower bound repair delete: This type of
aMPSO is used for deleting nodes that have a multiplic-
ity pattern with (k = l) and (l > 1). This pattern means
that A must have at least n nodes of type B assigned, and
each node of type B must be assigned to exactly k nodes
of type A. For this case, we generate a repair to satisfy
the lower bound for node B by creating edges between
them and another existing n nodes of type A. If required,
a NAC is generated for the existing nodes of type A to
ensure that the upper-bound multiplicity is not broken if
(m < ∗). We only generate this rule for the case where
exactly n nodes of type B are attached to the A node to
be deleted.

Example multiple target lower bound repair delete rules
Fig. 10e shows an example of this aMPSO for multiplic-
ity pattern (n = 2), (m = 5) and (k = l = 2). The rule
contains a NAC for each node of type A that is assigned
a node of type B from the deleted node B. For the case
when no NAC is necessary (e.g., m = ∗), no NAC is gen-
erated as seen in the aMPSO shown in Fig. 10f.

For node pairs that have a fixed multiplicity (n=m∧k =
l), at both ends of any edge, we do not generate a delete
node aMPSO. Similar to the create node operations, a repair
operation for this case requires the deletion of the node at the
opposite end of the node being deleted. We regard this type
of operation as recursive, which we will look at in future
work.

4.3.2 Manipulating edges

In this section, we show the types of aMPSOs we gener-
ate for manipulating edges between two nodes. Namely, to
add and remove an edge from a node, together with corre-
sponding repair operations. The add and remove edge oper-
ations are composed to obtain the more complex change and
edge-swap operations. A complete list of the generated edge
aMPSOs is included in Tables 3 and 4. Figure 12 shows an
example for each type of generated edge creation aMPSO.
Figure 14 shows an example for each type of generated edge
removal aMPSO.
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Adding an edge The aMPSO to add an edge between two
existing nodes is identical to the add edge CPEO generated
by Kehrer et al. This aMPSO includes a NAC to avoid inval-
idating any upper-bound constraints between the source and
target nodes. This aMPSO is generated for all multiplicity
patterns except for cases having a fixed multiplicity at one
end or at both ends of the connected nodes ( n = m∨ k = l).

(a) Create Node Rule

(b) Create Node LB Repair Rule

(c) Delete Node Rule

(d) Delete Node LB Repair Rule

Fig. 8: Generated node manipulation aMPSOs for the Scrum
Planning case study encoded as Henshin model transforma-
tions.

Table 3: Add-edge aMPSOs. In the table (P/N) denotes the
presence of optional PAC and NACs that may be required
by the source or target node multiplicity.

m <* m = * n=m
l <* Add edge NAC A B Add edge NAC B Swap edge
l = * Add edge NAC A Add edge Swap edge
k = l Change edge (P/N A) Change edge (P/N A) Swap edge

Table 4: Remove-edge aMPSOs. In the table (P/N) denotes
the presence of optional PAC and NACs that may be re-
quired by the source or target node multiplicity.

n = 0 n >0 n = m
k = 0 Remove edge Remove edge PAC A Swap Edge
k >0 Remove edge PAC B Remove edge PAC AB Swap Edge
k = l Change edge (P/N A) Change edge (P/N A) Swap Edge

Exmple add edge aMPSOs In Fig. 11a we include an exam-
ple of an aMPSO for the SP case study that adds an edge
between a Sprint and a WorkItem with a NAC, forbidding
that the two nodes are already connected.

Fig. 12d includes an example of the generated aMPSO
for this case with multiplicity pattern (n = 0), (m = ∗) and
(k = 0), (l = ∗). The aMPSO has a NAC to avoid being ap-
plied in cases when there is already an edge between the
two nodes being connected. We include example aMPSOs
generated for the case when there is an upper bound (m =

1) and (l = 1 for both A and B nodes being connected in
Fig. 12a. Figures 12b and 12c show example aMPSOs con-
taining NACs for nodes B and A, respectively, when an up-
per bound limit is present.

Removing an edge This aMPSO is identical to a CPEO that
Kehrer et al. generate, consisting of an operation to remove
an edge between two existing nodes A and B.

The generated aMPSO includes a NAC to avoid invali-
dating any lower-bound constraints between the source and
target nodes. This aMPSO is generated for all multiplicity
patterns except for cases having a fixed multiplicity at one
end or at both ends of the connected nodes ( n = m∨ k = l).

Example remove edge aMPSOs Fig. 14a includes an exam-
ple of the generated aMPSO for this case with multiplicity
pattern n = 0,m = ∗andk = 0, l = ∗. The generated rules can
contain a PAC for node A if there is a lower bound n = 1
present (e.g., Fig. 14b), or a PAC for node B if there is a
lower bound k = 1 present (e.g., Fig. 14c), or a PAC for both
nodes A and B if there is a lower bound n = 1andk = 1
present (e.g., Fig. 14d).

In Fig. 11b we include an example of an aMPSO that
removes an edge between a Sprint and a WorkItem with
a PAC, requiring that after the application of this rule, the
Sprint node still has at least one WorkItem node still as-
signed to it, to satisfy the lower-bound multiplicity.

Changing an edge A change edge aMPSO moves a node of
type B with a lower bound multiplicity pattern (k > 0), to
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(a) Create node A aMPSO for n = 0, m = * and k = 0, l = 1 (b) Create node A add n B nodes aMPSO for n = 1, m = * and k = 0, l = *

(c) Create node A lower-bound repair single B aMPSO for n = 1, m = *
and k = 1, l = 1

(d) Create node A lower-bound repair many B aMPSO for n = 2, m = *
and k = 2, l = 2

(e) Create node A add n B nodes (forbid l A nodes) aMPSO for n = 1, m = * and k = 1, l = 5

Fig. 9: Examples of generated create node aMPSOs

another node of type A, without invalidating the multiplicity
constraints. The generated aMPSO includes PAC and NAC
conditions to ensure that after the rule application, no lower-
bound or upper-bound multiplicities are invalidated for the
source and target nodes respectively of type A (to ensure that
no node has too many or too few nodes of type B after this
rule application). This aMPSO is also generated for closed
multiplicity patterns where a multiplicity pattern for either
of the connected nodes is fixed (e.g., n = m∨ k = l).

Example change edge aMPSOs Fig. 11c shows an example
of this aMPSO for the SP case study, generated for chang-
ing an edge between a WorkItem and two Sprints. The
rule includes a PAC for the Sprint element from which the
WorkItem element is unassigned to ensure that the lower-
bound multiplicity of this node is not invalidated after the
application of the rule.

In Fig. 13a we include an example of the generated aMPSO
for the generic metamodel in Fig. 7.

Swapping two edges An edge swap aMPSO is generated for
fixed multiplicity patterns on the A side (n = m). This op-
eration exchanges two nodes between two pairs of similar
node types. For two existing, connected nodes A and B, the
aMPSO, finds two other nodes of the same type, A′ and B′

and disconnects node A from node B and A′ from B′, and
connects node A to B′ and A′ to B.

