
Relating Feature Models to Other Models of a Software
Product Line

A Comparative Study of FeatureMapper and VML*

Florian Heidenreich1, Pablo Sánchez2, João Santos3, Steffen Zschaler4, Mauricio
Alférez3, João Araújo3, Lidia Fuentes5, Uirá Kulesza3, Ana Moreira3, and Awais

Rashid4

1 Technische Universität Dresden, Germany
florian.heidenreich@tu-dresden.de

2 Universidad de Cantabria, Santander, Spain
p.sanchez@unican.es

3 Universidade Nova de Lisboa, Portugal
{mauricio.alferez|ja|amm}@di.fct.unl.pt,

{jpgpsantos|uirakulesza}@gmail.com
4 Lancaster University, UK

{zschaler|awais}@comp.lancs.ac.uk
5 University of Malaga, Spain

lff@lcc.uma.es

Abstract. Software product lines using feature models often require the relation
between feature models in problem space and the models used to describe the de-
tails of the product line to be expressed explicitly. This is particularly important
where automatic product derivation is required. Different approaches for mod-
elling this mapping have been proposed in the literature. However a discussion of
their relative benefits and drawbacks is currently missing. As a first step towards
a better understanding of this field, this paper applies two of these approaches—
FeatureMapper as a representative of declarative approaches and VML* as a rep-
resentative of operational approaches—to the case study. We show in detail how
the case study can be expressed using these approaches and discuss strengths and
weaknesses of the two approaches with regard to the case study.

1 Introduction

A software product line (SPL)—such as the case study under discussion [1]—is a set of
software-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way [2, 3]. Apart from sharing a common
set of features, every system also has features that are specific to this system and not
shared with other systems in the SPL. For the purposes of this paper, we are using the
following definition of feature:

“A prominent or distinctive user-visible aspect, quality, or characteristic of a
software system or systems.” [4] as cited in [5]



An important part of managing the features of a product line and the individual
systems (often called products) is to model the available features and their dependencies
(e.g., if feature A is selected, feature B also must be selected) in an abstract form. In
particular, it is essential to produce models for the variable features. Often, this is done
using so-called feature models (e.g., [5]). The case study under discussion is an example
of such a product line. In this paper, we focus solely on product lines modelled using
feature models. While these models express what features there are and what products
can be formed from them, they do not express how a specific feature is realised, and,
thus, how any specific product is realised.

Typically, there also need to be models that describe how the SPL is realised; that
is, models of the solution space for the SPL. This is particularly relevant in a model-
driven setting, where product code is generated from product models. For instance, let
us consider a simple SPL for a chess game for mobile phones, where the product can be
delivered with three levels of expertise: beginner, medium and master. A feature model
would only specify that there are three levels, and that the user must select one, but it
does not specify how these alternatives are supported at the software level. This might
be by means of different techniques, such as using a strategy pattern or conditional
compilation, among others. Thus, we also need software models that specify which
particular kind of technique we have selected for realising the variations at the software-
design level. In SPL terminology, feature models are said to be problem-space models,
and software models, such as architectural design models, are said to be solution-space
models.

To automate product derivation, we also need to know what actions or manipulations
should be applied to the software models as a certain feature is included or excluded
in/from a specific product. For instance, if we have opted for using the strategy pattern
for designing a set of alternative features, we need to know which strategies correspond
to each feature. Since it is not always possible to establish a clear one-to-one mapping
between features and model elements, this is not a trivial task. This leads to a map-
ping problem: For each feature in a feature model we need to identify and specify the
solution-space models and model elements associated with it to be able to systemat-
ically construct products given a selection of features. In this paper, we will use the
term variability mapping to refer to the activity of expressing explicitly the relationship
between features and model elements. Note that this does not imply that the relation
between features and their realisation must be ’discovered after the fact’. Variability
will be designed into solution-space models because there is a corresponding variation
point in the feature model. However, to enable automation of product derivation, this
relationship (or mapping) must be made explicit in some form. Depending on how we
choose to model the SPL’s architecture, this mapping may be very simple or very com-
plex. For example, where aspect-oriented or feature-oriented techniques are used for the
SPL models, we can attempt to align every feature with one module of these models.
Using more standard object-oriented modelling techniques, some features will have to
be mapped to a number of model elements across the entire SPL; that is, they will be
cross-cutting features.

Aspect-oriented modelling (AOM) is about the separation of different concerns in
different (partial) models that can then be composed into a representation of the com-



plete system. Variability modelling fits well into this description: A key principle is to
separate the model elements related to different features (’concerns’). This is done by
either physically separating them in separate models or virtually separating them using
different tags to associate model elements to features. A first step in product derivation
is then the composition of these separate concerns into models of a complete prod-
uct. Variability models address the mapping problem mentioned above to provide both
separation of concerns and composition of the separated models into product models.

A number of different approaches to variability mapping have been proposed [6–
11]. These proposals take different approaches to the mapping problem. Some ap-
proaches use a declarative model of the mapping between features and model elements
(e.g., [6, 7, 9]) while others use a more operational approach based on model transfor-
mations (e.g., [8, 10, 11]). This paper applies two of these approaches—FeatureMapper
[9] and VML* [11]—to the case study and discusses their respective advantages and
drawbacks. FeatureMapper is a generic tool that can be used directly with any EMF-
based model [12] and GMF, Ecore, or EMFText-based [13] editor. It directly relates
features and model elements and derives product models by removing all model ele-
ments associated with features not selected for that product. In contrast, VML* uses
languages customised for each target model. For instance, for target models of com-
ponents and connectors, VML* can be customised to provide constructs in terms of
components and connectors. It is still generic, because it is based on a customisable
infrastructure that can be easily adapted for any new target model using a generative-
programming approach. Each language consists of a set of actions corresponding to
simple model transformations that are executed depending on the features selected for
a product. The two approaches have been selected because they are good representa-
tives of declarative and operational approaches, respectively. Therefore, we believe the
results from a comparison of these two approaches can also provide some insights into
the relative benefits and drawbacks of declarative and operational approaches to the
mapping problem.6 Furthermore, each of the approaches has been developed by some
of the co-authors of this paper. This gives us full access to the approaches and their
accompanying tooling, which is key to an evaluation against the common case study. A
more detailed discussion of the spectrum of different approaches and our selection can
be found in Sect. 2.2.

We have defined a set of comparison criteria to support a systematic comparison
of the two approaches. These criteria have been defined to cover a broad spectrum of
characteristics relevant when using a variability-modelling approach. In particular, they
can be grouped into criteria on the expressiveness of the approach (i.e., what types of
variability and what artefacts does the approach support), criteria on the useability and
analysis support (i.e., what kinds of evaluations and analyses does the approach sup-
port), and criteria on the approaches’ applicability to real-word product lines (i.e., does
it scale, does it support evolution of artefacts). While it is always possible to add addi-

6 As also pointed out by the anonymous reviewers, this does not imply that the comparison
results can be directly generalised to other tools. However, as we will see, a number of the
comparison results really reflect the fact that one of the approaches is declarative and the other
one is operational, so there are some tentative grounds for careful generalisation.



tional criteria, we believe that this selection enables systematic and broad comparison
of the two approaches.

The remainder of this paper is structured as follows: Section 2 briefly discusses
different variability mechanisms before giving an overview of approaches to the map-
ping problem that can be found in the literature and attempting a classification of these
approaches as a basis for motivating our specific selection from this space. Section 3
presents some more detail on the case study and, in particular, refines it to provide de-
tail of a second specific crisis management system—a flood crisis management system.
The detailed models from Sect. 3 are then used in Sects. 4 and 5 to show how the two
approaches are applied to the case study. Based on this, Sect. 6 compares the two ap-
proaches and discusses their benefits and drawbacks along a number of dimensions.
Finally, Sect. 7 concludes the paper.

2 Background

The mapping problem, i.e. how to specify the links between features and variation
points plus variants in software models, was already identified by Pohl et al. [3], who
originally proposed the Orthogonal Variability Model (OVM). The idea of the OVM
is that variability specification, e.g. a feature model, and variability realisation, e.g. a
flexible reference architecture comprised of component and connectors, should be sep-
arated, contrarily to other approaches, such as Ziadi et al. [14], where software models
are augmented with information regarding which model elements are optional, which
are alternatives and so forth. This should contribute to a better scalability [15]. The
OVM concepts have been implemented in the VarMod tool 7, which allows us: (1) to
create variability models in problem space according to Pohl et al’s notation [3]; (2)
check the well-formedness of these models; and (2) specify trace links between these
variability models and solution-space artifacts. The OVM largely inspired the family of
VML languages, which extend the OVM approach with information about what spe-
cific actions must be carried out in a software model when a certain feature is selected
or unselected.

In this section, we first discuss different mechanisms for achieving variability be-
tween models for different products of an SPL, i.e. how variability can be realised.
Next, we discuss a range of approaches for variability mapping (that is, different solu-
tions to the mapping problem described above) available in the literature and motivate
our selection of approaches for the purposes of the comparison reported on in this paper.

2.1 Variability Mechanisms

The first step in modelling variability in the solution space is to create a reference model
for the family of products that the software product line covers. This reference model
must incorporate certain variability mechanisms for supporting the variations specified
in the feature model. In general, we can choose from the following types of variability
mechanisms:8

7 http://sse.uni-due.de/wms/en/?go=256
8 See, for example, [16] for a deeper discussion of positive and negative variability.



1. Negative Variability. Here, selecting a feature for a product implies removing all
model elements associated with the other, unselected, features from the SPL model.
We create a reference model which contains all the elements used for all variants
of the software product line. During product derivation, those elements that are not
required according to a selection of features are removed.

2. Positive Variability. In contrast to negative variability, here, selecting a feature for
a product implies adding all model elements associated with this product to the
SPL model. We create a minimal reference model which contains the common
elements, or core elements, for any product in the software product line. Then, we
specify which new elements must be added as a consequence of selecting a certain
set of features.
A special case of positive variability is positive variability with aspect models.
Here, we encapsulate variants into aspects, using an AOM technique [17] (such as
Reuseware [18], MATA [19], or TENTE [20]). Then, the mapping model is used to
indicate which aspects must be woven according to a certain selection of features.

3. Parameterization of Model Elements. Here, variability is achieved by modifying
existing model elements in the reference model depending on the feature selection.
An example of this variability mechanism is component parametrization, where
variability of a software architecture is enabled through parameterized components.
The mapping model is used for generating the values for the parameters of these
components corresponding to a certain selection of features.

Each one of these mechanisms has advantages and disadvantages. For instance,
when the selection of one feature implies the addition of a considerable number of
new components, interfaces and so forth scattered throughout the reference model, it
makes sense to encapsulate these elements into one aspect, separately from the core of
the application. This kind of decomposition improves modularization, easing mainte-
nance and evolution [21]. Nevertheless, the selection of a variant might only require to
remove an operation from an interface; or change the value of a certain attribute. If we
try to encapsulate this kind of fine-grained variation into aspects, the result will be a
software architecture decomposed into a large number of small aspects with complex
dependencies among them. This quickly leads to scalability problems.