Example swap edge aMPSO We include an example of this
aMPSO in Fig. 13b, in which two B nodes are exchanged
between two A nodes.

4.3.3 Iterative repair

Iterative repair rules are generated by creating combinations
of the possible repair types described above for all the edges
of a node that has to be mutated. This approach increases
the number of rules generated for nodes that have multiple
edges.

To demonstrate this feature, we include in Fig. 15 a re-
fined version of the metamodel shown in Fig. 7 with changed
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(a) Delete node A aMPSO for m > n, m < * and k = 0
(b) Delete node A require each B still has k A nodes aMPSO for m > n,
m < * and k > 0, l > k

(c) Delete node A lower-bound repair single B aMPSO for m > n, m < *
(d) Delete node A lower-bound repair single B aMPSO for m > n, m = *
and k = l = 1

(e) Delete node A lower-bound repair many B forbid m A aMPSO for n = 2, m = 5 and k = 2, l = 2

(f) Delete node A lower-bound repair many B aMPSO for n = 2, m = * and k = 2, l = 2

Fig. 10: Examples of generated delete node aMPSOs.



14 Alexandru Burdusel et al.

(a) Add Edge Rule

(b) Remove Edge Rule

(c) Change Edge Rule

Fig. 11: Generated edge manipulation aMPSOs for the
Scrum Planning case study encoded as Henshin model trans-
formations.

multiplicities for the edges between node B and nodes A and
C. As a result of this refinement, there is a requirement that
when a node B is created, it is connected to both node A and
C, ensuring that their multiplicity constraints are satisfied.

Example iterative repair aMPSOs Fig. 16 shows two exam-
ple generated iterative repair rules for node B. In Fig. 16a
node B is created and the mandatory neighbours are lower-
bound repaired, then in Fig. 16b node B is created and only
node C is lower-bound repaired, while node A is connected
to the created node B, with a NAC to ensure that no more
than 2 nodes of type B are connected to it.

4.3.4 Generation algorithm completeness

In our approach, completeness refers to the ability of the
aMPSOs to generate any of the supported modifications to
the model. The changeable parts of a model are defined by

the user, who can specify single or multiple nodes or edges
which are allowed to be varied at search time. Our aMPSO
generation algorithm produces the minimal set of atomic op-
erations composed with the necessary repairs to ensure that
the rules are applicable for any of the supported multiplicity
patterns.

The generated aMPSOs form a complete set of rules that
can reach any consistent variation of the changeable parts
of a model through the application of a single operator or
by chaining multiple operators. The generated aMPSOs can
create or delete a node and add or remove edges between
any two nodes that have the multiplicity pattern as shown in
Fig. 6. These operations are enabled by complementing ev-
ery node and edge creation or deletion with a corresponding
repair to ensure that the operation is possible for any valid
metamodel instance with respect to to the supported mul-
tiplicity patterns. The repairs also ensure that the resulting
model instance does not invalidate the metamodel multiplic-
ities after the application of the aMPSO.

4.3.5 Generation algorithm limitations

The rule generation algorithm presented in this chapter is
aimed at producing atomic rules which can manipulate two
nodes connected by an edge, as shown by the highlighted
nodes A and B in the metamodel from Fig. 7. The described
approach does not support the generation of more complex
rules where additional context information is needed to gen-
erate a valid rule (e.g., software refactoring patterns, feature
model configuration). For such cases, the approach princi-
ples can be maintained (e.g., create or delete node, add or
remove edge), however, a domain-specific rule generation is
required such that the additional domain information can be
included in the generation algorithm.

4.4 Running search with aMPSOs

The algorithm proposed in the previous sub-section gener-
ates operators that preserve the consistency, with respect to
to multiplicities, of the models modified. This addresses the
first requirement on mutation operators that we identified in
Sect. 4.1. It does not yet address the second requirement that
mutation operators should work in both phases of an evo-
lutionary search: phase 1, when some candidate solutions
may not yet fully satisfy the solution-metamodel constraints,
and phase 2 when all candidate solutions satisfy all solution-
metamodel constraints. To satisfy this second requirement,
we run the algorithm from Sect. 4.3 twice: First, we use it
to generate rules based on problem-metamodel constraints.
Next, we generate rules based on solution-metamodel con-
straints. We then use the union of the two sets of rules as the
set of mutation operators for the evolutionary search.
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(a) Add edge NAC A B aMPSO for n = 0, m = 1 and k = 0, l = 1 (b) Add edge NAC B aMPSO for n = 0, m = * and k = 0, l = 1

(c) Add edge NAC A B aMPSO for n = 0, m = 1 and k = 0, l = * (d) Add edge aMPSO for n = 0, m = * and k = 0, l = *

Fig. 12: Examples of generated add edge aMPSOs.

(a) Change edge aMPSO for n=0, m = 1 and k = l = 1 (b) Swap edge aMPSO for n = m = 1 and k= l = 1

Fig. 13: Examples of generated change and swap edge aMPSOs.

(a) Remove edge aMPSO for n = 0, m = 1 and k = 0, l = 1 (b) Remove edge PAC A aMPSO for n = 1, m = * and k = 0, l = 1

(c) Remove edge PAC B aMPSO for n = 0, m = 1 and k = 1, l = * (d) Remove edge PAC AB aMPSO for n = 1, m = * and k = 1, l = *

Fig. 14: Examples of generated remove edge aMPSOs.
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Fig. 15: Iterative repair metamodel. Nodes A, B and C have the multiplicity pattern shown in Fig. 6 for the connecting edges
between them.

(a) Create node B, lower-bound repair C and lower-bound repair A
(b) Create node B, lower-bound repair C and connect to existing node
A

Fig. 16: Examples of generated iterative node repair aMPSOs.

5 Experiments

To evaluate our rule generation approach, we seek to answer
the following research question:

RQ: What are the search quality and performance bene-
fits of automatically generated mutation operators com-
pared to mutation operators created manually?

To answer this research question, we ran experiments on
9 problem instances from 3 different case studies. These ex-
periments aim to show that the generated mutation opera-
tors are at least as good as a set of operators created manu-
ally. The automatic generation of transformations is already
an improvement over the manual process, as we remove the
error-prone process of manual rule creation. Our evaluation
aims to investigate whether there is a loss in search per-
formance from generated operators. For each case study,
we prepared a set of manually created mutation operators.
Then, we configured MDEOptimiser to automatically gen-
erate mutation operators. Using both pairs of mutation op-
erators, we ran experiments to solve the same problem in-
stances. We compare the results from the two approaches to

validate that the solutions obtained using the automatically
generated aMPSOs are comparable with the results obtained
using manually implemented search operators.

We do not include a comparison between our tool and
other tools. Such a comparison isn’t useful in this paper, as
the focus is comparing the effectiveness and efficiency of
the MAN and GEN operators. In [26] we compare the per-
formance of MDEOptimiser and MOMoT, another model
search tool that encodes search solutions as transformation
chains.

5.1 Case studies

We selected a set of combinatorial optimisation problems
that were implemented using MDEOptimiser. In the follow-
ing subsections, we include a brief description of each case
study.

5.1.1 Class-Responsibility Assignment

The Class Responsibility Assignment (CRA) case study was
introduced at the 2016 Transformation Tool Contest (TTC)



Automatic Generation of Atomic Multiplicity Preserving Search Operators for Search-Based Model Engineering 17

Table 5: Summary of CRA input models.
Input Model A B C D E
Attributes 5 10 20 40 80
Methods 4 8 15 40 80
Data Dependencies 8 15 50 150 300
Functional Dependencies 6 15 50 150 300

Table 6: Summary of input models for SP case study.
Input Model A B
Stakeholders 5 10
WorkItems 119 254
Backlog Size 455 1021

[19]. The goal of this problem is to transform a procedural
software application to an object-oriented architecture while
maintaining good cohesion and coupling. The quality of the
produced solutions is measured using the CRA index de-
fined in [19] as a single objective. The problem supplies a
responsibility dependency graph that contains a set of func-
tions and attributes with dependencies between them. In the
metamodel, these entities are instances of the abstract type
Feature.

To solve this problem, the user is required to create Classes
in the ClassModel and assign Features to them such that:
all Features are assigned to a Class; the model with the
highest CRA index value is found. The problem has an ad-
ditional constraint requiring that each Feature is assigned to
only one Class at a time.

The CRA case study authors provide a set of five in-
put models. The difference between them is the number of
Features present. Model A is the smallest model with only
nine features. The largest model provided is model E, with
160 features. Across all models, each set of features has an
increasing number of dependencies between them. A sum-
mary of all the input models is included in Table 5.

We are specifying the CRA case study using two sets
of transformations. The first set is implemented manually
and consists of four operators as suggested in [10]. Other
TTC’16 participants that used a similar approach to solve
the case studies used similar rules [19, 37]. The second set
of operators are aMPSOs generated using the approach pre-
sented in this paper.

5.1.2 Scrum Planning

We are running two experiments for the Scrum Planning
(SP) case study described in Sect. 3. This case study has
a similar problem specification as the CRA case study with
the following differences: the assigned items do not have
any dependencies between each other as Features do in
the CRA case, and this case study is specified as a multi-
objective problem.

In Table 6 we include a description of the input models
used in experiments for this case study. These have been au-
tomatically generated by the authors using a random model

Table 7: Summary of input models for the NRP case study.
Input Model A B
Customers 5 25
Requirements 25 50
Software Artifacts 63 203

generator. Through this case study evaluation, we explore
how the difference in the number of objective functions af-
fects the behaviour of manual and generated rules.

5.1.3 Next Release Problem

The goal of the Next Release Problem (NRP) is to find the
optimal set of tasks to include in the next release for a soft-
ware product, to minimise the cost and to maximise the cus-
tomer satisfaction [45]. Each Customer has a desire which
can consist of one or many SoftwareArtifacts. Soft-
wareArtifacts can have a recursive dependency on other
SoftwareArtifacts.

To solve this problem, the user is required to assign in-
stances of SoftwareArtifacts to a Solution such that
the total cost of the selected SoftwareArtifacts is min-
imised and the total customer satisfaction is maximised.

We are specifying the next release problem using two
sets of evolvers. One set was manually designed by the third
author, who was not involved in developing the rule gener-
ation algorithm. The second set uses the automatically gen-
erated aMPSOs, using the approach described in this paper.

The minimal set of required rules for this case study is
simple, only requiring mutations to add and remove an edge
between a Solution and a SoftwareArtifact. However,
the difference between this case study and the others con-
sidered in this paper is that the selection of a Software-

Artifact, directly influences the Cost fitness function and
indirectly influences the Customer Satisfaction objective. A
SoftwareArtifact is considered for the calculation of a
RequirementRealization, only when all its dependen-
cies are also assigned to the solution. The set of evolvers
manually designed for this case study, uses this additional
information, ensuring that a SoftwareArtifact and all its de-
pendencies are added in a single step. In contrast, the auto-
matically generated aMPSOs don’t use any additional prob-
lem information. With this difference, we aim to evaluate
how the generated rules explore the search space in cases
where the fitness functions provide only coarse–granular guid-
ance.

The input models used for this case study have also been
automatically generated by the authors using a random model
generator. A brief description of these models has been in-
cluded in Table 7.
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5.2 Experiment configurations

We run experiments and compare the quality of the solu-
tions obtained using two configurations: MAN with manu-
ally specified mutation operators and GEN with automati-
cally generated mutation operators. For multi-objective prob-
lems, we use the hypervolume indicator and the ratio of best
solutions for our comparison. For the CRA case, which is
single–objective, we compare the quality of the solutions
based on the median CRA score.

Experimental Setup All the experiments were repeated 30
times for statistical significance [5] and were executed on
Amazon Web Services (AWS) c5.large spot instances run-
ning Amazon Linux 2 build 4.14.101-75-
.76.amzn1.x86 64 running Java version 11.0.3+7-LTS. We
ran our experiments using the NSGA-II algorithm [15], which
is a well established evolutionary search algorithm that has
been used successfully in many SBSE applications [9].

We undertook our experiments in two stages. The first
stage was for determining ideal algorithm parameters (hy-
perparameters) that worked well for both configurations. The
second stage used the hyperparameters found in the first
stage and compared the quality of GEN with MAN.

Parameter Tuning We performed a systematic search for
ideal population-size and number-of-evolutions hyperparam-
eters that allow each configuration to find the best solutions.
The combinations of analysed parameter configurations were
each repeated 10 times to ensure robust results.

To identify a good number of evolutions to use in our ex-
periments, we set the population size to 100 solutions. First,
we analysed the growth of the median objective value for the
single-objective problems and median hypervolume for the
multi-objective problems. Then, we selected the number of
evolutions after which there was no significant increase un-
til the number of fitness evaluations has been exhausted, and
the algorithm stopped. After we selected the number of evo-
lutions based on the plateau of the fitness functions, we tried
to reduce the size of the population by applying decrements
of 25, until we reached a population size of 50. However,
upon evaluating the results across all case studies, we deter-
mined the population size of 100 to be the best value for our
experiments.

In Fig. 17 we show the evolution of the median CRA
objective found by configurations with 5000 evolutions and
population size 100. We observe that for all input models,
except for E, the CRA index value plateaus after 2000 evo-
lutions. For input model E, the GEN configuration contin-
ues to increase, even after the MAN configuration starts to
plateau after passing 2000 evolutions.

Fig. 18 shows a summary of the hyperparameter runs for
the SP case study. We observe that MAN is getting stuck in

more than half of the experiment repetitions, leading to a
median HV of 0 for this configuration. The GEN configura-
tion is consistent at finding good solutions with a high HV
value and starts to plateau after 2000 evolutions.