2.2 Variability Mapping Approaches

Figure 1 gives an overview of the space of variability mapping for SPLs as we see it. It
should be noted, that for this paper we are interested only in static SPLs. Dynamic SPLs,
where variability is resolved at runtime and is used to adapt the system to changing con-
texts, are out of the scope of our paper. Consequently, Fig. 1 only includes approaches
to variability mapping that support static variability resolution. All of the approaches
covered by this figure aim to support product derivation based on a selection of features
from a feature model. To this end, they each provide some way to model the modi-
fications of the target required if a particular feature has been selected or unselected.
Based on how this is done, we distinguish a number of types of variability-mapping
approaches:



Variability Mapping

Declarative Operational

Positive
Variability

Negative
Variability

Direct
Annotation

Separate
Annotation Model

Generic Model
Transformations

Aspect-Oriented
Modelling

Customised Model
Transformations

CVL [8]Ziadi et al. [24]
Botterweck et al. [25]

VML* [11, 26]
Gears [27]

AHEAD [6]

Model Templates [7]
Morin et al. [8]

FeatureMapper [9]
pure:variants [23]

Fig. 1. Overview of approaches to variability mapping

1. Declarative variability mapping. In this category, we group approaches that model
what changes are needed, but do not provide means of modelling how these changes
should be achieved. Instead, the precise mechanism of change is encoded in the se-
mantics of the models, to different degrees of formality, but typically encapsulated
in a tool. The approaches discussed in the literature typically support either positive
or negative variability:
(a) Support for positive variability. Batory et al. [6] present AHEAD, an approach

that views features as incremental modifications of base systems. Effectively,
this leads to positive variability, where the addition of features leads to addi-
tions to the base system.9

(b) Support for negative variability. Negative variability uses models of the com-
plete product line, removing elements associated with unselected features dur-
ing product derivation. To specify which model elements are associated to
which features, model elements are often tagged with feature names or fea-
ture expressions. These tags can either be embedded directly into the target
model or they can be represented in a separate annotation model:

i. Using direct annotations of the target model. Czarnecki and Antkiewicz [7]
propose the use of a template model, which models all products in the prod-
uct line. Elements of this model are annotated with so-called presence con-
ditions. Given a specific configuration, each presence condition evaluates
to true or false. If a presence condition evaluates to false, its asso-
ciated model elements are removed from the model. Thus, such a template-
based approach is specific to negative variability, which might be critical
when a large number of variations affect a single model. Moreover, pres-
ence conditions imply introducing annotations into the SPL model. There-
fore, the actions associated with a feature selection are scattered across the

9 [6] in principle also allows features to represent non-monotonic modifications, which would
lead to negative variability.



model, which could also lead to scalability problems. An implication of
using annotations is that the modelling languages used for modelling an
SPL need to provide means for annotating model elements (such as UML
stereotypes). Other modelling languages cannot easily be supported.
Morin et al. [10] provide an alternative approach to representing vari-
ability in models of a product line. Their approach is effectively based
on tagging target model elements with variability information, similarly
to [7] and FeatureMapper. However, instead of tagging with features or
feature expressions, [10] tags model elements with whether they are op-
tional, alternatives, mandatory, etc., as well as with inclusion constraints
between different model elements. These concepts are expressed in a sep-
arate metamodel, which is woven into the target metamodel using their
SmartAdapters approach to AOM [22]. Although Morin et al. use feature
models to simplify the configuration of the variability expressed in their
models, these feature models are derived directly from the target model
assuming a simple 1-to-1 relation between features and model elements.
Thus, their feature models are much closer to the solution space of a prod-
uct line than the feature models we are discussing for the common case
study.

ii. Using a separate annotation model. FeatureMapper [9] is an approach very
similar to the template-model approach of [7]. However, it uses an anno-
tation model that is separate from the target model to store feature expres-
sions and their associations with target-model elements. Because the an-
notations are not embedded directly into the target model, the target mod-
elling language does not need to be changed and existing tools can be used
directly. Also, by separating the target model and the variability specifica-
tion, the target model can more easily be reused in another context.
pure::variants [23] is an industrial-strength variant management tool that
uses a separate model—a so-called family model—to store mappings be-
tween feature expressions and symbolic names to solution-space artefacts
(such as file names, preprocessor definitions or URI to model elements).
By default, the tool has no direct understanding of models and model
elements. However, FeatureMapper was integrated into pure::variants re-
cently, so that pure::variants feature models, variant models, and mapping
models can be used in combination with FeatureMapper. pure::variants
supports the configuration and derivation of variants of an SPL.

2. Operational variability mapping. In contrast to declarative approaches, operational
approaches provide language constructs for specifying how target models must be
modified when specific features are selected or deselected. We distinguish the fol-
lowing three categories of approaches from the literature:
(a) Using generic model transformation languages. Ziadi et al. [24] and Botter-

weck et al. [25] both propose the implementation of product derivation pro-
cesses as model transformations. Their proposals rely on the realisation of
product derivations via a model transformation language. This strategy re-
quires SPL engineers to deal with low-level details of model transformation
languages.



(b) Using aspect-oriented modelling techniques. Haugen et al. [8] define the com-
mon variability language (CVL), which is a generic extension to DSLs for
expressing variability. It provides three generic operators—namely value sub-
stitution, reference substitution, and fragment substitution—all of which are
based on aspect-oriented notions of model weaving, but using these to express
variability can lead to comparatively complex models. CVL is also based on
model transformation, but proposes to extend the target modelling language
with generic concepts for variability modelling. CVL distinguishes between
so-called variation models and resolution models. A variation model is based
on a modelling language extended with CVL concepts and describes all possi-
ble variations using the three standard CVL variability mechanisms. The res-
olution model is then used to select the variations to be included in a product
model.

(c) Using customised model transformation languages. VML* [11, 26] is a fam-
ily of languages for variability mapping. A particular VML* language is ef-
fectively a model transformation language. However, different from the ap-
proaches in the first category, this model-transformation language has been
customised both to the domain of SPLs and to the target modelling language.
Thereby, SPL developers do not need additional knowledge about model-trans-
formation languages or target-model metamodels. Instead, they can express re-
quired modifications using the same concepts and terminology they would use
for producing the models in the first place.
Gears [27] is an SPL framework that also supports product derivation. It started
at the code level, and it has recently adapted for working at the requirements
and/or model level with some specific tools [28], such as DOORS or Rhapsody.
This tool has its own feature model, where each feature is seen as a variable
with its own basic type (e.g. boolean or string). It also contains a mecha-
nism to define variation points in software assets and a language for specifying
how these variation points must be bound in order to produce a concrete prod-
uct. For instance, we can declare a file containing a license agreement for a
software product as a variation point, and associated different files containing
different license agreements to that variation point. Then, using the language
for variability binding provided with Gears, we can specify what specific li-
cense agreement must be included in a specific product depending on the fea-
ture configuration. Gears, allows to specify what actions should be carried out
when a certain variants is selected or unselected, similarly to VML*, through
a specific Gears capability called actuator. However, these actuators are based
on manipulations of textual files, with no specific support for models, which
implies that models need to me manipulated directly in their serialised form
(such as in XMI format). This can make the implementation of actions very
costly and time consuming.

There are other aspect-oriented modelling approaches, such as MATA [19], XWeave
[29], Reuseware [18], or RAM (Reusable Aspect Models) [30], which can also be used
for software product line engineering and are not included in this classification. All
these techniques provide mechanisms for encapsulating features in individual modules.



In these cases, features are considered as enhancements to an already existing core.
MATA, for instance, provides mechanisms for encapsulating enhancements to an ex-
isting core as aspects, which are later composed—in case the corresponding feature is
selected—with the core based on graph-transformation techniques. Nevertheless, these
languages and tools focus on separating and encapsulating features as enhancements
to an existing core, but they do not provide support to automate the product derivation
process (i.e., aspects corresponding to selected features must be composed manually).
Moreover, it is difficult to encapsulate fine-grained variations—such as changing at-
tribute values.

From the spectrum of approaches presented in this section, we have chosen two—
namely FeatureMapper and VML*—which we apply to the common case study and
compare with respect to a number of comparison criteria. To provide a full understand-
ing of the spectrum, it would, of course, have been preferable to compare all approaches
by applying them to the common case study. However, unfortunately this is not feasible.
A key criterion for our selection was the fact that we know these two approaches and
have full access to the tools and the original developers. Thus, we can ensure that we do
not accidentally misuse or misrepresent the approaches, which could easily have hap-
pened with some of the other approaches. However, apart from this, we also selected the
two approaches because they represent quite different categories from our classification
in Fig. 1: FeatureMapper is a declarative approach for negative variability, while VML*
is an approach for operational variability mapping. Thus, the results of our comparison
should allow at least some initial conclusions about the relative benefits and drawbacks
of these two broad categories.

3 Zooming in on the Case Study: Car Crises vs Flood Crises

To be able to demonstrate the approaches, we needed to refine the case study [1] for at
least one additional product. The main motivation to model the additional product was
to create models that contain significant differences between both instances of the prod-
uct line and to evaluate the chosen approaches based on how they perform at modelling
the variability that needed to be expressed in the different models. Therefore, we aimed
to add two types of models and model elements: 1) such that would only occur in one
of the two alternate products, and 2) such that would require some modifications (e.g.,
a different structure or different values) in each product. This section presents these
refinements as a preparation for the rest of the paper.10

3.1 Flood Crisis Management System

In addition to the car crisis management system (CCMS) from the case study, we have
chosen to model a Flood Crisis Management System (FCMS). Figure 2 shows the con-
figuration model (i.e., the selected features) for the FCMS. It can be seen that FCMSs
have a feature set that is substantially different from CCMSs, but that they also share

10 Since not all models created for the case study can be presented in this paper, we provide the
models on-line at http://featuremapper.org/files/TAOSD-AOM-2009/



a number of features. Features unique to the FCMS are underlined in the figure. Thus,
features related with the use of the Navy, the pumping and repair missions, and the fact
that the crisis may cover a large area are some examples of this uniqueness. We can
also observe that there were features present in the CCMS which are not included in
this configuration. Features related with investigation, nursing the wounded, sorting the
wounded, police intervention, and the type of crisis (which is a major accident of type
car crash) differs from the FCMS configuration.

Figure 3 shows the use case model for an FCMS. A number of use cases have been
added in comparison to the CCMS. For example, there are now the use cases ‘Execute
Pumping Mission’ and ‘Execute Repair Mission’. These use cases only make sense for
FCMSs, but not for CCMSs. As each use case is associated with at least one activity
diagram detailing the concrete usage scenario, the FCMS model also contains additional
activity diagrams. Note that even though some use cases are present for both products,
they may still differ in the concrete underlying scenarios. This will be discussed in more
detail for the ‘Execute Rescue Mission’ use case in the next subsection.

Of course, the different products also require different designs and architectures.
For example, the basic data structures required for both products are quite different,
Figure 4 shows the data structures defined for FCMSs. In comparison, Fig. 5 shows the
data structures defined for CCMSs. Furthermore, the FCMS makes use of a number of
components that are not used by the CCMS and vice versa. For example, the FCMS
uses the following components: ElectricityCompany, Navy, Army, Army-
Vehicle, TelecommunicationCompany, and NavyBoat.

The next subsection discusses the Rescue Mission as an especially interesting case,
because although both products support this mission, they differ very much in their
implementations of it.

3.2 Detailed Models of the Rescue Mission

The purpose of the rescue mission is to locate victims and remove them from the site
of the crisis. This requires a quite different set of steps in the case of a car crash and
a flood crisis. Figures 6 and 7 show two activity diagrams with the different scenarios.
Notice that there is a common core, but that each product has some steps specific to it.
In both cases, the rescue mission begins by transmitting injury information and attempt-
ing, where possible, to identify the victim(s). Next, additional conditions are checked.
These are contingent on the type of crisis: In the car-crash scenario it makes sense to
check whether the victim is locked in the car so that special actions need to be taken to
remove him/her from the car. In the flood-crisis scenario, rescue is mostly about taking
people out of the flood area. However, some victims, for example elderly or handi-
capped people, may require special assistance for this. In both cases, if the additional
condition is true, the rescue mission is terminated after requesting another mission to be
undertaken in response to the additional condition. If the additional condition is false,
the rescue mission proceeds as normal, by administering first aid and deciding if the
victim needs to be taken to a hospital. If no hospital is needed, no further action is re-
quired in the case of the car-crash scenario. For the flood-crisis system, however, all
victims need to be taken to a safe place. We consider these are reasonable assumptions,
based on real-life scenarios, on the original case study.



Fig. 2. Configuration model for a Flood Crisis Management System



Fig. 3. Use-Case Model for a Flood Crisis Management System

The two products also require a different set of realisation classes and data structures
to appropriately represent the respective crisis, although they also share some common
classes, which are depicted in Fig. 8.