In Fig. 19 we show the evolution of the median HV by
configurations with 5000 evolutions and population size 100
for the NRP case. We observe that there is no noticeable dif-
ference between MAN and GEN for input model A. How-
ever, for input model B, MAN finds a higher HV metric than
GEN. We also observe that all configurations stop finding
solutions after 500 evolutions for model A and 1000 evolu-
tions for model B.

Based on the results of the experiment configurations
discussed in this section, we selected the algorithm param-
eters for the experiment configurations used in our experi-
ments. The selected number-of-evolutions parameter values
are included in the Evol column in Table 9 for the CRA case,
Table 11 for the SP case and Table 13 for the NRP case.

Hypervolume indicator Comparing solutions of optimisa-
tion problems that have more than one objective value is not
a trivial problem. This is because when one objective value
changes, the value of the other objectives can change as well.
To overcome this problem, the hypervolume unary indicator
has been proposed in [46]. This single-value metric mea-
sures the dominated volume between the solution points be-
longing to the Pareto front and a reference point (also nadir
point) defined by the objective values of the worst solution.
Higher hypervolumes indicate a Pareto front closer to the
theoretical optimum.

Ratio of Best Solutions For multi-objective problems, we
are calculating the Best Solutions Ratio (BSR) to show the
number of non-dominated solutions contributed to the Pareto
front by each configuration as presented by [22]. In our ap-
proach we are building the reference set (RS) using the best
solutions found by all runs for both configurations. This met-
ric allows us to measure the percentage of the contributions
made to the reference set by each configuration.

BSR =
|S∩PFpseudo|
|PFpseudo|

(1)

PFpseudo stands for the reference set obtained by merg-
ing all the known nondominated solutions for a problem in-
stance. S stands for the reference set of the configuration for
which the metric is being calculated.

Statistical Analysis We use the Mann-Whitney U test to per-
form a statistical analysis of our results [33]. To measure the
size of the differences between the configurations, we use
Cohen’s d effect metric [14]. We also include standard de-
viation (SD), skewness (Skew) and Kurtosis (Kurt) in our
results tables to give a better indication of the solutions dis-
tribution found in our experiments.
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Fig. 17: Parameter search runs for the CRA case study. The X axis shows the number of algorithm steps, and the Y axis
shows the median objective calculated across all batches ran for the parameter search.
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Fig. 18: Parameter search runs for the SP case study. The
X axis shows the number of algorithm steps, and the Y axis
shows the median hypervolume calculated across all batches
ran for the parameter search.
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Fig. 19: Parameter search runs for the NRP case study. The
X axis shows the number of algorithm steps, and the Y axis
shows the median hypervolume calculated across all batches
ran for the parameter search.

6 Results

In this section we present our experiment results for each
of the case studies introduced in the previous section. We
discuss each case study individually below. The complete
data set can be downloaded from [12].

6.1 Class Responsibility Assignment

In Table 8 we list the mutation operators used for the two ex-
periment configurations. Both configurations use three mu-
tation operators to create a class (Create Class) and assign

Table 8: Summary of CRA mutation operators for MAN and
GEN.

Manual Gen aMPSO
Create Class Create Class
N/A Create Class Lb Repair
Assign Feature Assign Feature
Change Feature Change Feature
N/A Remove Feature
Delete Empty Class Delete Class
N/A Delete Class Lb Repair

Table 9: CRA results for MAN and GEN. The Median col-
umn contains the median objective value across all experi-
ment runs. For each model, the best solution is highlighted.

Config Evol Median Min Max SD Skew Kurt
Man A 500 2.333 0.850 3.000 0.552 -0.679 -0.509
Gen A 500 3.000 3.000 3.000 0.000 0 0
Man B 500 1.865 1.238 3.104 0.514 0.642 -0.032
Gen B 500 3.167 1.826 4.083 0.599 -0.470 -0.376
Man C 500 2.224 1.148 3.240 0.572 -0.089 0.824
Gen C 500 3.129 2.110 3.806 0.428 -0.539 -0.039
Man D 2000 5.191 3.557 7.041 0.837 0.068 0.339
Gen D 2000 9.863 7.634 12.273 1.257 -0.176 0.782
Man E 2500 11.572 8.879 14.691 1.639 0.122 0.663
Gen E 2500 17.323 11.698 20.051 1.604 -1.106 -3.176

Table 10: Summary of statistical testing results for CRA.
A B C D E

p-value <0.05% <0.05% 0.05% 0.05% 0.05%
U-value 795 809.5 817 900 884
Cohen’s d Large Large Large Large Large

and change a feature (Assign Feature, Change Feature) with
some small differences.

For GEN the Change Feature operator contains a PAC re-
quiring that the source Class still has at least one Feature
assigned following the application of this operator. At the
same time, the MAN Change Feature operator can generate
an empty class upon its application, and such instances are
fixed by the delete empty class operator. In addition to these
operators, GEN contains two additional operators to create
and delete a Class after all the Features have been as-
signed. These ensure that the search does not get stuck in
local optima in cases where the Features are assigned to
too many or too few Classes.

Table 9 shows summary statistics for the CRA index
found using the two configurations. In Fig. 20 we include
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Fig. 20: Experiment results for the CRA case study. The X axis shows the number of algorithm steps, and the Y axis shows
the median objective calculated across all experiment batches.

Table 11: SP results for MAN and GEN configurations.
Config Evol Median Min Max SD RS RSC BSR
Man A 1500 0.000 0.000 0.960 0.460 13 0 0.00
Gen A 1500 0.959 0.957 0.995 0.010 13 13 1.00
Man B 2500 0.492 0.000 0.996 0.505 25 19 0.76
Gen B 2500 0.988 0.983 0.998 0.004 25 6 0.24

charts showing the median CRA value growth as the num-
ber of evolutions increases for both MAN and GEN config-
urations across all input models. For the smaller input mod-
els A, B and C, both MAN and GEN configurations find
the highest objective value in the first 200 evolutions and
plateau afterwards. For input model D, MAN does not find
solutions that improve the CRA objective after 750 evolu-
tions. The GEN configuration is slower than MAN at finding
solution candidates with good objective values, however, af-
ter 500 evolutions, it finds a better CRA value than MAN and
continues to find better solutions until reaching 2000 evolu-
tions, after which it plateaus. For input model E, MAN finds
a better CRA objective value slightly faster than GEN. After
1200 evolutions, GEN surpasses the MAN configuration and
continues to find solutions with better CRA values, while
MAN starts to plateau. For all input models, the configura-
tion with automatically generated rules (GEN) consistently
finds better median CRA index values than the configura-
tion with manual rules (MAN). In all cases, GEN also finds
higher minimum (Min) and maximum (Max) CRA scores
than MAN. These results are confirmed by Table 10 which
shows the p and U values of the Mann-Whitney test and Co-
hen’s d effect size.

The quality of the results found by GEN is attributed
to the aMPSO operators which allow classes to be created
and deleted, after all the features have been assigned to a
class, without invalidating the multiplicity constraints. The
results for this experiment help us answer our RQ by show-
ing that our approach is good at generating mutation oper-
ators, which lead to finding better solutions than the ones
found using manually specified mutation operators.

Table 12: Summary of SP mutation operators for MAN and
GEN.

Manual Gen aMPSO
Create Sprint Create Sprint
N/A Create Sprint Lb Repair
Add WorkItem Add WorkItem
Change WorkItem Change WorkItem
N/A Remove WorkItem
Delete Empty Sprint Delete Sprint
N/A Delete Sprint Lb Repair
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Fig. 21: Experiment results for the SP case study. The X
axis shows the number of algorithm steps, and the Y axis
showsthe mean hypervolume calculated across all experi-
ment batches.
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Fig. 22: Comparison of SP reference set Pareto fronts for
MAN and GEN.

6.2 Scrum Planning

The SP case study is specified as a multi-objective problem.
To compare the results, we will use the hypervolume metric.
In Table 12 we include the mutation operators used for the
two experiment configurations. Because the multiplicity pat-
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tern between the Sprint and WorkItem metamodel entities
is identical to the multiplicity between Class and Feature,
the GEN mutation operators are similar to the ones generated
for the CRA case study.

Table. 11 shows a comparison of the calculated hyper-
volumes for this case study for input models A and B. For
both input models, MAN finds fewer constraint satisfying
solutions, compared to GEN. For model A, MAN only found
valid solutions in 10 out of the 30 experiment runs, com-
pared to GEN, which found no invalid solutions. For cases
where only invalid solutions have been found, we allocated
a value of 0 for the hypervolume, because there are no con-
straint satisfying solutions generated, and the covered hyper-
volume space in those cases is 0. The same effect can be ob-
served for model B, for which MAN finds valid solutions for
15 out of 30 experiments, compared to GEN, which always
found a valid solution. Comparing the median hypervolume
values for the configurations with valid solutions, we ob-
serve that GEN is better than MAN for both input models.

For model A, the highest hypervolume values have been
found by GEN, and all the reference set contributions (RSC)
are generated by this configuration, which has a BSR rate of
100%. In Fig. 22a we include the Pareto fronts found by the
two configurations for model A, and in this figure, we can
see that that GEN’s reference set solutions dominates all the
solutions found by MAN. The MAN reference set contains 5
solutions, while the GEN one has 13. The Mann-Whitney
U test shows that GEN is better than MAN for model A
(p=4.266E-6, U=761, Cohen’s d=Large). For model B, GEN

also found a higher median hypervolume value. However,
for this model, MAN found 19 out of 25 reference set solu-
tions, giving it a BSR rate of 76% while GEN only found 6
reference set solutions, with a BSR rate of 24%. The Mann-
Whitney U test shows that GEN is as good as MAN for
model B (p=0.25, U=527, Cohen’s d=Large). In Fig. 22b
we include the Pareto fronts found by GEN and MAN for
model B. As indicated by the BSR rate, MAN finds more
dominating solutions than GEN in the runs that found valid
solutions, however, GEN found are more diverse solutions
that cover a wider area along the Pareto curve. The MAN

reference set contains 19 solutions, while the GEN one has
40 solutions.

We believe that MAN is getting stuck in local optima
and the operators are unable to explore new solutions with-
out temporarily invalidating or decreasing the quality of the
current solutions. At the same time, GEN can explore new
solutions without invalidating the constraints, but it is also
affected by being stuck in local optima. We attribute the bet-
ter results for model B found by MAN to the fact that after
constraint satisfying solutions are discovered, the best so-
lutions are found by moving WorkItem elements between
Sprints until the right configuration is found.

Table 13: NRP results for MAN and GEN.
Config Evol Median Min Max SD RS RSC BSR
Man A 750 0.791 0.791 0.791 0.000 32 32 1.00
Gen A 750 0.791 0.791 0.791 0.000 32 32 1.00
Man B 1500 0.718 0.712 0.722 0.003 281 281 1.00
Gen B 1500 0.641 0.635 0.643 0.002 281 63 0.22

0 200 400 600 800

0.4

0.6

0.8

Evolutions

H
y
p
e
r
v
o
lu

m
e

Man A 2000 Gen A 2000

(a) Model A 750 Steps

0 500 1,000 1,500

0.2

0.4

0.6

Evolutions

H
y
p
e
r
v
o
lu

m
e

Man B 2000 Gen B 2000

(b) Model B 1500 Steps

Fig. 23: Experiment results for the NRP case study. The X
axis shows the number of algorithm steps, and the Y axis
shows the median hypervolume calculated across all exper-
iment batches.
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Fig. 24: Comparison of NRP reference set Pareto fronts for
MAN and GEN.

Table 14: Summary of NRP mutation operators for MAN

and GEN.
Manual Gen aMPSO
Modify Software Artifact N/A
Modify SA With Dependencies N/A
Assign Highest Realisation N/A
Fix Dependencies N/A
N/A Add Software Artifact
N/A Remove Software Artifact (PAC)

To answer our RQ for this case study, we observe that
GEN finds a consistently good hypervolume, with a small
SD value across all the repetitions, as seen in the Median
and SD columns in Table. 11. The difference between the
numbers of valid solutions found shows that the addition of
the aMPSOs helped the search to find consistent solutions.

6.3 Next Release Problem

In contrast to the other use cases, the operators used in the
NRP case are substantially different for both configurations
(Table 14). The GEN operators only cover the basics: ad-
dition and removal of single SoftwareArtifacts. In both
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Fig. 25: Comparison of NRP reference set Pareto fronts for
MAN and GEN with a mutation step size of 5 and recurrent
mutation application.
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Fig. 26: Comparison of NRP reference set Pareto fronts for
MAN and GEN with a mutation step size of 5 and non-
recurrent mutation application.

situations, chances are that costs are raised without improv-
ing customer satisfaction due to the introduction of missing
dependencies.

The first operator of MAN overcomes this problem, only
adding a SoftwareArtifact if all of its dependencies are
already part of the solution. Likewise, the removal of an
artifact is only possible if no dependent artifacts are left
over. The second operator allows for larger steps through the
search space by adding and removing SoftwareArtifacts
together with their direct dependencies and dependent ar-
tifacts, respectively. Assign Highest Realisation tries
to exploit the fact that among Realisations of the same
Requirement those with the highest percentage contribute
most to the customer satisfaction. Considering all Reali-
sations with yet unfulfilled dependencies, the operator se-
lects the one with the highest percentage of fulfilment and
adds its missing SoftwareArtifacts to the solution.

Note that none of the aforementioned operators take tran-
sitive dependency relations into account. Therefore, to coun-
ter the emergence of missing dependencies, the last operator
is responsible for either adding all dependencies of an al-
ready selected SoftwareArtifact or removing the depen-
dent artifacts of a formerly removed SoftwareArtifact.