While for a car crisis the location of a victim is the same as the location of the crisis
(apart, possibly from the exact vehicle in which the victim may be located), a flood cri-
sis occupies a much larger area, so that victim location becomes a much more relevant
information. Consequently, the Victim class provides a location attribute for stor-
ing the victim’s location. Furthermore, different types of victims may require different
treatment (cf. also Fig. 6 and Fig. 7). Which types of victims need to be distinguished
depends on the type of crisis. Finally, while some types of resources will be useful for
both types of crises (e.g., Blankets), others are only relevant for one or the other (e.g.,
LifeJackets are only useful in a flood crisis). Consequently, different design models
are required for the two different products. Figure 9 shows the models we will be using.
Again, we consider these are reasonable assumptions, based on real-life scenarios, on
the original case study.

3.3 Units of measurement

To show a specific type of variability mechanisms, we add a set of features dealing
with units of measurement. The reason for this addition was that the case study can
be completely modelled using positive and negative variability (cf. Sec. 2.1), and this



Fig. 4. Data structures for Flood Crisis Management Systems

Fig. 5. Data structures for Car Crisis Management Systems

change allows us to illustrate better how FeatureMapper and VML* can deal with model
modifications.

In particular, we add the MeasurementUnit feature group, which allows to
choose between the alternatives ImperialSystem and MetricSystem. This fea-
ture allows our product line to be used in different countries using different units of
distance measurements.

Both the FCMS and the CCMS need to deal with geographical locations for iden-
tifying the places where the crisis take place and personal data of the victims. Fig. 10
shows the design classes for managing geographical locations. This design is shared
by both the FCMS and the CCMS. These data structures include the class Roadway-
Location, which need to specify a length measurement. Depending on the country
where this system is deployed, this length would be measured in kilometers or miles.
An attribute called distanceUnit is added to the RoadwayLocation for config-
uring in which system units this class must work. So, depending on which country the
system is deployed this attribute must be changed.

The following two sections show how two different approaches to variability map-
ping can be applied to this case study, followed by a discussion of the two approaches
in Sect. 6.



Fig. 6. Scenario for the rescue mission for the CCMS

4 Application of FeatureMapper to the Case Study

FeatureMapper [9, 31, 32] is an Eclipse-based tool that allows for mapping features to
arbitrary modelling artefacts that are expressed by means of an Ecore-based language
[12]. These languages include UML2, domain-specific modelling languages defined us-
ing the Eclipse Modelling Framework (EMF), and textual languages that are described
using EMFText [13]. The mappings can be used to steer the product-instantiation pro-
cess by allowing the automatic removal of modelling artefacts that are not part of a
selected variant.

To associate features or logical combinations of features (feature expressions) with
modelling artefacts, the developer first selects the feature expression in FeatureMapper
and the modelling artefacts in her favourite modelling editor (e.g., TOPCASED [33]).
Next, she applies the feature expression to the modelling artefacts via the FeatureMap-



Fig. 7. Scenario for the rescue mission for the FCMS

per user interface. This mapping is later interpreted by a FeatureMapper derivation com-
ponent. Depending on the result of evaluating the feature expression against the set of
features selected in the variant, the modelling elements are preserved or removed from
the model. Model elements that are not mapped to a specific feature expression are
considered to be part of the core of the product line and are always preserved.

This implies that the solution-space models contain all model elements that are
used in any product of the product line. In Fig. 11 we show that we can model vari-
ants or product-specific variations in one model. The separation of concerns is realised
by the actual mapping and various visualisation techniques that help the product-line
developer in understanding the mapping between features and model artefacts. One
such visualisation is depicted in Fig. 11 where the colouring of model elements accord-



Fig. 8. Design models for accomplishing abstract missions

ing to their associated feature expression is shown.11 Another visualisation is shown
in Fig. 12 where only modelling artefacts mapped to the current feature expression are
drawn normally, whereas all model elements that are not realised by this feature expres-
sion are shaded in grey. Because FeatureMapper implements these visualisations on a
sufficiently generic layer to become independent of the concrete editor12, using them
does not require changing the editors and works on all GMF-based, tree-based EMF,
and textual EMFText editors. This enabled us to map features of the CMS to require-
ments, architectural, and design models without changing or adapting FeatureMapper
itself or any of the used modelling editors.

4.1 Modelling the mapping for requirements models

As depicted in Fig. 11 the use-case model contains all actors and use cases of both the
CCMS and the FCMS. We used the mapping facility of FeatureMapper to map specific
feature expressions to the elements of the use-case model. The feature expression have
been identified by analysing the textual description of the different use cases and taking
the different actors participating in a use case into account. In addition to the use cases
included in the case study description, we extended the models as described in Sect. 3.

For example, the feature expression Repair AND Electric Line was as-
signed to the actor Electrician, the use case Execute Electric Line Re-
pair Mission, and the association between those two artefacts. The use case Exe-
cute Repair Mission was in turn only mapped to the feature Repair because it
is also used when we include repairing of telecommunication lines in our product. An-
other possibility to create the mapping for the use case Execute Repair Mission

11 Since the colours used in this figure and others are likely not to be visible in a printout copy of
the paper, we also provide the figures on-line at http://featuremapper.org/files/
TAOSD-AOM-2009/.

12 FeatureMapper uses the Graphical Editing Framework (GEF) for graphical editors, the SWT
TreeViewer for tree-based EMF editors, and the EMFText Editor, respectively.



Fig. 9. Design models for the rescue mission for the CCMS (top) and the FCMS (bottom)

is to include it only if Repair AND (Execute Electric Line Repair Mis-
sion OR Execute Telecomm Line Repair Mission) evaluates to true.
We decided against this because it limits the extensibility of our mapping. In case we
would decide to include another specialised repair mission in our product line, we would
also need to update this mapping. The mapping of the various identified feature expres-
sions to the use-case model artefacts exposed no problems. However, modelling all vari-
ants in one model can result in large models which might become hard to understand
for some modellers. To address this, using other modularisation techniques (e.g., the
decomposition of all use cases specialising Execute Mission into a separate pack-
age) is possible. Likewise to the mapping shown in Fig. 11, one would then map the
appropriate feature expressions to the model artefacts in the decomposed models which
are later on composed using a compositional approach, i.e., UML package merge or
model weaving.

Similarly to the use-case model we also mapped the features to activity models that
contain inter-model variability. One example is the RescueMission (cf. Sect. 3.2).

As can be seen in Fig. 13, inter-model variability is addressed in the FeatureMap-
per by modelling the variations in the model and mapping the corresponding feature
expressions to the appropriate model artefacts. In the example, the feature expression
Rescue AND CarCrash is mapped to the parts drawn in red colour and Rescue



Fig. 10. Data structures for dealing with geographical locations

AND Flood is mapped to the blue parts. Since Flood and CarCrash are mutually
exclusive, it is ensured that the model tailored to a specific variant forms a syntactically
and semantically correct model.

In case a specific combination of features requires the inclusion of a complete
model, e.g., the activity model for the Execute Pumping Mission use case which
is only included if the feature expression Pumping AND Firemen (cf. Fig. 11) eval-
uates to true, FeatureMapper can be used to assign the respective feature expression
to the complete model.

4.2 Modelling the mapping for architecture and design models

Similarly to the RescueMission activity model, the design model for the parts of the
system relevant for the RescueMission contains modelling artefacts that are relevant
for the CCMS and the FCMS (where some modelling artefacts only apply to one of the
respective products). As can be seen in Fig. 14, variability also occurs at the granularity
of attributes of classes, namely the attributes location and mobileNumber of the
Victim class.

Besides of addressing inter-model variability by modelling all variants of a specific
subsystem in one model, FeatureMapper also allows to use compositional approaches
for addressing variability. An example where cross-cutting changes to models are re-
alised by model weaving based on graph-rewriting has been presented in [34]. Another
possibility is mapping feature expressions to compositional operators that are directly
available in UML, i.e., the UML PackageMerge relationship [35]. Using FeatureMap-
per, one can directly associate feature expressions to both the merged package (i.e., the
package that contains variant-specific refinements to the receiving core package) and
the merge relationship. In this case study we used this way of addressing variability for
the realisation of the various ExternalServices. Instead of modelling all external
services in one model (which might get too large and difficult to manage) we modelled
the ExternalServices in dedicated UML Packages that are combined with the core
of the CMS using UML PackageMerge relationships. Figure 15 depicts the realisation
of the various ExternalServices in separate packages that are only merged to the
core depending on the evaluation of the assigned feature expression. In this figure we
also show FeatureMapper’s Variant Visualisation that gives an overview about the in-
clusion and exclusion status of different modelling artefacts depending on the selected



RemoveObstacle

Repair AND ElectricLine

Repair AND TelecommunicationsLine

Repair

Transport

AuthenticationSystem

Witness AND SurveillanceSystem

SurveillanceSystem

Rescue AND PublicHospital

Observe

Pumping AND Firemen

Core

Fig. 11. Use-Case Model of the CMS displayed in FeatureMapper with enabled colouring of
model elements and the legend depicting the corresponding feature expressions.

set of features from the feature model. In this example we included all external services
except for Army and ExternalCompany which is why those packages are coloured
different from the other ones.

As described in Sect. 3.3 we have extended the product line with a Measurement-
Unit feature which consists of the two alternatives MetricSystem and Imperial-
System. Depending on the feature selection, the respective measurement kind should
be used in the design models of the CMS product line. Figure 16 depicts the part of
the design models which is concerned with describing different kinds of Location.
Depending on the selected feature expression, the attribute distanceUnit of the
RoadwayLocation class should have a default value according to the feature selec-
tion. In Fig. 16 we show the variant for MeasurementUnit AND MetricSystem.
To actually assign such changes of model properties to feature expressions, FeatureMap-
per has a recording mode, where the developer first selects the appropriate feature ex-
pression and then performs the actual change to the property (e.g., changing element
names, cardinalities, or default values) in the model. This change is recorded internally



Fig. 12. Use-Case Model of the CMS displayed in FeatureMapper with enabled Realisation Vi-
sualisation that highlights the model elements associated with the current feature expression.

and assigned to the feature expression in FeatureMapper’s mapping model. For these
changes, only one version can be shown directly in the diagrams at any one time. Fea-
tureMapper’s Property Changes View highlights the model elements where property
changes occur in the model (cf. Fig. 16) in red. The different alternatives can then be
inspected in a dedicated dialog as depicted in Fig. 17.

5 Application of VML* to the Case Study

This section shows how the Variability Modelling Languages from the VML* language
family [11] can be applied to the case study. VML* is a family of languages for mod-
elling the mapping between feature models and other models of an SPL (called target
models). Each language is customised for the specific target modelling language for
which it is to be used. For instance, if in a SPL we are using UML activity diagrams,
using VML* we can create a language specifically designed for managing variability
in UML activity diagrams. VML* provides a generative infrastructure for efficiently
developing such customised languages.

To apply VML* to the case study, we must first develop the specific customised
VML languages we need. Notice that this step must only be taken once; the languages
created can be reused for other SPLs as long as the feature and target modelling lan-



Fig. 13. Activity Model of the RescueMissionwhere elements are coloured according to their
feature mapping (Flood is blue whereas CarCrash is red).

guages remain the same. In Sect. 5.1, we will briefly discuss how to create the languages
required for this case study. We then discuss the application of each individual language.

5.1 Creating VML languages

VML languages are defined using a so-called language-instance descriptor [11]. A com-
plete support infrastructure can then be generated from the language-instance descrip-
tor. The language-instance descriptor is a domain-specific metamodelling language [36]
that allows language developers to model only those parts of a new VML language that
need to be customised. All other parts of the language and its support infrastructure are
generated and, thus, reused for each language.

Figure 18 shows an excerpt from a language instance descriptor for one of the cus-
tomised languages we will need for this case study: VML4RE, a language for mapping



����

��������

�����������

�������

�������

�������������

���������������
������������

��������
��������

������
�������
�����

���������������
�������������

��������
����������

�������

������

� ���������������������
� ��������� ���������������
� �����������������������
� �� ���������������
� �������� �����������������
� ���������������������������

���������������� ���������

� ���������������������

�����������

� ����������������

�����������

� ������������������������������
� �������������������������������
� ���������������������

�������

���������������

� ����������������������

����������

���������������
������������

�����
������

����
����������

�����������������

� �����������������������������

�

����

������

�

�
����

�������������

�

�

����

���������

�

�
����

��������

����

�

����

������������

�

�

����

������������

����

� �

Fig. 14. Class Model of the RescueMission where elements are coloured according to their
feature mapping (Flood is blue whereas CarCrash is red).

����������������������

������

���������������

����

���������������

��������������

�������������������

������������������ ���������

������������������ ���������

Fig. 15. Package Model of the ExternalServices using merge relationships between pack-
ages to increase modularisation.

������������
������������������

����������������
�������� ��������
� ���������������

��������

�������

� ������ ���������
� �������������������

��������������������

� �������� ����������������������
� �������������������������������

���������������

� ���������������
� ����������������������������������������

���������������
������������

����������
�����

Fig. 16. Class Model for different types of Location including property-level variability at
the distanceUnit attribute of RoadwayLocation depicted in FeatureMapper’s Property
Changes View that highlights parts of models with property-level variability.



Fig. 17. Dedicated dialog in FeatureMapper to inspect property-level variability.

from feature models to requirements models, specifically UML Use Case and Activ-
ity diagrams [37]. The full language will be used in Sect. 5.2. The language-instance
descriptor makes use of an openArchitectureWare Xtend [38] extension file defining
a number of model-transformation operations. For example, in the first section called
‘features’ (Lines 4–8), the language-instance descriptor defines the metamodel for fea-
ture models that can be used with VML4RE and also provides the name of an Xtend
operation that can extract all defined features from such a feature model. The next sec-
tion (Lines 11–16) similarly defines the metamodel for target models and a function for
finding a set of model elements based on some textual description called a designator.
VML languages use a notion of pointcuts for referencing points in target models that
need to be manipulated when a certain feature has been selected. Thus, the designators
to be interpreted by this function may contain wildcards.

The ‘actions’ section (Lines 22–29) syntactically defines what actions are available
in VML4RE. It can be seen that these actions are specific to the manipulation of use
cases and activities. Their semantics is further specified in the final ‘aspects’ section,
that allows to define a number of different semantics for different evaluation aspects,
such as product derivation (specified in the ‘transformation’ aspect) or tracing. For the
product-derivation semantics, we need to specify another adapter (Lines 35–38) that
is able to interpret product configurations and extract the selected features. Next, we
provide an Xtend implementation function for each action. For the tracing semantics
(Lines 48–51), we define pointcuts into our transformation implementation identifying
places where new model elements are created or existing ones deleted.

Based on the above approach, we have defined two languages: VML4RE for map-
ping features to requirements models and VML4Arch for mapping features to architec-
tural and design models. Once we have thus defined the necessary languages, we can
apply them to our case study, as will be demonstrated in the following subsections.

5.2 Modelling the mapping for requirements models

In this section, we show the mapping for requirements models; that is, the set of core
requirements models and how VML4RE can be used to derive product requirement
models. Before using VML4RE to manage variability, it is necessary to decide which
models are going to be considered as core; i.e., the models which will be manipulated



01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// Define a new language called vml4req
vml instance vml4req {
// This section defines the type of variability model and how to access it
features {
metamodel "/bin/fmp.ecore"
// Extracts all variability units from a variability model
function "getAllFeatures"

}

// This section defines the type of target model and how to access it
target model {
metamodel "UML2"
type "uml::Package" // Metamodel type of a model
// Function to interpret pointcut designators
function "dereferenceElement"

}

// Importing plugins and external specifications
...

// Syntactical definition of available actions
actions:
createInclude {
params "List[uml::UseCase]" "List[uml::UseCase]"

}
insertUseCase {
params "String" "uml::Package"

}
...

// Definition of available evaluation aspects
aspects:
transformation { // Evaluation for product derivation
// Defines adapter for product-configuration access
features {
type "String"
function "getAllSelectedFeatures"

}
// Definition of the semantics of actions as model transformations
createInclude {
function "createIncludes"

}
insertUseCase {
function "createUseCase"

}
...

}
tracing {
createOps “create* (*)”
removeOps “remove* (*)”

}
}

Fig. 18. Excerpt from a VML* language-instance descriptor for a VML language for mapping
feature models to requirements models



Fig. 19. Core use case model for the Crisis management System.

according to the different variants and combinations between them to obtain the product
models.

Figure 19 shows the considered core use case model for the CMS. Here, we fol-
lowed a positive variability approach, so this use case model contains use case model
elements related with mandatory functionalities only. For example, the model contains
the use case Execute Mission. However, at this stage, it does not contain any details
about which type of missions are supported by the system, since specific missions are
all optional in the feature model of CMS. Since requesting external resources and as-
signing internal resources are mandatory functionalities across the SPL, they are also
present in this figure.

We have also specified the variability for more fine grained models, such as sce-
narios associated with each use case, represented through activity diagrams. For ac-
tivity diagrams, we have considered as core models several scenarios represented with
activity diagrams, such as Assign Internal Resource, Execute Pumping
Mission, and Execute Super Observer Mission. For Execute Pump-
ing Mission and Execute Super Observer Mission we adopted a nega-
tive variability approach, so if any of the related features are not selected in a config-
uration, these model elements are removed from the model. We adopted this strategy
since we believe that in some situations, it is preferable to model visually than con-
structing the same model using a set of textual descriptions. Another observation is
that the behaviour included in this scenario is not shared between the two considered
configurations, so we haven’t identified too fine grained variability for this scenario.

For the rescue mission, we identified some variation points for each of the different
configurations (car and flood crisis) but also some common parts. Figure 20 shows the
considered core activity model for the rescue mission. This core model contains all
behavioural elements which are shared by both car and flood crisis configurations.

Figure 21 shows an excerpt of the VML4RE specification for the crisis manage-
ment system SPL. Lines 6–10 show the variability management when the Rescue
feature is selected in a configuration. Given a configuration, if the feature expression
in Line 6 evaluates to true, a use case with name Execute Rescue Mission



Fig. 20. Core Activity Diagram for the Rescue Mission Scenario.

is created (Line 7) and an inherits relationship from this use case to the use case
ExecuteMission (which was considered as core) is created (Line 8–9). VML4RE
can generate trace links from features to requirements model elements based on ac-
tions, since there is implicit trace information in VML4RE specifications. However,
VML4RE also offers a specialized operator which allows to explicitly trace features to
requirements model elements. In this VML4RE specification, we can see that Lines 11-
15 define explicitly a set of trace links from the feature Rescue and activity model
elements. In this piece of VML4RE code, we are defining trace links from the feature
Rescue to the core actions of Rescue activity model depicted in Fig. 20. Line 18–
23 show the variability management for the Public Hospital feature. If this fea-
ture is selected, actors such as Hospital Resource System and First Aid
Worker and respective relationships are also created. Notice that VML4RE’s pointcut
expressions allow us to connect all of these actors to their appropriate use cases in one
action invocation (Lines 21–22). For this variation point, we use a positive variability
approach. The creation of the use case model elements for the feature Public Hospital
depends on the previous execution of the actions related with the variant Rescue (the
action depicted in Lines 6–16), so an order of execution must be specified here. VML
supports the definition of order of execution between feature expressions. To define
an order for this situation, we have named each of the features expressions (rescue
and public hospital). The specification of the order of execution can be found in
Line 66.

Lines 25–33 show the set of actions to be executed if both Rescue and CarCrash
features are selected. These actions construct the scenario for the rescue mission in the
context of a car crisis (one of the products available for this SPL). The resulting scenario



01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

import features <" CrisisSystemFlood.fmp">; 

import core <"/CarCrisisSystem.uml">; 

 

concern CrisisSystem { 

 

variant rescue for Rescue { 

  insertUseCase ("ExecuteRescueMission", "CrisisManagementSystem"); 

  createInherits ("CrisisManagementSystem::ExecuteRescueMission", 

"CrisisManagementSystem::ExecuteMission"); 

 

  trace ("ExecuteRescueMission::TransmitInjuryInformation"); 

  trace ("ExecuteRescueMission::IdentifyVictim"); 

  trace ("ExecuteRescueMission::RetriveMedicalRecord"); 

  trace ("ExecuteRescueMission::AdministerFirstAid"); 

  trace ("ExecuteRescueMission::BringToHospital"); 

 } 

  

variant public_hospital for PublicHospital { 

  insertActor ("HospitalResourceSystem", ""); 

  insertActor ("FirstAidWorker", ""); 

  createAssociation (or( "HospitalResourceSystem", "FirstAidWorker"), 

"CrisisManagementSystem::ExecuteRescueMission"); 

} 

 

variant for and ( CarCrash,Rescue) { 

  createAction ("RemoveVictimFromCar", "ExecuteRescueMission"); 

  connectActivityElements("ExecuteRescueMission::dn2", 

"ExecuteRescueMission::RemoveVictimFromCar", "[isVictimLockedInCar]"); 

  connectActivityElements("ExecuteRescueMission::RemoveVictimFromCar", 

"ExecuteRescueMission::FinalNode", ""); 

  connectActivityElements("ExecuteRescueMission::dn3", 

"ExecuteRescueMission::FinalNode", "[false]"); 

} 

 

variant for not Rescue { 

  removeElement("ExecuteRescueMission");//removes the core activity model 

} 

  

variant for and (Rescue ,Flood) { 

  createAction ("RequestSpecialAssistance", "ExecuteRescueMission"); 

  connectActivityElements("ExecuteRescueMission::dn2", 

"ExecuteRescueMission::RequestSpecialAssistance", "[isVictimHandicapped]"); 

  connectActivityElements("ExecuteRescueMission::RequestSpecialAssistance", 

"ExecuteRescueMission::FinalNode", ""); 

  createAction ("RecoverVictim", "ExecuteRescueMission"); 

  connectActivityElements("ExecuteRescueMission::dn3", 

"ExecuteRescueMission::RecoverVictim", "[false]"); 

  connectActivityElements("ExecuteRescueMission::RecoverVictim", 

"ExecuteRescueMission::FinalNode", "");  

} 

  

variant for Observe { 

  insertUseCase ("ExecuteSuperObserverMission", "CrisisManagementSystem"); 

  createInherits ("CrisisManagementSystem::ExecuteSuperObserverMission", 

"CrisisManagementSystem::ExecuteMission"); 

  insertActor ("SuperObserver", ""); 

  createAssociation ("SuperObserver", 

"CrisisManagementSystem::ExecuteSuperObserverMission");   

} 

  

variant for not (Observe){ 

  removeElement("ExecuteSuperObserverMission"); 

} 

} 

 

order (rescue, public_hospital ); 

 

 

Fig. 21. Excerpt from the VML4RE specification for crisis management systems



from executing this set of actions is the activity diagram depicted in Fig. 6. Variabil-
ity has also been defined for the rescue scenario in the context of a flood crisis system.
Lines 39–50 show the set of actions to execute in the core rescue mission activity model,
if both features Rescue and Flood are selected. One important note is that in order
to use connect actions, the elements to connect should be named so that they can be ref-
erenced. One example of this is in Line 41, where dn2 indicates one specific decision
node of the activity diagram. Since Rescue is an optional feature, it is also possible
to have configurations in which the feature is not selected. For these configurations,
the core activity mode for Rescue Mission should be removed. Lines 35–37 show
the application of the action removeElement (modelElement) for these cases.
Figure 21 also contains the variability management specification for the Observe
Mission. When the feature Observe is selected, use case model elements related
with this feature are constructed for the product model. As we said previously, for the
Execute Super Observer Mission scenario (Activity Diagram) we adopted
a negative approach. This means that the corresponding activity diagram was included
in the core model, and in the case of unselection of this feature (Line 61) in a configu-
ration, we remove this activity diagram (Line 62).