For model A, we can observe that GEN consistently finds
a hypervolume that is identical to MAN. Both configurations
find the same solutions forming the reference set, and each
has a BSR rate of 100%. We can also observe that the stan-
dard deviation metric between the hypervolumes across all

30 runs for each configuration is 0. This can also be observed
in Fig. 24a which includes the identical Pareto fronts for
both configurations. Because the solutions found are iden-
tical for this model, we are not including the statistical test-
ing results in the paper. For model B, the hypervolume value
found by MAN is higher than the one for GEN. However, on
a closer inspection of the generated Pareto fronts for both
configurations in Fig. 24b, we see that the solutions found
by GEN, are subsets of the fronts for the MAN configura-
tion. This is also confirmed by the data in Table 13. MAN

has a BSR rate of 100%, while GEN only has a BSR rate of
22.4%. In this case, MAN also includes all the solutions gen-
erated by GEN. For model B the Mann-Whitney test shows
at 5% confidence level that MAN finds solutions of better
quality than GEN, with a large effect size.

We attribute this behaviour to how the MAN operators
have been designed, compared to the ones automatically gen-
erated. The MAN operators are developed such that a Soft-
wareArtifact, together with all its dependencies, are all
assigned to a Solution in a single application. At the same
time, the GEN operators assign SoftwareArtifacts, one
by one, by adding or removing edges, in atomic operations.
Because the Customer Satisfaction objective does not guide
the solutions, unless all SoftwareArtifacts realising a
complete Realisation are assigned, GEN is slower at finding
converging solutions, requiring more evolutions. However,
comparing the structure of the operators, a single operation
of the manual operator, which moves a SoftwareArtifact
together with all its dependencies in a single evolution, is
equivalent to multiple applications of the Gen operator for
adding an edge.

This suggests that we may be able to overcome GEN’s
deficiency by allowing multiple GEN operators to be applied
in each algorithm step. We refer to the number of applica-
tions as the ’step size’. Allowing the search to apply multiple
mutation steps to derive an offspring model allows the gen-
erated mutation operators to outperform the manually con-
structed ones. This is remarkable given that the generated
operators are much simpler than the manually constructed
ones for the NRP case study. However, it is worth noting that
the success of this approach depends on how the operators
are applied: recurrent application of the same operator mul-
tiple times is helpful, non-recurrent application, consisting
of randomly choosing a new operator for each application is
not. This behavior can be observed in the reference set solu-
tions found by each mutation application strategy, as can be
seen in Fig. 25 and Fig. 26. For this case study the recurring
mutation application strategy is better than the non-recurring
one.
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Fig. 27: Pairwise comparison of NRP hypervolume between MAN and GEN configurations with a mutation step size of 1
and a mutation step size of 5 using recurrent mutation application. The X-axis shows the number of algorithm steps, and the
Y-axis shows the median hypervolume calculated across all experiment batches.

In Fig. 27 3 we include charts that compare the median
hypervolume between MAN and GEN with a step size of 1
and MAN and GEN with a step size of 5, using recurring
mutation application. For input model A, the additional step
size does not lead to finding better solutions for either con-
figuration. Therefore we do not include the charts for this
model.

For input model B, MAN can find a better median hy-
pervolume with the increased step size. The GEN configu-
ration also finds better solutions with the increased step size
and can find identical solutions to the ones found by MAN.
Comparing the HV of GEN with step size 5 and MAN with
step size 1, we can see that by using the aMPSOs combined
with increased step size, the search can find results that are
better than the configuration using more complex manually
designed mutation operators.

Fig. 27c shows that MAN finds a better hypervolume
faster than GEN when either set of operators are used with
a step size of 5. This effect appears because the MAN op-
erators perform more than one atomic operation in a single
application, and by increasing the step size, the number of
performed operations also increases, leading to faster con-
vergence. The GEN configuration needs more time to iden-
tify the ideal order of mutations to apply to search solution
candidates to find the same solutions. Both configurations
plateau after 1000 evolutions. An in-depth analysis of this
effect is out-of-scope for the present paper. We are work-
ing on a detailed analysis of different mutator selection and

3 The charts in this figure show hypervolume for the step size 1 met-
ric calculated against a reference point that includes the additional so-
lutions found by the increased step size strategies. This causes the step
size 1 hypervolume metric to be lower than those reported in Table 13
because the step size 1 reference set covers a smaller portion of the step
size 5 reference set.

application strategies, which will be presented in a future
publication.

These results help us answer our RQ for this case study
by showing that atomic operators generated using our ap-
proach can be just as good as more complex manually cre-
ated mutations.

6.4 Search Operators Efficiency Comparison

We also compared the efficiency of the generated operators
with the manually created ones. In the NRP case study, the
generated operators led to shorter (or at most equal) aver-
age runtimes for the ES. For the CRA and SP scenarios, the
generated rules were less efficient than the manual ones.

In Table 15 we include a runtime summary for the two
configurations we are evaluating across all input models for
the CRA case study. We observe a higher runtime for GEN

configurations, that is almost double the time required by
the MAN configuration. We attribute this difference to the
higher number of rules used by the GEN configuration. We
differentiate two different matching strategies in MDEOp-
timiser: the classic strategy4 first finds all possible matches
for all operators and then uniformly randomly selects one
of them, while the non-deterministic matching strategy uses
Henshin’s non-deterministic matching algorithm by uniformly
randomly selecting one mutation operator and then letting
Henshin apply this for a random match. For the CRA case,
there are more generated operators than manual ones, which
means that more matches must be generated in the ‘classic
strategy’. As a result, under this strategy, the search with
generated rules took up to approximately 3 times as long as
with manual rules as shown in Table 15. With the ‘non-de-

4 Which the tool authors used in their submission to TTC’16 [10]
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Table 15: Summary of CRA elapsed time in seconds for the MAN and GEN configurations across all input models using
’classic’ matching.

Time Man A Gen A Man B Gen B Man C Gen C Man D Gen D Man E Gen E
Mean 15.10 27.90 23.27 43.76 41.32 75.28 611.40 1177.70 2972.65 4298.16
Median 14.92 27.61 22.04 44.24 41.07 75.65 590.75 1188.91 2869.16 4198.20
Min 11.44 26.48 17.33 33.92 26.79 64.19 452.90 991.29 2193.35 3582.67
Max 17.64 30.09 34.99 50.13 58.43 86.35 853.47 1416.96 4202.11 5189.39

Table 16: Summary of SP elapsed time in seconds for the
MAN and GEN configurations across all input models using
’non-deterministic’ matching.

Time Man A Gen A Man B Gen B
Mean 119.13 291.25 484.90 3069.18
Median 120.67 291.87 487.76 3016.74
Min 107.63 261.25 447.16 2686.92
Max 130.47 367.78 510.77 4171.07

Table 17: Summary of NRP elapsed time in seconds for the
MAN and GEN configurations across all input models using
’non-deterministic’ matching.