The trace links generated by VML* (and thus by VML4RE) can be used to vi-
sualise the mapping between features and model elements. Figure 22 depicts part of
the generated trace links for the Rescue feature, considering the flood crisis prod-
uct. The AMPLE Traceability Framework (ATF) [39] offers several visualizations to
show trace links. The left part of Fig. 22 shows a tree-based view and the right part
shows a graph-based view. In the tree-based view, we can see the trace link between
Rescue and Identify Victim. This trace link was created because of the explicit
use of the action trace in the VML4RE specification (Line 12 of Fig. 21). On the
other hand, a trace link has been generated from Rescue to the use case Execute
Rescue Mission, because of the action present in Line 7. The graph-based figure
on the right, shows several links created for the flood crisis product. In this view, the
elements such as use cases, packages, actors, activity diagrams, actions and features
are represented as nodes. Edges are used to represent a link between two elements. For
each visual element (a node or an edge), we can also see the properties (type and name)
of that element. For example, in Fig. 22 (graph based view) we can see the properties
for the feature Rescue at the top of the window. In this figure, we have also empha-
sized the set of trace links for this feature using a red rectangle. This view is useful
to see how elements are linked—for example to see which requirements elements are
shared between different features. We can see that there are two requirements elements
(RecoverVictim and RequestSpecialAssistance actions) which are shared
between the Flood and Rescue features. These requirements elements were inserted
when generating the product model, since the feature expression in Line 39 of Fig. 21
was true according to the flood crisis feature model configuration.

5.3 Modelling the mapping for architecture and design models

This section describes the results of applying VML4Arch [26, 40] to the Crisis Manage-
ment System. VML4Arch is a language for specifying the connection between feature
models and UML 2.0 architectural models.



Fig. 22. Visualization of generated trace links from the feature Rescue to requirements model
elements for the flood product using a tree-based view (left) and a graph-based view (right)

Figures 23 and 24 show the aspect-oriented decomposition of the software architec-
ture. The Core package contains the elements that are common to all the products. The
elements for interacting with a specific external service, such as the Police, are en-
capsulated into a separate UML package (cf. Fig. 23). The same applies to the elements
for managing each particular kind of crisis (cf. Fig. 24).

Thus, the elements that are common to the data structures for accomplishing any
kind of mission (cf. Fig. 8) would be placed in the Core, specifying these data struc-
tures must be included in any kind of product derived from this reference architecture.

This design is then refined in the CarCrisis and FloodCrisis packages. Each
particular kind of crisis adds its own kind of missions and the specific data structures
that are required for each kind of mission. For instance, the CarCrisis aspect adds
the classes and relationships that are specific for accomplishing CarRescueMissions,
i.e. the data structures depicted in Fig. 5. Similarly, the data structures depicted in Fig. 5
would be added to the FloodCrisis package.

Thus, depending on which features are selected, we need to combine a different
set of packages. What packages need to be combined with the core in order to create
a concrete product is specified using VML4Arch (cf. Fig. 25). The product derivation
process determined by this VML4Arch specification is as follows: First of all, a new
UML package representing the final product being derived is created. This package is
called MyCrisisManagementSystem and it is initially empty. This empty package
will merge those packages that correspond to selected features, e.g. CarCrisis or
Police. The piece of code for creating this package (Fig. 25, line 06) is associated to
the root feature of the feature model. Moreover, the MyCrisisManagementSystem
package merges the Core package (Fig. 25, line 07), which represents the minimum
and core functionality that any Crisis Management System must have. Since the root
feature is always selected, this piece of code is always executed and the MyCrisis-
ManagementSystem package is always created and a merge relationship is initially
created between this package and the Core package.



Fig. 23. Aspect-oriented decomposition of the Crisis Management System (I)

Fig. 24. Aspect-oriented decomposition of the Crisis Management System (II)



00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import features <"/cms.fmp">;
import core <"/CrisisManagementSystem.uml">;

concern CrisisManagementSystem {

variant for CrisisManagementSystem {
createPackage ("MyCrisisManagementSystem", "");
merge ("MyCrisisManagementSystem", "Core");

}

variant for CarCrash {
merge ("MyCrisisManagementSystem", "CarCrash");

}

variant for Flood {
merge ("MyCrisisManagementSystem", "FloodCrisis");

}

variant for SurveillanceSystem {
merge ("MyCrisisManagementSystem", "SurveillanceSystem");

}

variant for not SurveillanceSystem {
remove ("SurveillanceSystem");

}

variant for MetricSystem {
setDefaultAttribute (
"Core::Datatypes::BasicDatatypes::RoadwayLocation.distanceUnit",
"Core::Datatypes::BasicDatatypes::RoadwayLocation::KILOMETRES");

}

variant for ImperialSystem {
setDefaultAttribute (
"Core::Datatypes::BasicDatatypes::RoadwayLocation.distanceUnit",
"Core::Datatypes::BasicDatatypes::RoadwayLocation::MILES");

}

} // CrisisManagementSystem

Fig. 25. VML4Arch specification for the Crisis Management System



Merging packages is expressed in VML4Arch using the merge action. UML merge
dependencies in the UML model are used to express dependencies between coarse-
grained variants. These dependencies represent architectural information about the prod-
uct line as a whole and are provided by the SPL architect. They must be maintained
under any circumstances. The UML merge dependencies introduced through merge
actions express which coarse-grained variants should be included in the architecture
for a specific product. The merge action will only add its corresponding dependency
if this is not already given by transitivity. Hence, given the following merge depen-
dencies in the model: A --merge--> B, B --merge--> C, calling merge (A,
C) will not have any effect since that dependency is already in the model by transitiv-
ity. Also, if any other direct dependency becomes redundant, it is removed—for ex-
ample, given additionally D --merge--> B, calling merge (A, D) will lead to
the final situation of A --merge--> D, D --merge-->B, B --merge--> C.
Thus, the merge dependencies introduced in the VML4Arch specification are effec-
tively those depicted in Fig. 15, where CrisisManagementSystem corresponds to
MyCrisisManagementSystem. Figure 23 may give the impression that all types
from the Core package are duplicated throughout the product-line model. However,
because a product is eventually represented by a single package merging all coarse-
grained variants, these redundant copies of Core concepts will be merged into one
again, removing all duplication and redundancy.13

Fine-grained variations are managed through different VML4Arch operators, which
allows, basically, to modified elements from an architectural design model, or remove
them. We illustrate two different cases for this.

In the first case, the Core package contains a set of data structures for identifying
geographical locations (cf. Fig. 10), which must measure distances in different units
depending on the country where the system is deployed. It is decided that, by default,
the system is configured for working with the metric system units, so KILOMETERS
is specified as default value for the distanceUnit attribute (cf. Fig. 10). In case the
Imperial system was selected, this value should be changed. This is made through the
VML4Arch code contained in lines 32-36 of Fig 25, which basically says the default
value for this attribute must be set to MILES.

In the second case, let us suppose the first-aid material is an optional feature, instead
of mandatory, inside this product line. WaterBottles and Blankets are consid-
ered first-aid material. We can think on separating WaterBottles and Blankets
in a separate UML package and merging this package with the CarCrisis package.
Nevertheless, as previously commented, this technique would quickly lead to the cre-
ation of a large number of small and practically meaningless aspects, with, in most
of cases, a complex set of dependencies among them, which would make the design
unmanageable. Instead of following this positive strategy, we follow a negative strat-
egy. Thus, we simply leave the WaterBottle and Blanket resource in the design
model, and in case the first-aid material feature were not selected, these classes are sim-
ply removed from this design model. It should be noticed that this removal should only

13 Note that this implementation of merge is specific to VML4Arch. Other VML* languages
may also need a similar action. They are free to use any implementation needed, so they could,
for example, be based on [41].



01
02
03
04

variant for and (CarCrash, not (FirstAidMaterial)) {
remove ("CarCrash::Datatypes::WaterBottles");
remove ("CarCrash::Datatypes::Blankets");

}

Fig. 26. VML4Arch specification for removing FirstAidMaterial

happen if the CarCrisis option has been selected. Otherwise, if the CarCrisis
option is not selected, the package containing this design would be not selected and the
removal of these classes would not have any effect, as we can consider they were al-
ready removed as the package is not included in the final product. This is specified using
the feature expression depicted in Fig. 26, line 01. It establishes that, if CarCrisis
has been selected, but FirstAidMaterial has not been selected, the classes repre-
senting WaterBottles and Blankets would also be removed.

6 Discussion and Comparative Analysis of the Two Approaches

In the previous sections, we have shown how two approaches to variability mapping
can be successfully applied to the case study. Both approaches were able to produce
product models for the two products described in Sect. 3. In this section, we provide a
comparative analysis of the two approaches. Table 1 gives an overview of the compari-
son criteria we have used and how they are met by the two approaches. In the following,
we first give a more detailed description and motivation of each criterion, followed by
a detailed discussion of how the two approaches meet each criterion.

6.1 Comparison Criteria

Our comparison of VML* and FeatureMapper is mainly based on the application of the
two approaches to the common case study, as discussed earlier in this paper, but also on
our previous experience with these approaches in other case studies and application sce-
narios. We have selected nine comparison criteria. These criteria were chosen because
they represent general concerns for variability mapping. In particular, the nine criteria
can be grouped into three groups based on the general variability-modelling concern
they are related to:

1. Expressiveness. This group assembles criteria that describe the variability space
that can be covered by a particular approach. These criteria are:
(a) Modelling Languages supported;
(b) Variability Mechanisms supported;
(c) Support for Feature Expressions; and
(d) Support for Feature Cardinality and Cloned Features.

2. Useability and Analysis. This group assembles criteria that describe the kinds of
analyses and evaluations that can be performed and the useability benefits and
drawbacks of a particular approach. These criteria are:



Table 1. Overview of the comparison between FeatureMapper and VML*

Criterion FeatureMapper VML*
Expressiveness
Modelling Languages Supported Fully Generic Generic through cus-

tomisation
Variability Mechanisms Supported Negative and Modification

Only
All

Support for Feature Expressions Supported Supported
Support for Feature Cardinality and
Cloned Features

No Support No Support

Useability and Analysis
Support for Automatic product
derivation

Supported Supported

Analysis Support Feature Model, Mapping
Model, Multiple Visualisations

Trace Links

Accessibility of the Mapping
Model

Separate model maintained by
tool

Separate model main-
tained by SPL engineer

Real-World Models
Scalability Direct Annotation Pointcut Expressions
Support for Model Evolution Detection of Broken Mappings No Dedicated Support

(a) Support for Automatic Product Derivation;
(b) Analysis Support; and
(c) Accessibility of the Mapping Model.

3. Real-World Models This group assembles criteria that describe how the approaches
deal with properties of real-world models. In particular, these criteria are:
(a) Scalability; and
(b) Support for Model Evolution.

In the following, we briefly discuss each criterion in more detail before Sect. 6.2
applies them to a comparison of VML* and FeatureMapper.

Modelling languages supported With the advent of domain-specific modelling lan-
guages, a variability-modelling approach that only supports one modelling language is
almost not usable. Some level of genericity in such an approach is, therefore, highly
important. This is especially true with regard to the target modelling language; that is,
the language in which the SPL reference model is expressed. However, because to date
there is no commonly agreed standard for feature modelling and a range of different
types of feature models and tool realisations is available, a variability mapping approach
should also have some genericity with regards to the feature-modelling approach used.

Consequently, for this criterion we compare if and how FeatureMapper and VML*
can support different modelling languages both for feature modelling and for the target
models.