Time Man A Gen A Man B Gen B
Mean 275.42 223.42 1677.80 1355.29
Median 274.96 224.27 1676.22 1348.97
Min 258.84 215.79 1610.85 1312.45
Max 307.71 234.52 1813.63 1412.93

terministic matching strategy’, the generated rules led to a
faster search than the manual rules.

In Table 16 we include a summary of the runtime for the
SP case study. We observe that GEN is slower than MAN.
After closely inspecting the generated results, we observed
that GEN finds more constraint satisfying solutions, and more
time is spent evaluating the fitness functions. At the same
time, the NSGA-II archive contains more solutions for the
GEN configuration compared to MAN, which results in more
time being required to perform the required domination and
crowding comparisons. This leads to an increase in the run-
time for GEN.

Table 17 shows the runtime summary for the NRP case
study. For both input models in this case study, the GEN con-
figuration reaches the termination condition in less time than
MAN. This time difference is caused by the MAN operators,
which are more complex than the GEN ones (Add Software
Artifact and Remove Software Artifact) and require more
time to be applied.

In Figure 28, we show the values returned by each in-
dividual problem constraint function for the MAN and GEN

configurations in the CRA and SP case studies. The values
shown are the medians for each problem constraint function
(one constraint function for CRA and two constraints for SP)
over the 30 experiment repetitions. A solution candidate is
considered feasible with respect to the problem constraint
functions when the constraint functions return a value of 0.
A value returned by a constraint function, different from 0,
indicates how far a solution is from satisfying the constraint.

The metrics are calculated using the solutions in the algo-
rithm archive. Across all the CRA problem instances, we
can observe that the number of steps required to satisfy the
problem constraint (minimise the number of features not as-
signed to a class) is identical for all problem instances for
both MAN and GEN. For input model E, GEN is slightly
faster at finding solutions that satisfy the problem constraint,
however, the difference in the number of steps is small. We
attribute this effect to the higher number of mutation opera-
tors in the GEN configuration, which can improve the prob-
lem constraint.

In the SP case study, for Constraint 1, both MAN and
GEN require a similar number of steps to find satisfying so-
lutions. As in the case of the CRA problem instances, GEN

is slightly faster at finding solutions that satisfy Constraint 1
for both problem instances in this case study. For Constraint
2, as shown in Figs 28g for input model A and Fig. 28i for
input model B, MAN is unable to find constraint satisfying
solutions and for some experiments it gets stuck in local op-
tima. This is indicated by the flat median constraint value
observed in the charts.

6.5 Threats to validity

The validity of the conclusions we draw from our data de-
pends on a number of factors: 1. the degree to which the
selected case studies are representative of real-world prob-
lems, 2. the chosen hyperparameters (e.g., population size,
number of evolutions, ...), 3. the degree to which the chosen
input models are realistic and representative of real-world
problems, and 4. the provenance of the manual rules used in
our experiments.

We used a varied selection of case studies that cover both
single and multi-objective scenarios and allow a systematic
exploration of different aspects of the overall problem. All
hyperparameter values were selected systematically to en-
sure that no approach is favoured over the other. We applied
the recommended steps to ensure that our results are accu-
rate and correctly interpreted and described [5]. Input mod-
els were either provided as part of pre-existing case studies
(CRA [19]), or were randomly generated, ensuring consis-
tency with the given problem metamodel. Recently, better
model generators have been proposed [40, 41] that aim to
produce more realistic model instances for such evaluations.
We are interested in exploring the use of such generators for
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Fig. 28: Comparison of the median constraint values for the CRA and SP case studies. The X axis shows the number of
algorithm steps, and the Y axis shows the median constraint value calculated across all experiment batches for the specific
problem instance.

further evaluation of our approach. Finally, the manual rules
that we used in our experiments were all produced with-
out consideration of the generative principles we propose in
this paper: the CRA rules were produced by the authors in
2016 [10], well before we started considering the automatic
generation of rules; the SP rules are very similar to the CRA
rules. The 3rd author, who was not involved in the design
of the rule generation algorithm, produced the NRP rules
taking into account the structure of the objective functions
during rule construction.

7 Related work

7.1 Model-Based Optimisation

Moawad et al. [35] proposed Polymer, an approach that runs
search directly over models using an optimisation frame-
work that is built as an extension of the Kevoree modelling
framework [20]. Polymer offers interfaces for implementing
variation operators and fitness functions. Compared to our
approach Polymer does not use model transformations to
evolve models. Instead, variation operators and fitness func-
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tions are executed directly over models and are implemented
as Java classes by the user, making use of domain-specific
entities specified in the metamodel. Specifying mutation op-
erators using Java, however, makes it more difficult to auto-
matically generate them.

Fleck et al. [18] proposed Marrying Optimisation and
Model Transformations (MOMoT), a tool that optimises se-
quences of model transformation rules applications. MO-
MoT is implemented as an Eclipse plugin and allows users
to specify optimisation problems using a flexible DSL. The
model transformations used by MOMoT are encoded using
Henshin. The tool uses mutation and crossover search opera-
tors applied to the search solution candidates encoded as se-
quences of transformation rules applications. An additional
repair step is required during the search to ensure that af-
ter the application of search operators, the resulting rules
applications sequences produce feasible solutions. The opti-
misation algorithms used by MOMoT are implemented us-
ing MOEAFramework. Abdeen et al. [2] proposed a multi-
objective, rule-based design space exploration (DSE) frame-
work built using the ViatraDSE framework [24]. The multi-
objective implementation uses the NSGA-II algorithm to find
efficient model derivation chains. The framework uses mu-
tation and crossover operators, and a repair mechanism is
implemented to ensure that the resulting sequences of trans-
formation rules applications produce feasible solutions. In-
feasible rule applications sequences are truncated or dis-
carded if they cannot be applied to the initial model. Be-
cause they encode search solution candidates as sequences
of transformation rules applications, both ViatraDSE and
MOMoT can use mutation and crossover search operators,
while in MDEOptimiser, which searches directly over mod-
els, only mutation is currently supported. ViatraDSE and
MOMoT have the advantage that they can be more mem-
ory efficient compared to model-based approaches because
they only keep a sequence of transformations to be applied
to an initial model compared to individual copies of models.
One drawback of this approach is that for each fitness eval-
uation, the sequence of transformations (sometimes along
with potential repair operations) has to be applied to obtain
a phenotype for evaluation. Compared to MDEOptimiser,
ViatraDSE and MOMoT do not offer any mutation operator
generation, and users are required to provide model trans-
formations to be used for search space exploration. John et
al. [26] evaluate the performance of model-based and rule-
based search by comparing MDEOptimiser and MOMoT.