Variability mechanisms supported As discussed in Sect. 2.1, we can distinguish three
major variability mechanisms:



1. Negative Variability.
2. Positive Variability.
3. Modification of Model Elements.

Both, negative and positive variability, have benefits and drawbacks: Negative vari-
ability uses one model of the complete product line, this model can become very com-
plex as it has to contain model elements for any product in the product line. Some parts
of such a model may even contradict each other, making the model potentially very dif-
ficult to analyse and understand. Positive variability avoids this problem by separating
model elements for each different product into different models. At the same time, this
means that there can potentially be a large number of model fragments describing the
SPL as a whole, making it difficult to get an easy overview of the SPL. This can poten-
tially make it more difficult to spot feature interactions in the models. In contrast, with
a negative variability approach many feature interactions can be identified directly, as
all model elements are added to the same model. Therefore, it would be beneficial for a
variability-modelling approach to support all forms of variability modelling—possibly
even within the same specification—leaving the choice to the SPL designer based on
what is best for each situation.

Consequently, for this criterion we compare which variability mechanisms Fea-
tureMapper and VML* support.

Support for Feature Expressions The relationship between features and model ele-
ments is typically not one-to-one. Instead, a particular combination of features may be
realised by a single model element or a single model element may be required for a set
of different features (regardless of combination) but not by other features in the SPL. A
typical technique to enable expression of such more complex mappings is the use of fea-
ture expressions; that is, boolean expressions over feature names. Feature expressions
are evaluated over product configurations; that is, concrete selections of features from a
feature model. A simple feature expression consisting of a feature name only evaluates
to true if the named feature is selected in the product configuration. Based on this, more
complex feature expressions follow the standard rules for logical combinators.

Consequently, for this criterion we compare if and how FeatureMapper and VML*
support feature expressions in their variability models.

Support for Feature Cardinality and Cloned Features Feature models in their orig-
inal form [5] are very good at representing configurative variability, but less good at
more structural forms of variability. This issue has been addressed, at least partially,
by more advanced forms of feature models, such as for example cardinality-based fea-
ture models [42]. Even though there are still many situations were it is better to use
a domain-specific language for expressing structural variability (for example, where
variations in workflows need to be expressed), cardinality-based feature models take an
interesting step towards structural variability by allowing features to be selected more
than once and with different configurations of their sub-trees. Mapping such so-called
cloned features to target model elements poses a number of interesting challenges to
variability mapping, which go beyond what is required for the criteria above. There-
fore, we introduce a separate criterion for this capability.



Consequently, for this criterion we compare if and how FeatureMapper and VML*
provide support for mapping cloned features onto target-model elements.

Support for Automatic Product Derivation Product derivation refers to the creation
of models and implementations for a particular product in an SPL based on a selection
of a subset of the features from the SPL’s feature model. A central goal of all variability
mapping is to automate product derivation as much as possible based on an explicit
description of features, variant models and implementations, and the mapping between
these.

Consequently, for this criterion we compare if and how FeatureMapper and VML*
automate product derivation.

Analysis Support Another good reason for making the relation between features and
target model elements explicit is that it enables analysis. Variability models can be
analysed in many different forms ranging from visualisations of different products or
feature expressions or the generation of tracing information for example for change-
impact analysis all the way to formal consistency analysis (e.g., [43, 44]).

Consequently, for this criterion we compare the types of analyses enabled by Fea-
tureMapper and VML*, respectively.

Accessibility of the Mapping Model Variability modelling means to make the rela-
tionships between features and target models explicitly. However, this can be done in
a variety of ways and these have an effect on the useability of a variability-modelling
approach in particular scenarios. Here, we focus on two dimensions: 1) How is the
mapping expressed, and 2) How is the mapping model managed.

Consequently, for this criterion we compare how FeatureMapper and VML* express
the mapping as well as how they each manage the variability model and allow SPL
developers access to it.

Scalability Real-life SPLs can have large feature sets and very large models. Thus,
scalability of any approach to modelling variability becomes an important issue. While
the case study discussed in this paper is not big and detailed enough to obtain precise
data on scalability, some qualitative arguments can be extracted.

Our experience with this and a number of other case studies indicates that while
some properties of the variability modelling approach can have an impact on scalabil-
ity, the structure of the SPL model has by far the greater impact. This is so because
effectively with SPLs it is inevitable to make explicit every connection between any
feature and its corresponding model variations. That is, the amount of information to
be represented is determined mainly by the size of the feature and SPL models and
the inherent complexity of their relationship. The simpler the relationship between the
two, the more easily can it be represented and the larger the SPLs that can still be han-
dled. At one extreme, Feature-Oriented Software Development [45] proposes a direct
one-to-one mapping between features and implementation modules, making explicit
mapping representations virtually unnecessary. However, in practice this cannot always



be achieved perfectly and may lead to unnecessarily many unnecessarily small imple-
mentation modules, so an explicit mapping representation is still needed.

In our discussion above, we have seen how the choice between variability mech-
anisms can influence the scalability of our variability models. For example, in the
VML4Arch example, we saw how using UML packages and UML merge dependencies
could significantly reduce the amount of VML4Arch code to be written for a variability
specification. If we were to describe the necessary elements of the CarRescueMis-
sion design model as part of the variability model, we would need to create 9 elements
(7 classes plus 2 enumerations). Moreover, we would also need to create 11 relation-
ships among these elements. So, we would need approx. 20 lines of VML4Arch code
for creating the design model depicted in Fig. 9. Using UML packages and merge rela-
tionships, we can reduce the number of VML4Arch lines of code to just one. Moreover,
we need only one line of code independently of the size of the model placed in a UML
package, as the only thing we need to express is that this package needs to be included
in the final product. Each new type of crisis management system only requires adding
another package and one line of VML4Arch code. However, at the same time, it is not
sensible to represent every variation in its own package. If we were to do so even for,
for example, such small variations as the difference between using the imperial and
the metric measurement system, we could easily end up with a large number of pack-
ages with very little meaningful contents, fragmenting the SPL model to the point of
incomprehensibility.

While this discussion applies equally to both approaches discussed, there are some
differences between the approaches which may affect scalability. Consequently, for this
criterion we provide a qualitative discussion of different capabilities FeatureMapper
and VML* provide for dealing with large models and feature sets.

Support for Model Evolution SPLs are not static and, consequently, variability mod-
els cannot be static artefacts. Therefore, it is interesting to discuss what, if any, support
for evolution a variability-modelling approach provides. There is a number of dimen-
sions to this criterion. It includes evolution of the metamodels for features or target
modelling language. It also includes, however, evolution of the actual feature and target
models and the need to co-evolve the variability models along with them.

The common case study does not provide any evolution scenarios. Therefore, we
cannot directly use the experience from our application of FeatureMapper and VML*
to the common case study to provide insights in how the two approaches cope with evo-
lution. However, because we feel this criterion is essential in any variability mapping
approach, we decided to include at least some analytical discussion of how FeatureMap-
per and VML* could deal with model evolution.

6.2 Comparative Analysis of VML* and FeatureMapper

In this subsection, we use the criteria from the previous subsection to compare Fea-
tureMapper and VML*.



Modelling Languages Supported While both FeatureMapper and VML* are generic
and work for arbitrary modelling languages, there are some differences that are worth
discussing in more detail.

FeatureMapper is a tool that can work with arbitrary EMF models and supports a
range of different editors for these models, including arbitrary GMF-based editors, the
standard EMF tree editors, and EMFText-based text editors. In contrast, VML* pro-
duces mapping languages for specific modelling languages. It is, thus, also generically
applicable for any EMF model, but only if an appropriate VML language has previ-
ously been defined. Consequently, there is an added initial cost to using VML* in a
project, in particular if a large number of project-specific or domain-specific languages
are used. On the other hand, because VML languages are customised for each mod-
elling language used, they can take into consideration the semantics of these modelling
languages, providing much more powerful actions than generic direct mappings be-
tween features (or feature expressions) and model elements. As an example, consider
VML4Arch’s connect (C1, C2, I) action, that connects components C1 and
C2 via interface I. To express the same in FeatureMapper, we would have to produce
mappings to the appropriate ports in C1 and C2 as well as to the dependencies between
these ports and the interface I. Although connect does not currently support this, it
could even easily be extended to create interface I if it does not exist yet.

The cost of customising VML* to a particular target language can be decomposed
into two parts: (i) the effort needed to implement adapters for dealing with different
meta-models and (ii) the effort needed to implement the actions required. With respect
to the former, both VML* languages we have discussed (VML4RE and VML4Arch)
use feature models based on the FMP plugin for Eclipse and UML Models using the
UML plugin for Eclipse, so we were easily able to reuse this code between the two lan-
guages. It should be noted, though, that even so the code needed is relatively compact
and easily understood (at about 20 lines of recursive navigation code for accessing the
UML models; accessing FMP models is more complex due to some special particulari-
ties of the FMP metamodel, which hinders its navigation when Xtend is used as model
transformation language.)

In terms of the effort needed to implement the actions in a VML* language, Ta-
ble 2 provides an overview of some data on the VML4Arch and VML4RE implemen-
tations. In particular, it shows the number of lines of transformation code required,
on average, per action implementation as well as a subjective judgment of how many
of these action implementations were difficult or easy to understand, code and test.
More substantive empirical studies are required to provide more robust knowledge
about the cost involved in customising VML* to a particular target language, overall
because the effort involved in the development of a new VML* language starts to be
cost-effective when this language is applied to the development of several SPLs or a
same SPL evolves and the VML* language helps to reduce the maintenance cost. This
task goes beyond the scope of this paper. However, already from Table 2 it can be in-
ferred that all actions for VML4RE could be implemented with reasonable effort. In
the case of VML4Arch, there are some actions, such as merge, which required a big-
ger effort. It should be taken into account this action must carry out several checks to
avoid redundancies, which increases its complexity. But at the same time, it encapsu-



Table 2. Qualitative and Quantitative Estimated Effort for the VML4RE and VML4Arch lan-
guages

Criterion VML4RE VML4Arch
Average number of code lines per
action

5 14.54

Difficult action implementations None 2
Action implementations medium
difficulty

None 2

Easy action implementations All 9

lates more work than more simple actions, such as, for instance, createPackage.
So, although more complex, actions such as merge it is expected helps to save more
work each time it is used, since it makes the VML* language more powerful. Other ac-
tions, such as connectPorts, becomes complex due to the complexity of the UML
metamodel [46]. In this case, the effort required for implementing this action would
be similar to the effort required if we implemented the product-derivation process us-
ing a low-level model transformation language, because the complexity is on the target
metamodel itself, not in the approach used to manipulate this target metamodel. There-
fore, it can be only avoided changing the target metamodel. It should also be noted, that
the effort required depends heavily on the transformation language used (in the case of
VML* this is Xtend). Therefore, these data would not easily generalise to other tools
using a similar approach, but different transformation language.

An important drawback of VML* is that it currently does not support textual mod-
elling languages (where they are not backed by an Ecore-based abstract syntax) and pro-
duces no diagram files for visual modelling languages. While FeatureMapper supports
any Ecore-based target language, it must be customised with regard to the used feature
metamodel. Besides its own feature metamodel, those of pure::variants and FMP are
supported and further metamodels can be added via a dedicated extension point. VML*
languages can be easily customised for both target and feature modelling language, as
long as the feature modelling language provides some notion of selected features in a
configuration.

Variability Mechanisms Supported FeatureMapper associates model elements with
features (or feature expressions) directly. This makes it difficult to support positive
variability, as the model elements to map to must effectively already exist in the core
model. When using negative variability only, all different variants must be expressed
in the models. This also implies that in some cases, models are created that are not
well-formed w.r.t. the corresponding metamodel simply because two alternatives are
expressed in one model using a language that was initially not designed for dealing
with variability. However, many current modelling editors do not prohibit the violation
of certain constraints (especially semantic constraints), which should then be checked
and enforced by the respective SPL tool [47].

Having multiple variants in one model can also introduce difficulties in understand-
ing the model and the variability. However, FeatureMapper offers multiple visualisa-



tions which can in turn increase understandability by explicitly highlighting parts where
variability occurs (e.g., the Colouring View cf. Fig. 11). Using colour coding to dis-
tinguish between different feature expressions scales only up to a limited number of
colours. Hence, FeatureMapper does not assign colours automatically, but gives the
SPL developer the choice on which feature expressions and related modelling elements
are of particular interest. In our experience, using up to twelve different colours is still
feasible.