Other uses of model-based search techniques are the ap-
proaches used to solve the problem of metamodel/model co-
evolution, either automatically [30] or interatively [29, 31].
In their automated approach, Kessentini et al. [30] require
the user to provide as inputs the intial and revised metamod-
els, a set of input models conforming to the original model
and a set of allowed edit operations. The generated outputs

consist of minimal sequences of transformations to apply
to the input models so they conform to the revised meta-
models. In the interactive metamodel/model evolution ap-
proach [29], the authors use clustering to reduce the number
of feasible search solutions and use human input to guide
the search towards preferred solutions.

Mutation Generation The generation of mutation operators
for evolutionary algorithms has been studied in the wider
optimisation literature. To the best of our knowledge, Fit-
nessStudio [42] is the only approach in an MDE context.
FitnessStudio is a meta-learning tool for generating in-place
model transformation rules that can be used as search oper-
ators in model-based optimisation. The algorithm generates
mutation operators that obtain good results for the CRA case
study [19]. The main drawback is that the user is required to
first execute a learning operation on a test model and then
run the optimisation with the generated rules on the rest of
the models that have to be optimised. The effectiveness of
the approach depends on the model used for learning, its
coverage of the metamodel and its similarity to the remain-
ing models. In contrast to FitnessStudio, our approach does
not require the additional meta-learning step.

Hong et al. [25] present an offline hyper-heuristic ap-
proach that automatically generates mutation operators us-
ing genetic programming and meta-learning. These are then
used in evolutionary programming to solve several test func-
tions. This technique requires an already existing genetic en-
coding of the problem. In contrast, we support problems that
are naturally encoded in a suitable domain-specific mod-
elling language. The work of Hong et al. [25] is similar to
the work of Strüber [42], requiring a training step to first
generate the mutation operators, which are then used to solve
other problems. Our algorithm generates the mutation oper-
ators using the problem specification and does not require a
training step.

Alhwikem et al. [4] introduce an approach for generat-
ing mutation operators for MDE languages. The goal of this
approach is to use the generated operators to generate test
inputs when performing mutation analysis. The systemati-
cally generated mutations can be used to change features of
Ecore based models by adding, removing or changing val-
ues of a model feature in order to increase test coverage. The
atomic mutations generated by this approach are similar to
some operations we generate for the simple cases, namely to
add, remove and change an element. In addition to these op-
erators, our approach also generates more complex repairs.

Mengerink et al. [34] propose a methodology for cre-
ating a complete DSL operator library for evolving EMF-
based languages. The operators are atomic, and the proposed
list of the most used operators, based on their occurrence in
the DSL evolution history, includes the aMPSO and MPSO
operators generated by our approach and the SERGe rules



Automatic Generation of Atomic Multiplicity Preserving Search Operators for Search-Based Model Engineering 27

generator. This library aims to be a complete list of all the
possible atomic mutation operators for EMF-based languages.
The important contribution we make is to selectively gener-
ate only those operators useful in the context of ES.

Kosiol et al. [32] propose a classification and formal-
isation for graph transformations based on the effect they
have on the graph constraints: consistency sustaining trans-
formations manipulate graphs without decreasing the num-
ber of satisfied constraints; consistency improving transfor-
mations, seek to reduce the number of graph constraint vi-
olations. The formalisation proposed by the authors enables
precise reasoning about the behaviour of graph transforma-
tions used as search operators. Kosiol et al. [32] also provide
static analysis techniques for checking if a transformation
rule is sustaining or improving. It would be interesting to
apply this analysis to the rules generated by our approach.

Mutation Weighting Doerr et al. [16] propose the use of
operator strengths to increase the degree of changes per-
formed by an operator. The authors show that a combination
of atomic changes combined with variably sized changes,
is the best for increasing the speed of solving optimisation
problems. Using only atomic operators, the search can be
slow, requiring many steps to be performed, while using op-
erators that perform bigger changes, the search can have
difficulty in finding neighboring solutions that have better
fitness. The case study evaluation presented in this paper
showed that this is also a problem affecting our approach.
For NRP and the case study presented by Murphy et al. [36],
the generated aMPSOs require more applications to find good
solutions, compared to operators that perform multiple oper-
ations in a single step. One potential solution to this problem
is increasing the number of evolutions, and at the expense of
longer runtime, the search can find better solutions if the
fitness functions can efficiently guide each aMPSO applica-
tion. Alternatively, the problem can be solved using a com-
bination of operators consisting of aMPSOs and composi-
tions of multiple aMPSOs that are applied in a single step.
Our initial experiments using this approach for the NRP case
study, in which we applied 5 aMPSOs in a single evolution
step, have shown promising results. This is a problem we
seek to explore in future work to improve the performance
of aMPSOs generated using our approach.

8 Conclusions

We showed how mutation operators for search-based model
engineering can be generated automatically without the need
for meta-learning. The efficiency and effectiveness of the
atomic multiplicity-preserving search operators (aMPSOs)
we generate are comparable to search operators manually
specified by expert users (and better in some cases). How-

ever, automatic generation requires less human effort and
reduces the risk of accidentally introduced errors.

Our generated rules coped well with single- and multiple-
objective problems as well as with a problem where the
objective function provides only fairly coarse-grained guid-
ance to the search. However, improvements are clearly pos-
sible. In particular, in our future work, we plan to investigate
the following questions:

– We validated the correctness of our approach by using
a suite of unit tests to check that the generation algo-
rithm produces the expected output for each supported
scenario. Formalising our approach, along with provid-
ing a correctness and completeness proof, are left for fu-
ture work.

– In the CRA case study, we saw that the startup behaviour
of our generated rules differs from that of the manual
rules, such that the manual rules find better solutions in
early evolutions. We will study what affects this startup
behaviour and how we may be able to improve our gen-
erated rules in this area. For example, it may be useful to
use separate sets of rules for the two phases of the search
(cf. Sect. 4.1) to ensure more focused exploration during
the first phase.

– Optimisation problems use other constraints beyond mul-
tiplicities. Arbitrary constraints are difficult to handle
without additional user input; however, specific types
of constraints or constraint templates can be more eas-
ily incorporated. For example, we are currently working
on implementing rule generation for feature-model con-
straints.

– Recursive repair offers additional opportunities for re-
pair in MPSOs, but at the cost of higher generation effort
and a larger set of search operators. Which, if any, recur-
sive repair strategies offer benefits to the overall search?

– Some problems, including some of the examples dis-
cussed in this paper, may be solvable by optimising con-
straint solvers. However, constraint solvers work off a
relatively low-level problem encoding, making them more
difficult to use. We are interested in understanding if, and
under what circumstances, it is possible to translate au-
tomatically from our high-level problem representation
into an encoding that can be efficiently solved by a con-
straint solver.

Acknowledgements This work has been supported by the Engineer-
ing and Physical Sciences Research Council (EPSRC) under grant num-
ber 1805606.

References

1. Choco-solver. https://choco-solver.org/. Accessed: 2020-
11-04

https://choco-solver.org/


28 Alexandru Burdusel et al.
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41. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the auto-
mated generation of consistent domain-specific models. In: Pro-
ceedings of the International Conference on Software Engineer-
ing, pp. 969–980. ACM (2018)
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