Although FeatureMapper allows for negative variability only, positive variability
can be supported indirectly. If the SPL architecture is expressed using some composi-
tional approach (e.g., model weaving or UML package merge) and the composition is
available as a model in its own right, FeatureMapper can be used to map feature expres-
sions to parts of the composition model. This negative variability on the composition
model effectively implies positive variability using aspects (cf. Sect. 2.1) for the actual
SPL model.

In contrast to FeatureMapper, in VML* every action is effectively a small transfor-
mation of the core model. This means that an action is free to inspect, modify, and add
model elements of the core model. VML* can, thus, easily support positive variability
and negative variability, as well as any combination thereof.

There are, however, a number of remarks to be made:

1. A concrete VML language may restrict the set of variability mapping approaches
supported because it only defines actions for some approaches and not for others.
We have seen a concrete example in the comparison of VML4RE and VML4Arch
above.

2. Mixing negative and positive variability mapping in the same specification may
cause problems in product derivation, as the order in which the model transfor-
mations are executed becomes important. For example, when negative variability
is used to remove a model element from a larger model fragment that is added to
the core model using positive variability, it is important that the model fragment is
added before the negative-variability remove actions are executed. VML* allows
developers to specify the order in which variants are evaluated, but this still places
an additional burden on SPL developers. Using only positive or negative variability
throughout simplifies this issue substantially.

3. The richer semantics of VML* actions means that a much richer combination of
variability mapping techniques can be used with VML*. At the same time, however,
such complex operators (e.g., createAction or createDecisionNode) move
the definition and creation of modelling artefacts from the modelling language into
the VML* script. Part of the SPL model is, thus, not immediately available in the
appropriate modelling notation, but can only be properly inspected after product
derivation. This may increase the cognitive load of the SPL designer. Using posi-
tive variability with aspects (cf. Sect. 2.1) can help here, as it allows to move most
of the model elements back into the original modelling language.

Both approaches can cater for modification of model elements.

Support for Feature Expressions Both FeatureMapper and VML* support the use of
feature expressions in mapping models. FeatureMapper associates model elements in



the SPL models with feature expressions indicating when a particular model element
should be present. Users can then also inspect the SPL models by using feature ex-
pressions to provide an indication of a product configuration to be highlighted in the
SPL models. VML* specifications associate feature expressions with descriptions of
the modifications of the target model necessary for a configuration satisfying the fea-
ture expression.

Support for Feature Cardinality and Cloned Features Neither of the two approaches
provide special support for cloned features. This is also true for all other approaches
known to us. Support for cloned features is, thus, an important area of future research.

Support for Automatic Product Derivation Both VML* and FeatureMapper sup-
port automatic product derivation. VML* provides this support as one possible evalu-
ation semantics of a VML* specification, parameterised with a product configuration.
FeatureMapper takes a mapping model and a product configuration as input and trans-
forms the referenced solution-space models accordingly. In case transformation seman-
tics need to be adjusted or refined for a specific modelling language, FeatureMapper
offers an extension point where SPL developers can provide their own implementation
of the product derivation semantics.

Analysis Support In [47], we have described the necessity to ensure well-formedness
on all input models, i.e., feature models, mapping models, and solution-space models.
FeatureMapper ensures this on feature models by enforcing several constraints (includ-
ing cross-tree relationships like requiresFeature and conflictsWithFea-
ture). While VML* currently does not support any analysis on feature models, it is
certainly possible to implement. For mapping models, FeatureMapper checks whether
all referenced features and modelling elements actually exist and informs the SPL de-
veloper in case the mapping model is broken. This kind of analysis can also be imple-
mented in VML* (and has been implemented for the feature-model side), where the
dedicated editors could inform the SPL developer via problem markers of such prob-
lems. Checking all possible variants of solution-space models is not a feasible way to
ensure well-formedness [43, 44]. In [47], we outline our current and future plans for
analysis of solution-space models with FeatureMapper that are based on the ideas of
Czarnecki and Pietroszek [48]. Generally speaking, we would expect the formal con-
sistency analysis to be achievable more easily with a declarative approach like Fea-
tureMapper than an operational approach like VML*, because the semantics of the
mapping are simpler in the declarative case.

Recently, visualisation techniques have come into the research focus as an inter-
esting helper in understanding how the selection or unselection of features may affect
the diverse models used in the design of the product line [49]. In the case of VML*,
the only support provided is in the structure of a VML specification, where all actions
are grouped by the feature expression to which they apply. Furthermore, trace links
can be extracted from a product-derivation run based on a VML specification. These
trace links relate features and created or removed model elements directly and can sub-
sequently be used for visualisation purposes. However, because the VML actions are



small model transformations instead of direct mappings between features and model
elements, a VML specification cannot directly be used for creating a visualisation. Fur-
thermore, a VML specification transforms models at the level of their abstract syntax,
it does not produce a concrete-syntax representation (e.g., a diagram file or a textual
representation of the model). This can make inspecting the result of product deriva-
tion difficult. In contrast, one of the key features of FeatureMapper is the rich set of
visualisations available. An SPL designer can choose to view only model elements as-
sociated with an arbitrary feature expression, or with a product configuration. She can
also view all model elements, but have them coloured according to the feature expres-
sion to which they have been allocated. All of these visualisations are made possible
because FeatureMapper uses a much more generic semantics of the relation between
features and model elements. In effect, there seems to be a trade-off between richness
of the modelling concepts for variability mapping and ease of visualisation creation.

Accessibility of the Mapping Model As mentioned previously, there are two dimen-
sions to this criterion: 1) How is the mapping expressed, and 2) How is the mapping
model managed.

How is the mapping expressed? VML* is an operational approach (see Fig. 1). It
expresses the mapping between features and model elements indirectly by specifying
modifications of the target model in response to the selection or deselection of particular
features (or feature expressions). The mapping model is expressed in textual form us-
ing terminology that has been customised to be close to the terminology SPL designers
use when constructing the original target model. FeatureMapper, on the other hand, is a
declarative approach using a separate annotation model (see Fig. 1). This has the benefit
of making the mapping model much easier to comprehend as well as more amenable
to analysis and visualisation. At the same time, however, it limits the range of variabil-
ity mechanisms that can be easily modelled in FeatureMapper (cf. the discussion on
variability mechanisms earlier in this section).

How is the mapping model managed? VML* leaves the creation and maintenance
of the mapping model completely to the SPL developer. The tool only reads the model
when it is asked to perform a specific action, such as product derivation. In contrast,
with FeatureMapper the tool manages the mapping model and creates it from particu-
lar gestures SPL developers make using the tool’s graphical user interface. The model
is stored and maintained as an Ecore-based model that can be easily processed by Fea-
tureMapper or any other tool that supports EMF. It is more difficult to read and maintain
for SPL developers, who instead use FeatureMapper’s Associated Elements View to in-
spect the mapping model. Creation and update is intended (but not limited) to involve
the FeatureMapper tooling.

Scalability As we have already mentioned in the introduction of the scalability cri-
terion above, the biggest impact on scalability is in the structure of the SPL models.
However, the variability-modelling approach can have some impact on scalability as
well.

FeatureMapper requires a single mapping relation to be constructed for every model
element to be associated with a feature expression. In contrast, VML* allows pointcuts



to be used to construct a set of mapping relations between model elements in one go
(see Lines 15–16 in Fig. 21 for a simple example; additionally, VML* pointcuts also
support the use of wildcards). This may reduce the number of lines of VML specifi-
cation required for expressing the same variability and may, thus, contribute to overall
scalability of the approach. Of course, because pointcuts come with their own well-
known issues such as pointcut fragility and potential increased complexity, the question
of how much this really contributes to scalability cannot be answered easily. More de-
tailed and quantitative studies of more complex systems are required to obtain a better
answer to this question. Although FeatureMapper does not provide a dedicated pointcut
language, it can utilise arbitrary Ecore-based AOM approaches, e.g., Reuseware [50] or
XWeave [16], by mapping feature expressions to the respective composition programs.
Eventually, this removes or keeps the composition program depending on the evaluation
result of the assigned feature expression.

Support for Model Evolution As mentioned above, model evolution can be discussed
both at the model and the metamodel level. Furthermore, we can discuss evolution of
feature models (and metamodels), target models (and metamodels), and the mapping
metamodel itself. Evolution of the mapping model corresponds to normal editing of
this model, so no separate discussion is required for this case.

FeatureMapper has a stable mapping metamodel which did not change since its ini-
tial design. It is very unlikely that it will be extended or changed in the near future, but
if so, existing mapping models would need to be updated. This can be done automati-
cally using model transformations. However, updating existing mapping models is only
needed if existing metamodel elements are renamed, deleted or otherwise restructured
in an evolution step. EMF handles additions to metamodels quite gracefully [12]. In
contrast, VML* supports mapping-language evolution in the sense that it allows defin-
ing new or deleting existing operators when needed. Evolving the VML language by
adding new operators is expected during an SPL’s life cycle, since its variations and the
way the models must be manipulated changes over time according to new requirements,
needs and products.

In case the feature model changes in the sense that features referenced in a map-
ping model are renamed or removed, all mappings that reference this feature need to
be updated accordingly, potentially all related target model elements must be removed
as well. Of course, this is not an automated task, but FeatureMapper helps the devel-
oper to identify the relevant mappings by highlighting them in the Associated Elements
View where a warning symbol and an explanatory message are displayed next to the
broken mapping. Similarly, VML* checks whether features referenced in a feature ex-
pression actually exist in the feature model and marks places in the specification that
reference non-existent features. When a new feature is added to the feature model no
problems will arise when generating products, however, modelling the corresponding
model elements and managing its variability is necessary. No particular support for this
is required or offered by FeatureMapper or VML*. Of course adding and removing
features or model elements can cause impact on other model elements, and some re-
structuring of the model and VML script can be necessary. However, this is part of the
SPL process, which is creative with small iterative improvements that can impact the



overall SPL structure. Where the feature metamodel changes, a new adapter is required
for both VML* and FeatureMapper. Because both tools can be configured with such
adapters for feature models, changes to the feature metamodel should not cause major
problems. Of course, any feature models will need to be adjusted to the new feature
metamodel, but this task is independent of the use of FeatureMapper, VML*, or any
other variability-modelling approach.

When a target model changes, if only elements are added, no problems will arise in
the VML* script during product derivation, since all model elements referenced by the
script are already there. However, the VML* script may need to be updated to manage
the variability of the newly added elements to get the expected product when deriving
products. If a negative variability approach is being used to manage variability of these
new functionalities, the VML* operators should be used to remove these elements when
the correspondent features are not selected. If elements of the domain model are deleted
or renamed and those elements are referenced by the VML* script, the script must be
updated accordingly, otherwise problems will arise when deriving products. The re-
moval of elements in the domain model can occur because functionalities represented
by the removed elements are not needed anymore in the SPL context, or when migrat-
ing from a negative approach to a positive approach. In the latter case, the elements
deleted from the domain model must be created through VML* operators. Currently,
VML* does not support SPL developers in identifying broken links to target model el-
ements. However, this is due to the prototype nature of the tooling rather than to any
unsolved technical or conceptual issues. In contrast, FeatureMapper again uses the As-
sociated Elements View to provide error messages where referenced model elements
have been deleted or renamed. When the target metamodel changes, FeatureMapper
mapping models do not require additional adaptations (apart from adaptations required
by changes to the target model as a result of the changes to the target metamodel). In the
VML* case, it may become necessary to define new operators or modify the definitions
of the existing operators. This in turn may require adaptations to the mapping model
itself.

An interesting research area worth investigating is the synchronised refactoring of
feature models, mapping models, and solution-space models. Initial work in this direc-
tion has been presented in [51].

7 Conclusions

We have compared two approaches to modelling the relationship between features and
SPL models—FeatureMapper (cf. Sect. 4) and VML* (cf. Sect. 5). Table 3 summarises
the comparison giving an alternative view on Table 1. On balance, both approaches were
very well suited for the variability in the case study, but with slightly different objec-
tives. FeatureMapper is especially good for visualising the variability in a product line
and is based on a generic approach, meaning their is no initial overhead in applying it
to any EMF-based modelling language. VML* is based on customising a language for
each target modelling language, potentially incurring some setup cost at the beginning
of a project, but this also allows for much richer semantics in the mapping specification.
In terms of scalability, the key factor appears to be not the specific approach to variabil-



Table 3. Overall comparison of FeatureMapper and VML*

FeatureMapper VML*

+ Multiple visualisations
+ Fully generic
+ Automatic product generation
+ Support for feature expressions

+ Support for all variability mechanisms
+ Generic
+ Automatic product generation
+ Support for feature expressions

– Positive variability not directly supported
– No support for cloned features

– Very limited visualisation support
– Cost of language customisation
– No support for cloned features

ity mapping, but the way in which the solution-space models are structured. Thus, we
argue that both approaches can be expected to scale approximately equally well. While
a number of these points are specific to the two approaches compared and cannot be
easily generalised, some points appear to be of a more general nature. In particular, it
seems that the simpler semantics of declarative approaches makes it easier to provide
analysis and visualisation capabilities, while at the same time limiting the variability
mechanisms that can be supported.

Acknowledgements

The work presented has been supported by the European Commission through the FP6
STREP AMPLE (Aspect-Oriented and Model-Driven Product-Line Engineering), by
the German BMBF through the FeasiPLE project and by the Spanish Ministry of Sci-
ence and Innovation Project TIN2008-01942/TIN.

References

1. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: A case study for aspect-
oriented modeling. Transactions on Aspect-Oriented Software Development 7 (2010) 1–22

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley
(2002)

3. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer (September 2005)

4. American Heritage: The American Heritage Dictionary. Houghton Mifflin, Boston, MA
(1985)

5. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-0211990, Software Engineer-
ing Institute (1990)

6. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Transactions
on Software Engineering 30(6) (June 2004) 355–371



7. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on
superimposed variants. In: Proceedings of the 4th International Conference on Generative
Programming and Component Engineering (GPCE’05). (2005) 422–437

8. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding standardized
variability to domain specific languages. In: Proceedings of the 12th International Software
Product Line Conference (SPLC’08), IEEE (2008) 139–148

9. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping Features to Models.
In: Companion Proceedings of the 30th International Conference on Software Engineering
(ICSE’08), New York, NY, USA, ACM (May 2008) 943–944

10. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.M.: Weaving
variability into domain metamodels. In Schürr, A., Selic, B., eds.: ACM/IEEE 12th Int’l
Conf. on Model Driven Engineering Languages and Systems (MODELS’09). Volume 5795
of Lecture Notes in Computer Science., Springer (October 2009) 690–705

11. Zschaler, S., Sánchez, P., Santos, J., Alférez, M., Rashid, A., Fuentes, L., Moreira, A.,
Araújo, J., Kulesza, U.: VML* – a family of languages for variability management in soft-
ware product lines. [52]

12. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Framework, 2nd
Edition. Pearson Education (2008)

13. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and Refinement
of Textual Syntax for Models. In Paige, R.F., Hartman, A., Rensink, A., eds.: Proceedings of
the 5th European Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA 2009). Volume 5562 of LNCS., Springer (2009) 114–129

14. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Software Product Lines.
In van der Linden, F., ed.: Proc. of the 5th Int. Workshop on Software Product-Family Engi-
neering (PFE). Volume 3014 of LNCS., Siena (Italy) (November 2003) 129–139

15. Loughran, N., Sánchez, P., Gámez, N., Garcia, A., Fuentes, L., Schwanninger, C., Kovace-
vic, J.: Survey on State-of-the-Art in Product Line Architecture Design. Technical Report
Deliverable D2.1, AMPLE project (http://www.ample-project.net) (March 2007)

16. Groher, I., Voelter, M.: XWeave: Models and aspects in concert. In: Proceedings of the 10th
International Workshop on Aspect-Oriented Modeling (AOM’07), ACM (2007) 35–40

17. Schauerhuber, A., Schwinger, W., Kapsammer, E., Retschitzegger, W., Wimmer, M., Kappel,
G.: A survey on aspect-oriented modeling approaches. Technical report, Vienna University
of Technology (2007)

18. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On language-independent model
modularisation. [53] 39–82

19. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: A Unified Ap-
proach for Composing UML Aspect Models Based on Graph Transformation. [53] 191–237

20. Fuentes, L., Nebrera, C., Sánchez, P.: Feature-oriented model-driven software product lines:
The TENTE approach. In Yu, E., Eder, J., Rolland, C., eds.: Proceedings of the Forum at the
CAiSE 2009 Conference. (2009) 67–72

21. Greenwood, P., Bartolomei, T.T., Figueiredo, E., Dósea, M., Garcia, A.F., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the impact of aspectual
decompositions on design stability: An empirical study. In Ernst, E., ed.: Proceedings of the
21st European Conference on Object-Oriented Programming (ECOOP’07). Volume 4609 of
LNCS., Springer (2007) 176–200

22. Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jézéquel, J.M.: In-
troducing variability into aspect-oriented modeling approaches. In Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F., eds.: Proc. 10th Int’l Conf. Model Driven Engineering Lan-
guages and Systems (MoDELS 2007). Volume 4735 of Lecture Notes in Computer Science.,
Springer (2007) 498–513



23. Beuche, D., Papajewski, H., Schröder-Preikschat, W.: Variability Management with Feature
Models. Science of Computer Programming 53(3) (2004) 333–352

24. Ziadi, T., Jézéquel, J.M.: Software product line engineering with the UML: Deriving prod-
ucts. In: Proceedings of the 10th International Software Product Line Conference (SPLC’06).
(2006) 557–588

25. Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architectures.
In: Proceedings of the 22nd International Conference on Automated Software Engineering
(ASE’07). (2007) 469–472

26. Sánchez, P., Loughran, N., Fuentes, L., Garcia, A.: Engineering languages for specifying
product-derivation processes in software product lines. In Gasevic, D., Lämmel, R., Wyk,
E.V., eds.: Proceedings of the 1st International Conference on Software Language Engineer-
ing (SLE). Volume 5452 of LNCS., Toulouse (France) (September 2008) 188–207

27. Krueger, C.W.: Gears white papers. http://http://www.biglever.com/learn/whitepapers.html
(2006)

28. Bakal, M., Krueger, C.W.: The rhapsody/gears bridge - spl for mdd. In: Proc. of the 11th
Int. Conference on Software Product Lines (SPLC) - Workshops Volume, Kyoto (Japan)
(September 2007) 139–140

29. Groher, I., Voelter, M.: Aspect-Oriented Model-Driven Software Product Line Engineering.
[53] 111–152

30. Kienzle, J., Abed, W.A., Klein, J.: Aspect-Oriented Multi-View Modelling. In: Proc. of
the 8th Int. Conference on Aspect-Oriented Software Development (AOSD), Charlottesville
(Virginia, USA) (March 2009) 87–98

31. Heidenreich, F., Şavga, I., Wende, C.: On Controlled Visualisations in Software Product Line
Engineering. In: Proceedings of the 2nd International Workshop on Visualisation in Soft-
ware Product Line Engineering (ViSPLE’08), collocated with the 12th International Soft-
ware Product Line Conference (SPLC’08). (September 2008)

32. The FeatureMapper Project Team: FeatureMapper (July 2009) URL
http://www.featuremapper.org.

33. The Topcased Project Team: TOPCASED (July 2009) URL http://www.topcased.org.
34. Heidenreich, F., Wende, C.: Bridging the gap between features and models. In: 2nd

Workshop on Aspect-Oriented Product Line Engineering (AOPLE’07) co-located with the
6th International Conference on Generative Programming and Component Engineering
(GPCE’07). (2007) URL http://www.softeng.ox.ac.uk/aople/.

35. Object Management Group: UML 2.2 infrastructure specification. OMG Document (Febru-
ary 2009) URL http://www.omg.org/spec/UML/2.2/.

36. Zschaler, S., Kolovos, D.S., Drivalos, N., Paige, R.F., Rashid, A.: Domain-specific meta-
modelling languages for software language engineering. [52]

37. Alférez, M., Kulesza, U., Weston, N., Araujo, J., Amaral, V., Mor-
eira, A., Rashid, A., Jaeger, M.C.: A metamodel for aspectual re-
quirements modelling and composition. AMPLE Deliverable D1.3:
http://ample.holos.pt/gest cnt upload/editor/File/public/AMPLE WP1 D13.pdf (2007)

38. Efftinge, S.: openArchitectureWare 4.1 Xtend language reference.
http://www.openarchitectureware.org/pub/documentation/4.1/r25 extendReference.pdf
(August 2006)

39. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.C., Rummler, A., Sousa, A.:
A model-driven traceability framework for software product lines. Journal Software and
Systems Modeling (2009) Published on-line first, 29 June, 2009.

40. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Language support for managing variabil-
ity in architectural models. In Pautasso, C., Tanter, É., eds.: Proc. of the 7th Int. Symposium
on Software Composition (SC). Volume 4954 of LNCS., Budapest (Hungary) (March 2008)
36–51



41. Fleurey, F., Baudry, B., Ghosh, S., France, R.: A generic approach for automatic model
composition. In: Aspect Oriented Modeling (AOM) Workshop colocated with MoDELS’07.
(2007)

42. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models. In:
Proceedings of the 8th International Software Product Line Conference (SPLC’04). Volume
3154 of LNCS., Springer (2004) 266–283

43. Janota, M., Botterweck, G.: Formal approach to integrating feature and architecture mod-
els. In: Proc. Int’l Conf. on Fundamental Approaches to Software Engineering (FASE’08).
(March 2008)

44. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines. In: Proc.
6th Int’l Conf. Generative Programming and Component Engineering (GPCE’07). (2007)
95–104

45. Apel, S., Kästner, C.: An overview of feature-oriented software development. Journal of
Object Technology (JOT) 8(5) (July 2009) 49–84

46. France, R.B., Ghosh, S., Dinh-Trong, T.T., Solberg, A.: Model-Driven Development Using
UML 2.0: Promises and Pitfalls. IEEE Computer 39(2) (2006) 59–66

47. Heidenreich, F.: Towards systematic ensuring well-formedness of software product lines. In:
Proc. 1st Workshop on Feature-Oriented Software Development, ACM Press (oct 2009)

48. Czarnecki, K., Pietroszek, K.: Verifying Feature-Based Model Templates Against Well-
Formedness OCL Constraints. In Jarzabek, S., Schmidt, D.C., Veldhuizen, T.L., eds.: Proc.
5th Int’l Conf. Generative Programming and Component Engineering (GPCE’06), ACM
(2006) 211–220

49. ViSPLE organisers: International Workshop Series on Visualisation in Software Product
Line Engineering (ViSPLE) (2008–2009)

50. Heidenreich, F., Johannes, J., Zschaler, S.: Aspect orientation for your language of choice.
In: Proceedings of the 11th International Workshop on Aspect-Oriented Modeling (AOM at
MoDELS’07) co-located with the 10th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’07). (October 2007)

51. Şavga, I., Heidenreich, F.: Refactoring in feature-oriented programming: Open issues. In:
Proc. Workshop on Modularization, Composition, and Generative Techniques for Product
Line Engineering, Department of Informatics and Mathematics, University of Passau (Octo-
ber 2008) 41–46 Technical Report MIP-0802.

52. Gray, J., van den Brand, M., eds.: Proc. 2nd Int’l Conf. on Software Language Engineering
(SLE’09). In Gray, J., van den Brand, M., eds.: Proc. 2nd Int’l Conf. on Software Language
Engineering (SLE’09), Springer (2009)

53. Katz, S., Ossher, H., eds.: Transactions on Aspect-Oriented Development (TAOSD VI),
Special Issue on Aspects and MDE. Volume 5560 of LNCS. Springer (October 2009)


